CS602: Homework Problems

January 23, 2020

Lecture 1

- 1. Prove that various standard forms of linear programs are equivalent.
- Form 1: maximize $w^{T}x$ subject to Ax < b
- Form 2: minimize $w^{T}x$ subject to Ax = b, x > 0
- Form 3: minimize w^Tx subject to $Ax \leq b$, A'x = b', $A''x \geq b''$
- 2. Give an example of a set of constraints $Ax \leq b$ and two linear functions $w_1^T x$ and $w_2^T x$ such that $\max\{w_1^T x \mid Ax \leq b\}$ has a finite value while $\max\{w_2^T x \mid Ax \leq b\}$ is unbounded.

Lecture 2

- 1. Prove that the feasible region of a set of linear constraints, i.e., $\{x \in \mathbb{R}^n \mid Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, is a convex set.
- 2. There were three claims made in class.
 - (a) For any $w \in \mathbb{R}^n$ and a polyhedron P, the set of points $x \in P$ maximizing w^Tx forms a face.
 - (b) Suppose $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ and $z \in P$ is a point maximizing w^Tx . Let (A', b') be the subset of rows of (A, b) which gives all the tight constraints for z, i.e., A'z = b'. Then, any point $y \in P$ satisfying A'y = b' will also maximize w^Tx over P.
 - (c) If α and β are two points maximizing $w^{\mathsf{T}}x$ in P. Then $\frac{\alpha+\beta}{2}$ will also maximize $w^{\mathsf{T}}x$ in P.

We had proved Claim (b) in the class. First prove Claim (c) and then using (b) and (c), prove Claim (a).

Lecture 3

- 1. Three definitions of corners/vertices of a polyhedron were discussed in class.
 - (a) Suppose $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$. $z \in P$ is a vertex if there exists a subset of rows of (A,b), say (A',b'), such that A'z = b' and $\operatorname{rank}(A') = n$.

- (b) $z \in P$ is a vertex if there is no $y \in \mathbb{R}^n$ such that $z + y \in P$ and $z y \in P$.
- (c) $z \in P$ is a vertex if there exists $w \in \mathbb{R}^n$ such that z is the unique point maximizing $w^T x$ over P.

Prove equivalence of these definitions which were not done in class, that is, (a) implies (c).

Lecture 4

1. For a set of points $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}^n$, let $\operatorname{conv}(\alpha_1, \alpha_2, \dots, \alpha_k)$ denote their convex hull, i.e., $\{\sum_{i=1}^k \lambda_i \alpha_i \mid \sum_{i=1}^k \lambda_i = 1, \ 0 \le \lambda_i \ \forall i\}$. Prove the following.

$$p \in \operatorname{conv}(p_1, p_2), \ q \in \operatorname{conv}(q_1, q_2), \ r \in \operatorname{conv}(p, q) \implies r \in \operatorname{conv}(p_1, p_2, q_1, q_2)$$

2. Fourier Motzkin Elimination: Consider the following two system of inequalities.

$$x_1 = \lambda + 2(1 - \lambda)$$

 $x_2 = \lambda - (1 - \lambda)$
 $0 \le \lambda \le 1$
 $2 - x_1 = (x_2 + 1)/2$
 $0 \le 2 - x_1 \le 1$

When you apply Fourier Motzkin Elimination (FME) on the left system, you get the right one. Show that

- (a) for any point (x_1, x_2, λ) satisfying the left system, the point (x_1, x_2) must satisfy the right system.
- (b) for any point (x_1, x_2) satisfying the right system, there must exist $\lambda \in \mathbb{R}$ such that (x_1, x_2, λ) satisfies the left system.

Argue that these also hold when FME is applied on a general system of linear inequalities.

3. **Optimization:** Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $w \in \mathbb{R}^n$, find the value $\max w^{\mathsf{T}} x$ subject to Ax < b.

Feasibility: Given $C \in \mathbb{R}^{m \times n}$, $d \in \mathbb{R}^m$, decide (yes or no) if there exists a point $x \in \mathbb{R}^n$ satisfying Cx < d.

Show that Optimization reduces to Feasibility. That is, you can solve the optimization question if you are allowed to use the feasibility subroutine polynomially many times.