Min Max Game Theory On-line Prediction and Boosting CS 602

Keerthana Reddy Paidi Venkata Ganesh

October 25, 2023

Game Theory

- Two-person games in normal form.
- Players: Row and Column player.
- Game defined by a loss matrix M.
- Row player chooses a row i, column player chooses a column j.
- Loss is represented by M(i,j).
- Loss matrix for "Rock, Paper, Scissors":

Game Objectives and Generalization

- Row player's goal: Minimize loss.
- Zero-sum game: Column player aims to maximize loss.
- Assumptions: Losses in the range [0,1] for simplicity.
- Finite choices for each player.

Randomized Play

- Players choose strategies randomly.
- Row player: P over rows, Column player: Q over columns.
- ullet Row player's expected loss: ${f P}^T{f M}{f Q}$.
- Pure strategies vs. Mixed strategies.
- Number of rows denoted by *n*.

Sequential Play and Minmax Strategy

- Play is sequential, column player chooses Q after row player's P.
- Column player aims to maximize the row player's loss.
- Row player minimizes $\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$.
- Minmax strategy: P*.

The Minmax Theorem

- The player playing last doesn't matter.
- Von Neumann's minmax theorem:

$$\max_{\boldsymbol{Q}} \min_{\boldsymbol{P}} M(\boldsymbol{P},\boldsymbol{Q}) = \min_{\boldsymbol{P}} \max_{\boldsymbol{Q}} M(\boldsymbol{P},\boldsymbol{Q})$$

- Value of the game: v.
- ullet Minmax strategy ${f P}^*$ and maxmin strategy ${f Q}^*$ are optimal.

Repeated Play

- Model: Learner vs. Environment
- ullet Learner's strategy $oldsymbol{\mathsf{P}}_t$, Environment's strategy $oldsymbol{\mathsf{Q}}_t$
- Learner's goal: Minimize cumulative loss
- Cumulative loss: $\sum_{t=1}^{T} \mathbf{M} \left(\mathbf{P}_{t}, \mathbf{Q}_{t} \right)$
- \bullet Best strategy in hindsight: $\min_{\mathbf{P}} \sum_{t=1}^{T} \mathbf{M}\left(\mathbf{P}, \mathbf{Q}_{t}\right)$

Algorithm LW for Repeated Play

- Learner maintains nonnegative weights on rows of M
- Weight update: $w_{t+1}(i) = w_t(i) \cdot \beta^{M(i,Q_t)}$

$$\mathbf{P}_t(i) = \frac{w_t(i)}{\sum_i w_t(i)}$$

• Theoretical bound on loss (Theorem 1):

$$\sum_{t=1}^{T} \mathbf{M}\left(\mathbf{P}_{t}, \mathbf{Q}_{t}\right) \leq a_{\beta} \min_{\mathbf{P}} \sum_{t=1}^{T} \mathbf{M}\left(\mathbf{P}, \mathbf{Q}_{t}\right) + c_{\beta} \ln n$$

where

$$a_eta = rac{\mathsf{ln}(1/eta)}{1-eta} \quad c_eta = rac{1}{1-eta}.$$

Average Loss (Corollary 2)

ullet Under the conditions of Theorem 1 and with eta set to

$$\frac{1}{1 + \sqrt{\frac{2 \ln n}{T}}}$$

the average per-trial loss suffered by the learner is

$$\frac{1}{T}\sum_{t=1}^{T} \mathsf{M}\left(\mathsf{P}_{t}, \mathsf{Q}_{t}\right) \leq \min_{\mathsf{P}} \frac{1}{T}\sum_{t=1}^{T} \mathsf{M}\left(\mathsf{P}, \mathsf{Q}_{t}\right) + \Delta_{T}$$

where

$$\Delta_T = \sqrt{\frac{2 \ln n}{T}} + \frac{\ln n}{T} = O\left(\sqrt{\frac{\ln n}{T}}\right)$$

Loss vs. Game Value (Corollary 3)

Under the conditions of Corollary 2,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M} \left(\mathbf{P}_{t}, \mathbf{Q}_{t} \right) \leq v + \Delta_{T}$$

where v is the value of the game \mathbf{M} .

