CS602 Applied Algorithms

Spring 2021

Homework 1 (Jan 14) No submission

- Prove that any polyhedron (i.e., a set $\{x \in \mathbb{R}^n : Ax \leq b\}$ for some matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$) is a convex set.
- Suppose we want to maximize a given function $w^T x$ over a polyhedron P. If z_1, z_2 are two maximizing points, then show that their mid-point $(z_1 + z_2)/2$ will also be a maximizing point.
- \bullet Suppose P is a polyhedron given by

$$\{x \in \mathbb{R}^n : a_i^T x \le b_i \text{ for } 1 \le i \le m\}$$

and F is a face of P described by the tight constraints

$$a_i^T x = b_i \text{ for } 1 \leq i \leq k,$$

where $k \leq m$. Prove that there **exists** a function $w^T x$ such that F is the face maximizing $w^T x$ over P.

Hint: you can try to express $w^T x$ in terms of the tight constraints for F.