Que 1 (5+5 marks). **Red-blue s-t connectivity:** In this problem, we are given an undirected graph G, with each edge colored either red or blue. We are also given a source vertex s and a destination vertex t. The goal is to find an alternating red-blue path between s and t. That is, a path that starts on s with a red edge, alternates between red and blue edges, and ends at t with a blue edge.

We try to reduce this problem to the matching problem as follows. Naturally, first we can delete any blue edges incident on s and any red edges incident on t. We will construct another graph H based on the given graph.

- For every vertex v in G other than s and t, create two vertices in H, v_r and v_b.
- Create two more vertices in H, s_r and t_b.
- For any edge (u, v) in G: if it is red then create an edge (u_r, v_r) in H and if it is blue then create an edge (u_b, v_b) in H.
- Create an edge (u_r, u_b) for every vertex u other than s and t.

Prove or disprove using a counter-example the following: graph G has an alternating red-blue path between s and t if and only if the new graph has a perfect matching.

Que 2 (10 marks). Suppose S is a convex set and we are maximizing a linear function $w^T x$ over it. If a point $x^* \in S$ locally maximizes the function, then prove that it maximizes the function over all S. Locally maximizes means the following: there exists an $\epsilon > 0$ such that for all points $y \in S$ within distance ϵ from x^*, we have $w^T x^* \geq w^T y$. You will need to prove such an inequality for all points y in S.

Que 3 (10 marks). Use Fourier Motzkin procedure to compute the linear inequalities in variables x_1, x_2, x_3, which describe the cone $\{ \lambda_1(1, 2, 3) + \lambda_2(2, 3, 1) + \lambda_3(3, 1, 2) : \lambda_1, \lambda_2, \lambda_3 \geq 0 \} \subset \mathbb{R}^3$. Don’t just write the final answer. You need to show the steps of Fourier Motzkin procedure.

Que 4 (5+5 marks). We proved the following Farkas’ lemma in the class. For any given $k \times n$ matrix A and $b \in \mathbb{R}^k$, the system

$$Ax = b, x \geq 0$$

has no feasible solution if and only if the system

$$A^T y \geq 0, b^T y = -1$$
has a feasible solution. Use this lemma (or any other way) to prove that for any given numbers b_1, b_2, b_3, b_4, the system

\begin{align*}
2x_1 - 3x_2 + x_3 & \leq b_1 \\
-x_1 + x_2 + 2x_3 & \leq b_2 \\
x_1 - x_2 & = b_3 \\
x_2 - 2x_3 & = b_4 \\
x_1, x_2 & \geq 0 \\
x_3 & \in \mathbb{R}
\end{align*}

has no feasible solution if and only if there exists $y_1 \geq 0, y_2 \geq 0, y_3, y_4 \in \mathbb{R}$ such that

\begin{align*}
2y_1 - y_2 + y_3 & \geq 0 \\
-3y_1 + y_2 - y_3 + y_4 & \geq 0 \\
y_1 + 2y_2 - 2y_4 & = 0 \\
b_1y_1 + b_2y_2 + b_3y_3 + b_4y_4 & = -1.
\end{align*}

You need to show both the directions.