Tail bounds for hypergeometric distribution (sampling without replacement)

October 19, 2021

The proof presented here is from [Chv79].

Suppose you have bag with $a = n(1 - \epsilon)/2$ black balls and $b = n(1 + \epsilon)/2$ white balls. We uniformly randomly select a subset of k balls (without replacement). We want to show that the probability that we will get at least k/2 black balls is quite small. The probability is given as follows

$$p = \binom{n}{k}^{-1} \sum_{j=k/2}^{k} \binom{a}{j} \binom{b}{k-j}.$$

Say, we have a real number $x \in (0,1)$. We can write

$$p = \binom{n}{k}^{-1} \sum_{j=k/2}^{k} \binom{a}{j} \binom{b}{k-j}$$

$$\leq \binom{n}{k}^{-1} \sum_{j=k/2}^{k} \binom{a}{j} \binom{b}{k-j} (1-x)^{k/2-j}$$

$$\leq \binom{n}{k}^{-1} \sum_{j=0}^{k} \binom{a}{j} \binom{b}{k-j} (1-x)^{k/2-j}$$

$$= \binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{j=0}^{k} \binom{a}{j} \binom{b}{k-j} (1-x)^{k-j}$$

$$= \binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{j=0}^{k} \binom{a}{j} \binom{b}{k-j} \sum_{j=0}^{k-j} \binom{k-j}{i} (-x)^{i}$$

Changing the order of the two summations.

$$\binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{j=0}^{k} \binom{a}{j} \binom{b}{k-j} \sum_{i=0}^{k-j} \binom{k-j}{i} (-x)^{i}$$

$$= \binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} \sum_{j=0}^{k-i} \binom{a}{j} \binom{b}{k-j} \binom{k-j}{i}$$

$$= \binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} \sum_{j=0}^{k-i} \binom{a}{j} \binom{b}{i} \binom{b-i}{k-j-i} \qquad \left(\text{because } \binom{b}{k-j} \binom{k-j}{i} = \binom{b}{i} \binom{b-i}{k-j-i} \right)$$

$$= \binom{n}{k}^{-1} (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} \binom{b}{i} \binom{a+b-i}{k-i}$$

$$= (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} \binom{b}{i} \binom{n-i}{k-i} / \binom{n}{k}$$

We will use $\binom{n}{k}\binom{k}{i} = \binom{n-i}{k-i}\binom{n}{i}$.

$$(1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} {b \choose i} {n-i \choose k-i} / {n \choose k}$$

$$= (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} {b \choose i} {k \choose i} / {n \choose i}$$

$$= (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} {k \choose i} \frac{b(b-1)\cdots(b-i+1)}{n(n-1)\cdots(n-i+1)}$$

$$\leq (1-x)^{-k/2} \sum_{i=0}^{k} (-x)^{i} {k \choose i} (\frac{b}{n})^{i}$$

$$= (1-x)^{-k/2} (1-bx/n)^{k}$$

To get the best bound, we will minimize $f(x) = (1-x)^{-1}(1-bx/n)^2$.

Putting f'(x) = 0, we get x = 2 - n/b. And $f(2 - n/b) = 4(n - b)b/n^2 = 4ab/n^2$. The final probability bound we get is

$$p \le (4ab/n^2)^{k/2}.$$

Put $a = n(1 - \epsilon)/2$ and $b = n(1 + \epsilon)/2$.

$$p \le (1 - \epsilon^2)^{k/2}.$$

Using $1 - \epsilon^2 \le e^{-\epsilon^2}$ (standard calculus),

$$p \le e^{-\epsilon^2 k/2}.$$

References

[Chv79] V. Chvátal. The tail of the hypergeometric distribution. *Discrete Mathematics*, 25(3):285–287, 1979.