CS602 Applied Algorithms

2019-20 Sem II

Lecture 5: January 27

Scribe: Rohit Choudhary Lecturer: Rohit Gurjar

Feasibility \iff Optimization

Optimization reduces to feasibility via binary search.

Feasibility

$$A'x \le b'$$

$$W^T x \ge W_o$$

- if feasible then pick $W_1 > W_o$
- if not feasible then pick $W_1 < W_o$

Terminate when

- $W^T x \geq W_o \Longrightarrow$ feasible
- $W^T x \leq W_o + \epsilon \Longrightarrow$ not feasible

where
$$\epsilon \to \frac{1}{exp(m,n)}$$

Optimization

$$A'x \le b' \\ \max W^T x$$

HW Prove that number of steps after which algorithm stops is equal to poly(m,n).

Feasibility algorithm

Given Input Matrix A of size $m \times n$, with each entry being at most B.

Algorithm We can look for the vertices of the polyhedron $Ax \leq b$

To look for vertices, choose a subset of size n say A', b'. Then solve A'x = b' and check whether the solution satisfies other inequalities i.e., $Ax \leq b$

Since we are searching among all the subsets, time complexity of the above algorithm will be $\binom{m}{n}$ which is exponential.

If no such vertices exists then number of linearly independent constraints < number of variables. In this case, we can reduce the number of variables in the LP. Replace each LHS expression with a new variable.

$$y_1 = a_1^T x \le b_1$$

$$y_2 = a_2^T x \le b_2$$

$$y_3 = a_3^T x \le b_3$$

But if a_3^T is dependent on a_1^T and a_2^T then a_3^T can be written as linear combination of a_1^T and a_2^T which implies that y_3 can be written as a linear combination of y_1 and y_2 , thus in this way we can reduce number of variables.

1

Feasibility \in NP?

If $Ax \leq b$ is feasible then can someone give easily verifiable proof/certificate for this?

The certificate for feasibility is a solution x which satisfies $Ax \leq b$ But then how do we ensure that x is polynomial many bits?

• If x is a vertex then there are n linearly independent tight constraints for x.

$$A'x = b \Longrightarrow x = A'^{-1}b$$

and therefore number of bits in x is polynomial of input size.

 \bullet If x is not a vertex then we can make use of the following result.

Claim: If there is a solution of $Ax \leq b$ then there exists a subset (A', b') s.t. any solution of A'x = b' is a feasible solution. (Proved in the lecture notes.)

The solution to the equality A'x = b' can now be used as the certificate of feasibility. The bit complexity can again be bounded using the fact that inverse of a matrix has polynomially bounded bit complexity.

This shows that feasibility \in NP.

Feasibility \in coNP?

If $Ax \leq b$ is not feasible then can someone give easily verifiable proof/certificate for this?

Ex: The following system of inequalities is not feasible.

$$x_1 + x_2 \ge 1 \tag{1}$$

$$x_1 \le 0 \tag{2}$$

$$x_2 \le 0 \tag{3}$$

The proof of the same is given below

Add eqn (2) and (3)

$$x_1 + x_2 \le 0 \tag{4}$$

From eqn (1) and (4)

$$-1 \ge 0 \to contradiction$$
 (5)

But can we find the proof in general form of any given system of inequalities? (To be continued in next lecture.)