
Approximating Metric TSP

Shourya Pandey

April 13, 2019

Shourya Pandey TSP April 13, 2019 1 / 43

Overview

1 Introduction
The Hamiltonian Cycle Problem
The Travelling Salesman Problem
Hardness of approximation of TSP

2 Metric TSP
Metric
Metric TSP
Hardness of Metric TSP

3 Approximation Algorithms for Metric TSP
A 2-approximation for Metric TSP
Christofides’ Algorithm

4 Conclusions

Shourya Pandey TSP April 13, 2019 2 / 43

Introduction

Shourya Pandey TSP April 13, 2019 3 / 43

Introduction

In this presentation, we will describe the Travelling Salesman Problem
(TSP), and we will prove that it is hard to find approximate solutions
for TSP.

We will then talk about the Metric TSP problem, prove its hardness,
and provide approximation algorithms for it.

Shourya Pandey TSP April 13, 2019 4 / 43

The Hamiltonian Cycle Problem (HC)

A Hamiltonian cycle (or a Hamilton cycle) on a graph G (V ,E) on n
vertices is a cycle that visits each vertex exactly once, that is, the
cycle has length n.

Shourya Pandey TSP April 13, 2019 5 / 43

The Hamiltonian Cycle Problem (HC)

The Hamiltonian Cycle Problem can be stated as follows:

Input: A graph G (V ,E).
Output: Does there exist a Hamiltonian Cycle in G?

It is known that HC is NP-hard.

Shourya Pandey TSP April 13, 2019 6 / 43

The Travelling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) is, in some ways, an
extension of the HC Problem, and can be stated as follows:

Input: A graph G (V ,E) with a non-negative cost function c on the
edges.
Output: A Hamiltonian cycle of minimum cost.

An easy reduction shows that this problem is at least as hard as the
previous problem.

Shourya Pandey TSP April 13, 2019 7 / 43

The Travelling Salesman Problem (TSP)

It is not hard to see that we can reformulate the problem as follows:

Input: A complete graph G (V ,E) with a non-negative cost function c
on the edges.
Output: A Hamiltonian Cycle of minimum cost.

TSP is NP-hard.

Shourya Pandey TSP April 13, 2019 8 / 43

Can we approximate TSP?

We do not hope to solve TSP in polynomial time. Can we find an
α-approximation for TSP in polynomial time?

Such problems are called APX problems.

In complexity theory the class APX (an abbreviation of approximable)
is the set of NP-optimization problems that allow polynomial-time
approximation algorithms with approximation ratio bounded by a
constant.

It turns out that we cannot even approximate TSP.

Shourya Pandey TSP April 13, 2019 9 / 43

Hardness of Approximation of TSP

Claim: For every α > 1, there exists no polynomial time algorithm
approximating TSP within a factor of α, unless P = NP.

Shourya Pandey TSP April 13, 2019 10 / 43

Hardness of Approximation of TSP

Proof: Assume the contrary, that is, suppose that for some α > 1, we
have a polynomial time algorithm A that gives us an α-approximation for
TSP. We show a reduction from HC.

We are given a graph G (V ,E), and we want to decide whether G has
a Hamiltonian Cycle.

Construct a complete graph G ′ on the same vertex set V , and allot
costs to the edges of G ′ as follows. For each edge e in G :

If e ∈ G , give it cost c(e) = 1.
If e 6∈ G , give it cost c(e) = α · n + 1.

It is clear that G ′ is constructible in polynomial time.

Shourya Pandey TSP April 13, 2019 11 / 43

Hardness of Approximation of TSP

Suppose G has a Hamiltonian cycle C . Then in G ′, the same cycle
has a cost of n, and this is indeed the smallest possible cost (because
each edge in G ′ has cost at least 1).

Therefore, the algorithm A, when run on G ′, outputs an answer
≤ α · n in polynomial time.

Shourya Pandey TSP April 13, 2019 12 / 43

Hardness of Approximation of TSP

Suppose G does not have a Hamiltonian cycle. Then in G ′, any
Hamiltonian cycle must use at least one edge which is not in G , so
any Hamiltonian cycle in G has cost at least α · n + 1.

Therefore, the algorithm A, when run on G ′, outputs an answer
≥ α · n + 1 in polynomial time.

Shourya Pandey TSP April 13, 2019 13 / 43

Hardness of Approximation of TSP

In all, given G , construct G ′ and run A on G ′.

If A outputs a number ≤ α · n, output ”yes”, else output ”no”.

Therefore, we now have a polynomial time algorithm for HC, which is an
NP-complete problem. Therefore, unless P = NP, TSP cannot have an
α-approximation algorithm that runs in polynomial time, for any α > 1.

Shourya Pandey TSP April 13, 2019 14 / 43

Special TSPs

Often, the graphs with edge costs that we encounter have other
special properties associated with them. For example, the vertices
may be houses that an actual salesman has to visit, and the costs
represent the distances between houses.

Such an instance of TSP is called Euclidean TSP, because the edges
represent Euclidean distances between the vertices embedded in a
plane.

We can use other metrics to define costs as well.

