Tail bounds for hypergeometric distribution
(sampling without replacement)

October 19, 2021

The proof presented here is from [Chv79].

Suppose you have bag with a = n(1 — €)/2 black balls and b = n(1 + €)/2 white balls. We uniformly
randomly select a subset of k balls (without replacement). We want to show that the probability that we
will get at least k/2 black balls is quite small. The probability is given as follows
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Say, we have a real number z € (0,1). We can write
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Changing the order of the two summations.
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We will use (}) (k) = ("_l) M.
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To get the best bound, we will minimize f(z) = (1 —z)~}(1 — bz /n)?.
Putting f'(z) = 0, we get =2 —n/b. And f(2 — n/b) = 4(n — b)b/n? = 4ab/n?. The final probability
bound we get is
p < (4ab/n?)*/2.
Puta=n(l—¢)/2 and b=n(1+¢€)/2.
p < (1 _ EQ)k/Z.

Using 1 — €2 < e~ (standard calculus),
p< 67521@/2'
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