Proof: Let \mathbf{P}^* be a minmax strategy for \mathbf{M} so that for all column strategies $\mathbf{Q}, \mathbf{M}(\mathbf{P}^*, \mathbf{Q}) \leq v$. Then, by Corollary 2,

$$\frac{1}{T} \sum_{t=1}^{T} \mathsf{M}\left(\mathsf{P}_{t}, \mathsf{Q}_{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \mathsf{M}\left(\mathsf{P}^{*}, \mathsf{Q}_{t}\right) + \Delta_{T} \leq \nu + \Delta_{T}.$$

10 / 27

Proof of the Minmax Theorem

- Proof of von Neumann's minmax theorem
- Key inequality:

$$\min_{P}\max_{Q}M(P,Q)\leq \max_{Q}\min_{P}M(P,Q)$$

Proof of the Minmax Theorem

Let
$$\overline{\mathbf{P}} = \frac{1}{T} \sum_{t=1}^T \mathbf{P}_t$$
 and $\overline{\mathbf{Q}} = \frac{1}{T} \sum_{t=1}^T \mathbf{Q}_t$

 $min_{P} max_{Q} P^{T}MQ$

$$\begin{split} &\leq \max_{\mathbf{Q}} \overline{\mathbf{P}}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \max_{\mathbf{Q}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &\leq \frac{1}{T} \sum_{t=1}^{T} \max_{\mathbf{Q}} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \\ &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} \\ &\leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q}_{t} + \Delta_{T} \\ &= \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \overline{\mathbf{Q}} + \Delta_{T} \\ &\leq \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} + \Delta_{T}. \end{split}$$

by definition of $\overline{\boldsymbol{P}}$

12 / 27

Approximately Solving a Game

- Algorithm LW can find an approximate minmax or maxmin strategy.
- $\bullet \ \mathsf{max}_{\boldsymbol{Q}} \ \mathsf{M}(\overline{\boldsymbol{P}}, \boldsymbol{Q}) \leq \mathsf{max}_{\boldsymbol{Q}} \ \mathsf{min}_{\boldsymbol{P}} \ \mathsf{M}(\boldsymbol{P}, \boldsymbol{Q}) + \Delta_{\mathcal{T}} = \boldsymbol{\nu} + \Delta_{\mathcal{T}}$
- ullet $\overline{f P}$ is an approximate minmax strategy within $\Delta_{\cal T}$ of the game value v.
- $\min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \overline{\mathbf{Q}}) \ge v \Delta_T$
- ullet $\overline{f Q}$ is an approximate maxmin strategy within $\Delta_{\mathcal T}$ of the game value v.

13 / 27

On-line Prediction

Formally, let X be a finite set of instances, and let \mathcal{H} be a finite set of hypotheses $h: X \to \{0,1\}$. Let $c: X \to \{0,1\}$ be an unknown target concept, not necessarily in \mathcal{H} .

In the on-line prediction model, learning takes place in a sequence of rounds. On round $t=1,\ldots,T$:

- 1. the learner observes an example $x_t \in X$;
- 2. the learner makes a randomized prediction $\hat{y}_t \in \{0, 1\}$ of the label associated with x_t ;
- 3. the learner observes the correct label $c\left(x_{t}\right)$. It is straightforward now to reduce the on-line prediction problem to a special case of the repeated game problem.

$$\mathbf{M}(h,x) = \begin{cases} 1 & \text{if } h(x) \neq c(x) \\ 0 & \text{otherwise} \end{cases}$$

ON-LINE PREDICTION

 $\mathbf{M}(h,x)$ is 1 if and only if h disagrees with the target c on instance x. We call this a mistake matrix.

$$\mathbf{M}\left(\mathbf{P}_{t}, x_{t}\right) = \sum_{h \in \mathcal{H}} \mathbf{P}_{t}(h) \mathbf{M}\left(h, x_{t}\right)$$

$$= \operatorname{Pr}_{h \sim \mathbf{P}_{t}}\left[h\left(x_{t}\right) \neq c\left(x_{t}\right)\right]$$

$$= \operatorname{Pr}\left[\hat{y}_{t} \neq c\left(x_{t}\right)\right].$$

$$\sum_{t=1}^{T} \mathbf{M}\left(\mathbf{P}_{t}, x_{t}\right) \leq \min_{h \in \mathcal{H}} \sum_{t=1}^{T} \mathbf{M}\left(h, x_{t}\right) + O(\sqrt{T \ln |\mathcal{H}|})$$

Keerthana, Ganesh Game Theory October 25, 2023 15 / 27

Boosting

- Boosting converts a "weak" learning algorithm into one that performs with arbitrarily good accuracy.
- Dual connection: On-line prediction and boosting are closely related.
- Boosting algorithms can be derived from on-line prediction algorithms through this connection.

For $\gamma>0$, we say that algorithm WL is a γ -weak learning algorithm for (\mathcal{H},c) if, for any distribution \mathbf{Q} over the set X, the algorithm takes as input a set of labeled examples distributed according to \mathbf{Q} and outputs a hypothesis $h\in\mathcal{H}$ with error at most $1/2-\gamma$, i.e., $\Pr_{x\sim Q}[h(x)\neq c(x)]\leq \frac{1}{2}-\gamma$.