Shourya Pandey TSP April 13, 2019 15 / 43

Metric TSP

Shourya Pandey TSP April 13, 2019 16 / 43

Metric

A metric d on a set X , also called a distance function, is a function
that defines a distance between each pair of elements of the set. A
set with a metric is called a metric space.

Formally, d : X × X → R is a metric if it is a function satisfying the
following properties for all x , y , z ∈ X :

Non-negativity : d(x , y) ≥ 0
Indiscernability : d(x , y) = 0 iff x = y
Symmetry : d(x , y) = d(y , x)
Subadditivity : d(x , y) + d(y , z) ≥ d(x , z)

Shourya Pandey TSP April 13, 2019 17 / 43

Metric

Example 1 : The discrete metric, defined as d(x , x) = 0 and
d(x , y) = 1 for all x 6= y .

Example 2 : The Euclidean metric. The vertices represent actual
points in some Euclidean space.

Example 3 : The Graphic metric, where distance between two
vertices is equal to the distance between them on a fixed tree.

Shourya Pandey TSP April 13, 2019 18 / 43

Metric TSP

The Metric TSP problem is similar to the TSP problem, except now,
the costs on the edges satisfy the triangle inequality.

Input: A complete graph G (V ,E), and a metric c on V .
Output: A Hamiltonian cycle of minimum cost.

How hard is Metric TSP?

Shourya Pandey TSP April 13, 2019 19 / 43

Hardness of Metric TSP

Claim: Metric TSP is NP-hard.
Proof: This is also a simple reduction problem from HC. Suppose we are
given a graph G (V ,E) and we want to decide if it has a Hamiltonian
cycle. Construct a complete graph G ′ on the vertex set V , with cost
function c defined as follows:

If e ∈ G , assign c(e) = 1 in G ′.

If e 6∈ G , assign c(e) = 2 in G ′.

Clearly, c is a metric on V . It is not hard to see that G has a Hamiltonian
cycle if and only if G ′ has a Hamiltonian cycle of cost n.
This reduction shows that Metric TSP is NP-hard. By the way, such
metric TSPs in which all weights are either 1 or 2 are called (1,2)-TSPs.

Shourya Pandey TSP April 13, 2019 20 / 43

Approximation Algorithms for Metric TSP

Shourya Pandey TSP April 13, 2019 21 / 43

A 2-approximation for MTSP

From now on, we refer to Metric TSP as MTSP. We first give a simple,
2-approximation for MTSP.

Shourya Pandey TSP April 13, 2019 22 / 43

A 2-approximation for MTSP

2-approximation for MTSP:

We have a complete graph G (V ,E) with a metric c on
V = {1, 2, 3, · · · , n}. Since G is connected, we can find a Minimum
Spanning Tree (MST) in polynomial time using, say, Prim’s
Algorithm. Call this MST T.

Shourya Pandey TSP April 13, 2019 23 / 43

A 2-approximation for MTSP

Also, let C ∗ be the cost of the smallest Hamiltonian cycle in G . Take
some edge e ∈ C ∗. Then C ∗ \ e is also a spanning tree of G , so

c(T) ≤ c(C ∗ \ e) ≤ c(C ∗)

Shourya Pandey TSP April 13, 2019 24 / 43

A 2-approximation for MTSP

Root the MST at some vertex, say 1. Perform an Euler Tour on T
(which is the same as finding an Eulerian Circuit in the graph T with
all edges duplicated), and list the vertices that are visited in the order
they are visited. Call this list L, and its cost is defined as the sum of
the cost of the edges in L (with repetition).

Shourya Pandey TSP April 13, 2019 25 / 43

A 2-approximation for MTSP

Retain only the first occurrence of each vertex in this list, and also
retain the last vertex in the list, which is 1, in G . This list can be
interpreted as a cycle C in G , because each vertex occurs exactly once
in the list except for the first vertex, which also occurs in the end.

This procedure will be referred to as short− circuiting.

Shourya Pandey TSP April 13, 2019 26 / 43

A 2-approximation for MTSP

We claim that c(C) ≤ 2c(C ∗).

In an Euler Tour, each edge of T is visited exactly twice, so
c(L) = 2c(T) ≤ 2c(C ∗).

Shourya Pandey TSP April 13, 2019 27 / 43

A 2-approximation for MTSP

Also, C has been formed by deleting vertices from the list L. Suppose

L = 1 · · · ivj · · · 1

and we delete this v from L to get the list L′. Then

c(L′) = c(L)− c(iv)− c(vj) + c(ij) ≤ c(L)

by triangle inequality.

In all, this means c(C) ≤ c(L) ≤ 2c(C ∗), as required.

Shourya Pandey TSP April 13, 2019 28 / 43

Summarising the 2-Approximation Algorithm

Algorithm:

1 Create a minimum spanning tree T of G .

2 Create a graph H which is the graph T but with all edges duplicated.
Note that each vertex in H now has even degree.

3 Find an Eulerian circuit E in H.

4 Short-circuit E to find the required Hamiltonian cycle C .

Shourya Pandey TSP April 13, 2019 29 / 43

Can we do better?

