CS602 Applied Algorithms

2019-20 Sem II

Lecture 3: January 21

Scribe: Saurav Yadav Lecturer: Rohit Gurjar

Corners/Vertices of a Polyhedron

Lemma 3.1. For any face F of P, $\exists w \in \mathbb{R}^n$ such that F is exactly the set of points maximizing $w^T x$ over P.

Proof. Let polytope $P \subseteq \mathbb{R}^n$ be

$$a_1^T x \le b_1$$

$$\vdots$$

$$a_m^T x \le b_m$$

and face F be the set of constraints

$$a_1^T x = b_1$$

$$a_2^T x = b_2$$

$$a_3^T x \le b_3$$

$$\vdots$$

$$a_m^T x \le b_m$$

Then $w = a_1 + a_2$ is trivially the required w (As $a_1^T x + a_2^T x \le b_1 + b_2 \ \forall x \in P$ and $a_1^T x + a_2^T x = b_1 + b_2$ only for $x \in F$). This can be extended for any face similarly. Hence, proved.

Corollary 3.2. For $w^T x$, there is a corner of P which attains maximum value.

Definition 3.3 (Corner/Vertex). For polytope $P \subseteq \mathbb{R}^n$

$$a_1^T x \le b_1$$

$$a_2^T x \le b_2$$

$$\vdots$$

$$a_m^T x \le b_m$$

z is a vertex if $z \in P$ and if there is a subset of n linearly independent constraints which are tight for z.

Definition 3.4 (Corner/Vertex). z is a corner of P if $z \in P$ and $\forall y \in \mathbb{R}^n \setminus \{0\}, z + y \in P \Rightarrow z - y \notin P$.

Definition 3.5 (Corner/Vertex). z is a corner of P if $z \in P$ and $\exists w \in \mathbb{R}^n$ such that z is the UNIQUE point maximizing $w^T x$ over P.

Claim 3.6. All 3 definitions of Corner/Vertex are equivalent

Proof. $3.5 \Rightarrow 3.4$. $\exists w : w^T z = \alpha^*$

For contradiction, suppose $y \neq 0$ is such that $z + y \in P$ and $z - y \in P$.

$$\Rightarrow w^T(z+y) \le \alpha^*, w^T(z-y) \le \alpha^*$$

If one of the above is strictly less than α^* then other one would be greater, thus, they must be same as α^* . Hence, we get a contradiction to the fact that z is the unique maximizing point.

 $3.3 \Rightarrow 3.5$. Using Lemma 3.1, $\exists w \in \mathbb{R}^n$ such that z if exactly the set of points maximizing $w^T x$, but by Definition 3.3, z is a UNIQUE point (n independent tight constraints in \mathbb{R}^n correspond to a single point). Hence, this implies the condition in Definition 3.5.

 $3.4 \Rightarrow 3.3$. We want to show the condition in Definition 3.3. For the sake of contradiction, let us assume that the maximum number of constraints which are tight for z is k. Without loss of generality, say $a_i^T z = b_i$ for $1 \le i \le k$. If the rank of (a_1, a_2, \ldots, a_k) is less than n then we know from linear algebra that there must be common orthogal vector to all of them. That is, there exists $\delta \in \mathbb{R}^n$ such that

$$a_i^T \delta = 0 \text{ for } 1 \leq i \leq k.$$

Now, choose two new points $z + \epsilon \delta$ and $z - \epsilon \delta$ for some small $\epsilon > 0$. The constraints which were tight for z will also be tight for these two points (from ()). Moreover, the constraints which were not tight for z can still be kept non-tight for the other two points by choosing a small enough ϵ . Thus, the two points are feasible. And, we get a contradiction to the condition that at least one of z + y and z - y should be outside the polyhedron.