Given a weak learning algorithm, the goal of boosting is to run the weak learning algorithm many times on many distributions, and to combine the selected hypotheses into a final hypothesis with arbitrarily small error rate

Keerthana, Ganesh Game Theory October 25, 2023 16 / 27

Boosting

Boosting proceeds in rounds. On round t = 1, ..., T:

- 1. the booster constructs a distribution D_t on X which is passed to the weak learner;
- 2. the weak learner produces a hypothesis $h_t \in \mathcal{H}$ with error at most $1/2 \gamma$:

$$\Pr_{x \sim D_t} \left[h_t(x) \neq c(x) \right] \leq \frac{1}{2} - \gamma$$

After T rounds, the weak hypotheses h_1,\ldots,h_T are combined into a final hypothesis h_{fin} .

The important issues for designing a boosting algorithm are: (1) how to choose distributions D_t , and (2) how to combine the h_t 's into a final hypothesis.

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

17 / 27

Boosting and the minmax theorem

$$\min_{\mathbf{P}} \max_{x} \mathbf{M}(\mathbf{P}, x) = \min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

$$= v$$

$$= \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

$$= \max_{\mathbf{Q}} \min_{h} \mathbf{M}(h, \mathbf{Q}).$$

It is straightforward to show that, for any $\mathbf{Q}, \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$ is realized at a pure strategy h. Similarly for \mathbf{P} and x

$$\mathbf{M}(h, \mathbf{Q}) = \Pr_{x \sim \mathbf{Q}}[h(x) \neq c(x)]$$

There exists a distribution \mathbf{Q}^* on X such that for every hypothesis h, $\mathbf{M}(h, \mathbf{Q}^*) = \Pr_{x \sim \mathbf{Q}^*}[h(x) \neq c(x)] \geq v$.

18 / 27

Boosting and the MinMax theorem

Because we assume γ -weak learnability, there must exist a hypothesis h such that

$$\Pr_{\mathbf{x} \sim \mathbf{Q}^*}[h(\mathbf{x}) \neq c(\mathbf{x})] \leq \frac{1}{2} - \gamma$$

Combining these facts gives that $v \leq 1/2 - \gamma$.

There exists a distribution \mathbf{P}^* over the hypothesis space $\mathcal H$ such that for every $x \in X$:

$$\mathbf{M}(\mathbf{P}^*, x) = \Pr_{h \sim \mathbf{P}^*}[h(x) \neq c(x)] \le v \le \frac{1}{2} - \gamma < \frac{1}{2}.$$

That is, every instance x is misclassified by less than 1/2 of the hypotheses (as weighted by ${\bf P}^*$).

19 / 27

Idea of Boosting

Recall that on each round, algorithm LW computes a distribution over the rows of the game matrix (hypotheses, in the case of matrix \mathbf{M}). However, in the boosting model, we want to compute on each round a distribution over instances (columns of \mathbf{M}).

The dual \mathbf{M}' of \mathbf{M} is simply

$$\mathbf{M}' = \mathbf{1} - \mathbf{M}^{\mathrm{T}}$$
 $\mathbf{M}'(x, h) = 1 - \mathbf{M}(h, x) = \begin{cases} 1 & \text{if } h(x) = c(x) \\ 0 & \text{otherwise.} \end{cases}$

Note that any minmax strategy of the game M becomes a maxmin strategy of the game M'.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

20 / 27

Idea of Boosting

The reduction proceeds as follows: On round t of boosting

- 1. algorithm LW computes a distribution \mathbf{P}_t over rows of \mathbf{M}' (i.e., over X);
- 2. the boosting algorithm sets $D_t = \mathbf{P}_t$ and passes D_t to the weak learning algorithm;
- 3. the weak learner returns a hypothesis h_t satisfying

$$\Pr_{x \sim D_t} \left[h_t(x) = c(x) \right] \ge \frac{1}{2} + \gamma$$

4. the weights maintained by algorithm LW are updated where \mathbf{Q}_t is defined to be the pure strategy h_t .

In other words, h_t should have maximum accuracy with respect to distribution \mathbf{P}_t .

