• Prove that any polyhedron (i.e., a set \(\{ x \in \mathbb{R}^n : Ax \leq b \} \) for some matrix \(A \in \mathbb{R}^{m \times n} \) and vector \(b \in \mathbb{R}^m \)) is a convex set.

• Suppose we want to maximize a given function \(w^T x \) over a polyhedron \(P \). If \(z_1, z_2 \) are two maximizing points, then show that their mid-point \((z_1 + z_2)/2 \) will also be a maximizing point.

• Suppose \(P \) is a polyhedron given by
 \[
 \{ x \in \mathbb{R}^n : a_i^T x \leq b_i \text{ for } 1 \leq i \leq m \}
 \]
 and \(F \) is a face of \(P \) described by the tight constraints
 \[
 a_i^T x = b_i \text{ for } 1 \leq i \leq k,
 \]
 where \(k \leq m \). Prove that there exists a function \(w^T x \) such that \(F \) is the face maximizing \(w^T x \) over \(P \).
 Hint: you can try to express \(w^T x \) in terms of the tight constraints for \(F \).