Note. Write your answers clearly and succinctly. Feel free to ignore hints.

Que 1 [10 marks]. True or false? No explanation required.

- 1. The union of two convex sets is convex.
- 2. The intersection of two convex sets is convex.
- 3. An LP and its dual LP can both have unbounded optimum.
- 4. For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, if there is no solution for Ax = b then there must exist $y \ge 0$ such that $y^{\mathsf{T}}A = 0$ but $y^{\mathsf{T}}b \ne 0$.

Que 2 [10 marks]. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then $\max\{w^{\mathsf{T}}x : Ax \ge b, \ x \ge 0\}$ is equal to which of the following. Justify your answer.

- (a) $\min\{-b^{\mathsf{T}}y : y \ge 0, A^{\mathsf{T}}y \le w\}$
- (b) $\min\{b^{\mathsf{T}}y : y \le 0, A^{\mathsf{T}}y \ge w\}$
- (c) $\min\{b^{\mathsf{T}}y: y > 0, A^{\mathsf{T}}y > w\}$
- (d) $\min\{b^{\mathsf{T}}y : y \le 0, A^{\mathsf{T}}y \le w\}$
- (e) Unbounded.
- (f) None of the above, then write your own answer.

Que 3 [10 marks]. For the convex hull of following three points in \mathbb{R}^3 , write a description in terms of linear constraints in three variables x_1, x_2, x_3 .

$$(0,1,0), (2,0,1), (1,-1,1).$$

Please directly write the final answer. Hint: one way to do it is via Fourier Motzkin elimination.

Que 4 [20 marks]. Consider the following linear program.

$$\begin{array}{rcl}
\max & -x_2 & \text{subject to} \\
3x_1 + x_2 & \leq & 6 \\
2x_1 - 3x_2 & \leq & 4 \\
x_1 + 2x_2 & \geq & -5 \\
x_2 - x_1 & \leq & 2
\end{array}$$

- 1. Find the optimal value and one of the optimizing points. No justification required, just directly write the answers.
- 2. Write the dual linear program for the given LP.
- 3. Find a feasible solution for the dual program such that its dual value is same as the primal optimal value in part (1). *Remark:* This would confirm that your part (1) was indeed correct.

Que 5 [10 marks]. Give a really short proof for the fact that point u is not in the cone generated by p_1, p_2, p_3 , where

$$p_1 = (1, 1, 1), p_2 = (-1, -1, 1), p_3 = (1, -1, -1), u = (-1, 1, -1)$$

Que 6 [10 marks]. Suppose there is an $\alpha \in \mathbb{R}^n$ such that $A\alpha \leq 0$ and $w^{\mathsf{T}}\alpha > 0$. Then show that $\max\{w^{\mathsf{T}}x : Ax \leq b\}$ is unbounded.