The 2-approximation for MTSP was rather naive, in some sense. We
can do better than this. What we really did was that we found a
spanning tree T and duplicated each edge in T to get, say, H.

This new graph H has each vertex of even degree, so it has an
Eulerian Circuit E .

We then short-circuit E to get a Hamiltonian cycle of cost at most
twice the optimal cost.

How can we improve this algorithm?

Instead of duplicating each edge of T , we just need to ensure that the
super-graph of T has each edge of even degree. Nicos Christofides, in
1976, found a 1.5-approximation to Metric TSP by a small
improvement in the algorithm.

Shourya Pandey TSP April 13, 2019 30 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

1.5-approximation to Metric TSP:

As before, we have a complete graph G (V ,E) with a metric c on V .

Let C ∗ be the optimal cycle in G , and let T be an MST in G .

Shourya Pandey TSP April 13, 2019 31 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

This is the crucial step. Let O be the set of vertices that have an odd
degree in T . Note that |O| is even.

Let M be a minimum cost perfect matching in the subgraph induced
by the vertices in O.

Combine the edges of M and T to get a multigraph H.

Shourya Pandey TSP April 13, 2019 32 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

Note that each vertex in H now has even degree. Therefore, H has an
Eulerian Circuit E . E can be found by any popular algorithm, say the
Fleury’s Algorithm or the Hierholzer’s Algorithm.

Make the cycle C as done before by deleting repeated occurrences in
E , that is, by short-circuiting.

Shourya Pandey TSP April 13, 2019 33 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

Why did this work?

We have

c(C) ≤ c(E) ≤ c(M) + c(T) ≤ c(M) + c(C ∗)

We need to show that c(M) ≤ c(C∗)
2 . This is somewhat expected,

seeing that M has less than or equal to half the number of edges in
C ∗.

Shourya Pandey TSP April 13, 2019 34 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

Consider the optimal cycle C ∗. Short-circuit C ∗ to create a cycle CO

with the vertices of O with a smaller cost than c(C ∗).

Since |O| is even, the edges in the cycle partition into two matchings
M1 and M2. Suppose M1 has a smaller cost than M2.

Shourya Pandey TSP April 13, 2019 35 / 43

Christofides’ Algorithm : A 1.5-approximation for MTSP

Then,

c(M) ≤ c(M1) ≤ c(M1) + c(M2)

2
=

c(CO)

2
≤ c(C ∗)

2

as required.

Therefore c(C) ≤ 1.5 · c(C ∗).

Shourya Pandey TSP April 13, 2019 36 / 43

Summarising the Christofides’ Algorithm

Algorithm:

1 Create a minimum spanning tree T of G .

2 Let O be the set of vertices in T that have an odd degree. Find a
minimum cost perfect matching M on the subgraph induced by the
vertices of O.

3 Create a graph H which is the union of the edges of T and M. This
graph has all vertices of even degree.

4 Find an Eulerian circuit E in H.

5 Short-circuit E to find the required Hamiltonian cycle C .

Shourya Pandey TSP April 13, 2019 37 / 43

Running Time of the Christofides’ Algorithm

Creating an MST T : O(n2)

Finding the minimum cost perfect matching M in O : O(n2.5)

Creating H : O(n)

Finding an Eulerian circuit E in H : O(n)

Short-circuiting E : O(n)

The step that takes the longest time is the one to find the minimum cost
perfect matching. The best known complexity as of now is O(n2.5), given
by Micali and Vazirani.

Shourya Pandey TSP April 13, 2019 38 / 43

A simple example which shows 1.5 is the best
approximation this algorithm can give

Shourya Pandey TSP April 13, 2019 39 / 43

Conclusions

Shourya Pandey TSP April 13, 2019 40 / 43

Summary

We described the HC and TSP Problems. We showed that it is hard
to even approximate TSP.

We then considered a special yet important class of TSPs called
Metric TSPs. We proved that solving Metric TSP is also hard.

We then discussed a naive 2-approximation to Metric TSP.

Finally, we discussed the Christofides’ Algorithm that gives a
1.5-approximation to Metric TSP.

We also showed that 1.5 is the best approximation that the
Christofides’ Algorithm can give.

Shourya Pandey TSP April 13, 2019 41 / 43

What else is known about Metric TSPs?

Christofides’ Algorithm is the best known approximation algorithm for
Metric TSPs as of now.

It is known that Metric TSP cannot be approximated by a ratio
better than 123

122 unless P = NP. [Karpinski, Lampis, Schmied 2013]

Similar results for many other special TSPs such as Graphic TSPs,
(1,2)-TSPs, Cubic Graphic TSPs, etc. are known.

Shourya Pandey TSP April 13, 2019 42 / 43

The End

Shourya Pandey TSP April 13, 2019 43 / 43

	Introduction
	The Hamiltonian Cycle Problem
	The Travelling Salesman Problem
	Hardness of approximation of TSP

	Metric TSP
	Metric
	Metric TSP
	Hardness of Metric TSP

	Approximation Algorithms for Metric TSP
	A 2-approximation for Metric TSP
	Christofides' Algorithm

	Conclusions

