Corners/Vertices of a Polyhedron

Lemma 3.1. For any face F of P, $\exists w \in \mathbb{R}^n$ such that F is exactly the set of points maximizing $w^T x$ over P.

Proof. Let polytope $P \subseteq \mathbb{R}^n$ be

\[
\begin{align*}
 a_1^T x &\leq b_1 \\
 \vdots \\
 a_m^T x &\leq b_m
\end{align*}
\]

and face F be the set of constraints

\[
\begin{align*}
 a_1^T x &= b_1 \\
 a_2^T x &= b_2 \\
 a_3^T x &\leq b_3 \\
 \vdots \\
 a_m^T x &\leq b_m
\end{align*}
\]

Then $w = a_1 + a_2$ is trivially the required w (As $a_1^T x + a_2^T x \leq b_1 + b_2 \ \forall x \in P$ and $a_1^T x + a_2^T x = b_1 + b_2$ only for $x \in F$). This can be extended for any face similarly. Hence, proved.

Corollary 3.2. For $w^T x$, there is a corner of P which attains maximum value.

Definition 3.3 (Corner/Vertex). For polytope $P \subseteq \mathbb{R}^n$

\[
\begin{align*}
 a_1^T x &\leq b_1 \\
 a_2^T x &\leq b_2 \\
 \vdots \\
 a_m^T x &\leq b_m
\end{align*}
\]

z is a vertex if $z \in P$ and if there is a subset of n linearly independent constraints which are tight for z.

Definition 3.4 (Corner/Vertex). z is a corner of P if $z \in P$ and $\forall y \in \mathbb{R}^n \setminus \{0\}$, $z + y \in P \Rightarrow z - y \notin P$.

Definition 3.5 (Corner/Vertex). z is a corner of P if $z \in P$ and $\exists w \in \mathbb{R}^n$ such that z is the UNIQUE point maximizing $w^T x$ over P.

Claim 3.6. All 3 definitions of Corner/Vertex are equivalent

Proof. 3.5 \Rightarrow 3.4. $\exists w : w^T z = \alpha^*$

For contradiction, suppose $y \neq 0$ is such that $z + y \in P$ and $z - y \in P$.

$\Rightarrow w^T(z + y) \leq \alpha^* \ , \ w^T(z - y) \leq \alpha^*$

If one of the above is strictly less than α^* then other one would be greater, thus, they must be same as α^*.

Hence, we get a contradiction to the fact that z is the unique maximizing point.
3.3 ⇒ 3.5. Using Lemma 3.1, \(\exists w \in \mathbb{R}^n \) such that \(z \) if exactly the set of points maximizing \(w^T x \), but by Definition 3.3, \(z \) is a UNIQUE point (\(n \) independent tight constraints in \(\mathbb{R}^n \) correspond to a single point). Hence, this implies the condition in Definition 3.5.

3.4 ⇒ 3.3. We want to show the condition in Definition 3.3. For the sake of contradiction, let us assume that the maximum number of constraints which are tight for \(z \) is \(k \). Without loss of generality, say \(a_i^T z = b_i \) for \(1 \leq i \leq k \). If the rank of \((a_1, a_2, \ldots, a_k) \) is less than \(n \) then we know from linear algebra that there must be common orthogonal vector to all of them. That is, there exists \(\delta \in \mathbb{R}^n \) such that

\[
a_i^T \delta = 0 \quad \text{for} \quad 1 \leq i \leq k.
\]

Now, choose two new points \(z + \epsilon \delta \) and \(z - \epsilon \delta \) for some small \(\epsilon > 0 \). The constraints which were tight for \(z \) will also be tight for these two points (from ()). Moreover, the constraints which were not tight for \(z \) can still be kept non-tight for the other two points by choosing a small enough \(\epsilon \). Thus, the two points are feasible. And, we get a contradiction to the condition that at least one of \(z + y \) and \(z - y \) should be outside the polyhedron.