
CS 602 Paper Presentation By

210050081 Lokesh
210050090 Rahul Deepak
210050160 Raja Gopal

“Multiple Weights
Update Algorithm”

Introduction
and history

The Multiplicative Weights Update (MWU) method is a simple and powerful algorithm that can
be used to solve a wide range of optimization problems.
This method is an algorithmic technique which maintains a distribution on a certain set of
interest and updates it iteratively by multiplying the probability mass of elements by suitably
chosen factors based on feedback obatined by running another algorithm on the distribution.
 The algorithm can be used to solve a variety of problems, including online learning, game
theory, and optimization.
The MWU method has been shown to have strong theoretical guarantees, including a
logarithmic regret bound, which ensures that the algorithm performs well even in the worst-case
scenario.

INTRODUCTION

 An algorithm similar in favor to the Multiplicative Weights algorithm were proposed in

At each step each player observes actions taken by his opponent in previous stages, updates
his beliefs about his opponents' strategies, and chooses myopic pure best responses against
these beliefs.
Grigoriadis and Khachiyan showed how a randomized variant of “Fictitious Play" (
multiplicative weights algorithm.) can solve two player zero-sum games efficiently.
when the player gives higher weight to the strategies which pay of better, and chooses her
strategy using these weights rather than choosing the myopic best response strategy.
In addition to machine learning and geometry, the MWU method has been used in game
theory, Linear programming, convex programming and Heuristics in NP-Hard problems.

 game theory in the early fifties . Following Brown , this algorithm was called \Fictitious Play"

HISTORY

Multiple Weights
Update Algorithm

A decision maker is presented with n options and must repeatedly select a decision to receive a
corresponding payoff.
The decision maker's overarching objective is to achieve a total payoff that is equivalent to the
maximum possible profit with hindsight.
Initially, the best decision is unknown.
This objective can be accomplished by assigning weights to each decision and choosing a decision
randomly based on the probabilities proportional to the weights. In each subsequent round, the
weights are modified by multiplying them with factors that are dependent on the actual payoff
received from the selected decision in that round.

1.

2.

3.
4.

About the Algorithm

The proposed algorithm involves a basic model with the following elements

Weighted Majority Algorithm

Consider the following problem. we are trying
to invest in a certain stock. For simplicity, think
of the price movements as increasing or
decreasing only(up/down).Each day, we try to
predict whether the price will go up or down.

In our predictions, we are allowed to watch the
predictions of n experts. The algorithm we
present should limit the mistakes we make to
roughly equal to the number of mistakes the
best expert can do or less than it. We try to
present the algorithm as explained in the
previous slide by using weights and factors.

The Multiplicative
Weights algorithm

Suppose the set or outcomes may not necessarily be binary and could be infinite. Now we choose an
expert and use his advice. We suffer the cost of action recommended by the expert we choose.
Instead of a binary advice from the expert, they provide us with an course of action.
We can now set up some notation. Let t = 1,2,. .,T denote the current round and i be a generic
expert. In each round t, we select a distribution over the set of experts, and select an expert
i randomly from it and use his course of action. At this point, the costs of all actions
recommended by the expert are revealed in the form of vector such that expert i incurs
cost
The expected cost of the algorithm for choosing the distribution is

The total expected cost over all rounds is therefore . Just as before our goal is to design an
algorithm which achieves a total expected cost not too much more than the cost of the best expert i.e

Multiplicative Weights Algorithm

Our goal of the algorithm is to achieve total cost not too much more than the cost of the
best expert.

Approximating Linear
Feasibility Programs
on Convex Domains

Here P denotes the convex domain where easy constraints are satisfied , like non negativity. A
represents hard constraints to satisfy.
We wish to design an algorithm that given an error parameter δ > 0, either solves the problem to an
additive error of δ, i.e., finds an x ∈ P such that , or failing that, proves that the
system is infeasible. Here, A_i is the i^th row of A.
We assume the existence of an algorithm, called Oracle, which, given a probability vector p on the m
constraints, solves the following feasibility problem:

Checking feasibility of Lp

•Now Lets consider the classic problem of checking the feasibility of a convex domain. Which
boils down to,

Well, we can call this an optimization's procedure because instead of checking all the
inequalities we are only checking just a single inequality.
We can guarantee the feasibility of equation 1 if there is a solution for equation 2,but we can
also ay that if equation 2 is not feasible then equation 1 is also not feasible.
We assume that the Oracle satisfies the following technical condition, which is necessary for
deriving run time bound.
An (l, ρ)-bounded Oracle, for parameters 0 ≤ l ≤ ρ, is an algorithm which given a probability
vector p over the constraints, solves the feasibility equation (1). Furthermore, there is a fixed
subset I ⊆ [m] of constraints such that whenever the Oracle manages to find a point x ∈ P
satisfying (2), the following holds

What are the advantages of converting ?

Typically, the Multiplicative Weights method is applied in the following manner. We let an
expert represent each constraint in the problem, and the events correspond to points in the
domain of interest (P). The penalty of the expert is made proportional to how well the
corresponding constraint is satisfied on the point represented by an event.
To map our general framework to this situation, we have an expert representing each of the m
constraints. Events correspond to vectors x ∈ P. The loss of the expert corresponding to
constraint i for event x is (so that the costs lie in the range [−1, 1]).

In each round t, given a distribution over the experts (i.e. the constraints) , we run the
Oracle with .If the Oracle declares that there is no x ∈ P such that ,
then we stop, because now is proof that the problem (1) is infeasible

How to view this problem in terms of

multiplicative weights algorithm?

Let δ > 0 be a given error parameter. Suppose there exists an (l, ρ)-bounded Oracle for
the feasibility problem (1). Assume that l ≤δ/2,Then there is an algorithm which either
solves the problem up to an additive error of δ, or correctly concludes that the system is
infeasible, making only to the Oracle which takes O(m) per call

How is it optimising?

Proof:

In Concave domains?

Everything remains the same except for the definition of f_i : P →R We wish to
satisfy this system approximately, up to an additive error of δ. Again, we assume
the existence of an Oracle, which, when given a probability distribution p

Yes, we can use this algorithm in concave domains also

Even the definition of (l, ρ)-bounded Oracle doesn’t change ,We can use the theorem
which is similar to the theorem in convex domains, the way we prove this theorem is
also similar

Define a δ-approximate Oracle for the feasibility problem (1) to be one that
solves the feasibility problem (2) up to an additive error of δ. That is, given a
probability vector p on the constraints, either it finds an x ∈ P such that
, or it declares correctly that (2) is infeasible.

This approximation still makes calls to the oracle(proof is
similar)

Can we optimize further?
.

 Fractional Covering Problems and Fractional Packaging problems

Approximate Oracles

Fractional Covering Problems AND

Fractional Packaging Problems