◆□▶◆□▶◆壹▶◆壹▶ 壹 めるゆ

21 / 27

Idea of Boosting

Finally, this method suggests that $\overline{\mathbf{Q}} = (1/T) \sum_{t=1}^{T} \mathbf{Q}_{t}$ is an approximate maxmin strategy, and we know that the target c is equivalent to a majority of the hypotheses if weighted by a maxmin strategy of \mathbf{M}' . Since \mathbf{Q}_{t} is in our case concentrated on pure strategy (hypothesis) h_{t} , this leads us to choose a final hypothesis h_{fin} which is the (simple) majority of h_{1}, \ldots, h_{T} .

Analysis

Indeed, the resulting boosting procedure will compute a final hypothesis h_{fin} identical to c for sufficiently large T. As noted earlier, for all t,

$$\mathbf{M}'\left(\mathbf{P}_t, h_t\right) = \operatorname{Pr}_{x \sim \mathbf{P}_t}\left[h_t(x) = c(x)\right] \geq \frac{1}{2} + \gamma$$

$$\frac{1}{2} + \gamma \leq \frac{1}{T} \sum_{t=1}^{I} \mathbf{M}'(\mathbf{P}_t, h_t) \leq \min_{\mathbf{x}} \frac{1}{T} \sum_{t=1}^{I} \mathbf{M}'(\mathbf{x}, h_t) + \Delta_{T}$$

Therefore, for all x,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}'\left(x, h_{t}\right) \geq \frac{1}{2} + \gamma - \Delta_{T} > \frac{1}{2}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

23 / 27

Analysis

Note that, by definition of \mathbf{M}' , $\sum_{t=1}^{T} \mathbf{M}'(x, h_t)$ is exactly the number of hypotheses h_t which agree with c on instance x. In words says that more than half the hypotheses h_t are correct on x. Therefore, by definition of h_{fin} , we have that $h_{fin}(x) = c(x)$ for all x.

The algorithm is actually quite intuitive in this form: after each hypothesis h_t is observed, the weight associated with each instance x is decreased if h_t is correct on that instance and otherwise is increased. Thus, each distribution focuses on the examples most likely to be misclassified by the preceding hypotheses.

A proof of theorem

For t = 1, ..., T, we have that

$$\sum_{i=1}^{n} w_{t+1}(i) = \sum_{i=1}^{n} w_{t}(i) \cdot \beta^{\mathsf{M}_{(i)}, \mathsf{Q}_{t}}$$

$$\leq \sum_{i=1}^{n} w_{t}(i) \cdot (1 - (1 - \beta)\mathsf{M}(i, \mathsf{Q}_{t}))$$

$$= \left(\sum_{i=1}^{n} w_{t}(i)\right) \cdot (1 - (1 - \beta)\mathsf{M}(\mathsf{P}_{t}, \mathsf{Q}_{t}))$$

The first line uses the definition of $w_{t+1}(i)$. The second line follows from the fact that $\beta^x \leq 1 - (1 - \beta)x$ for $\beta > 0$ and $x \in [0, 1]$. The last line uses the definition of \mathbf{P}_t .

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q O

25 / 27

A proof of theorem

Unwrapping this simple recurrence gives

$$\sum_{i=1}^{n} w_{T+1}(i) \leq n \cdot \prod_{t=1}^{T} \left(1 - (1-\beta) \mathsf{M}\left(\mathsf{P}_{t}, \mathsf{Q}_{t}\right)\right)$$

(Recall that $w_1(i) = 1$.) Next, note that, for any j,

$$\sum_{i=1}^n w_{\mathcal{T}+1}(i) \geq w_{\mathcal{T}+1}(j) = \beta^{\sum_{t=1}^T \mathsf{M}_{(j,\cdot}, \mathsf{Q}_t)}$$

Combining with Eq. and taking logs gives

$$(\ln \beta) \sum_{t=1}^{T} \mathbf{M} (j, \mathbf{Q}_{t})$$

$$\leq \ln n + \sum_{t=1}^{T} \ln (1 - (1 - \beta) \mathbf{M} (\mathbf{P}_{t}, \mathbf{Q}_{t}))$$

A proof of theorem

$$\leq \ln n - (1 - eta) \sum_{t=1}^{T} \mathbf{M} \left(\mathbf{P}_t, \mathbf{Q}_t \right)$$

since $\ln(1-x) \le -x$ for x < 1. Rearranging terms, and noting that this expression holds for any j gives

$$\sum_{t=1}^{T} \mathbf{M}\left(\mathbf{P}_{t}, \mathbf{Q}_{t}
ight) \leq a_{eta} \min_{j} \sum_{t=1}^{T} \mathbf{M}\left(j, \mathbf{Q}_{t}
ight) + c_{eta} \ln n.$$

Since the minimum (over mixed strategies ${\bf P}$) in the bound of the theorem must be achieved by a pure strategy j, this implies the theorem.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

27 / 27