CS602 Applied Algorithms

2019-20 Sem II

Lecture 8: February 3

Scribe: Naman Verma Lecturer: Rohit Gurjar

1 Weak Duality

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$.

Primal LP - $\max w^{\mathsf{T}}x : Ax \leq b, x \in \mathbb{R}^n$

Dual LP - min $b^{T}y : A^{T}y = w, y > 0, y \in \mathbb{R}^{m}$

Weak Duality: $OPT(Primal LP) \leq OPT(Dual LP)$.

Proof: Let α be a feasible solution for the primal LP whereas β be a feasible solution for the dual LP.

$$A\alpha \leq b$$

$$\beta^{\mathsf{T}} A \alpha \leq \beta^{\mathsf{T}} b \quad (\because \beta \geq 0)$$

$$w^{\mathsf{T}} \alpha \leq \beta^{\mathsf{T}} b \quad (\because A^{\mathsf{T}} \beta = w)$$

The above inequality, in particular, is also true when α, β are optimal solutions.

2 Strong Duality

Strong duality says that for optimal solutions the above inequality is, in fact, an equality. If LP is feasible and has a bounded optimal value, then there exists a dual feasible solution that has the same value as the primal optimal value.

Claim 8.1. Let α^* be a optimal solution and $w^* = w^{\mathsf{T}} \alpha^*$ be the optimal value for the primal LP. Then

$$\exists \beta^* \in \mathbb{R}^m \text{ s.t. } A^{\mathsf{T}}\beta^* = w, \ \beta^* \geq 0 \ (dual \ feasible), \ and \ b^{\mathsf{T}}\beta^* = w^*.$$

Proof. Recall the corollary from previous class, that gives a separating hyperplane for a cone. For any cone $C = \text{cone}(v_1, v_2, ..., v_k) \in \mathbb{R}^n$ and for a vector $u \in \mathbb{R}^n$,

$$u \notin C \implies \exists q \in \mathbb{R}^n \text{ s.t. } q^{\mathsf{T}}u > 0 \text{ and } q^{\mathsf{T}}v_i \leq 0, \ \forall 1 \leq i \leq k.$$

Consider the augmented matrix (A|b). We want to show that there is a $\beta^* > 0$ such that

$$(A|b)^{\mathsf{T}}\beta^* = (w, w^*).$$

Here $(w, w^*) \in \mathbb{R}^{n+1}$ denotes a column vector whose first n entries come from w and the last entry is w^* . Let $(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m) \in \mathbb{R}^{n+1}$ be the columns of $(A|b)^T$. What is want to show is equivalent to

$$(w, w^*) \in \text{cone}((a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)).$$

For the sake of contradiction, let it not be true. Then by above mentioned corollary, there exist $q \in \mathbb{R}^n$ and $r \in \mathbb{R}$ such that

$$(q,r)^{\mathsf{T}}(w,w^*) > 0 \text{ and } (q,r)^{\mathsf{T}}(a_i,b_i) \le 0, \ \forall 1 \le i \le m.$$

Equivalently,

$$q^{\mathsf{T}}w > -rw^*$$
 and $q^{\mathsf{T}}a_i \leq -rb_i, \ \forall 1 \leq i \leq m.$

Which is same as

$$w^{\mathsf{T}}q > -rw^* \text{ and } a_i^{\mathsf{T}}q \le -rb_i, \ \forall 1 \le i \le m.$$
 (1)

Now, we consider two cases depending on the sign of r. In both the cases, we will show that there is a primal feasible solution α with value greater than w^* , contradicting the optimality of α^* .

Case 1: r < 0. Divide (1) by -r and define $\alpha = q/-r$. We get

$$a_i^{\mathsf{T}} \alpha \leq b_i \ \forall i, \ \text{and} \ w^{\mathsf{T}} \alpha > w^*,$$

which is a contradiction.

Case 2: $r \ge 0$, which means r+1 > 0. Now, consider $\alpha = (r+1)\alpha^* + q$. Since α^* is primal optimal, we know

$$(r+1)a_i^{\mathsf{T}}\alpha^* \leq (r+1)b_i, \ \forall i, \ \text{and} \ (r+1)w^{\mathsf{T}}\alpha^* = (r+1)w^*.$$

Combining this with (1), we get

$$a_i^{\mathsf{T}} \alpha = (r+1)a_i^{\mathsf{T}} \alpha^* + a_i^{\mathsf{T}} q \le (r+1)b_i - rb_i = b_i, \ \forall i.$$

And

$$w^{\mathsf{T}}\alpha = (r+1)w^{\mathsf{T}}\alpha^* + w^{\mathsf{T}}q > (r+1)w^* - rw^* = w^*.$$

This gives us a contradiction.

3 Various Forms of LP

Primal	Dual
$\max \ w^{T}x : Ax \le b$	$\min b^{T}y : A^{T}y = w, \ y \ge 0$
$\max w^{T}x : Ax = b, \ x \ge 0$	$\min \ b^{T}y : A^{T}y \ge w$
$\max w^{T}x : Ax \le b, \ x \ge 0$	$\min b^{T}y : A^{T}y \ge w, \ y \ge 0$