

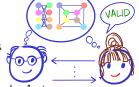
CS760: Topics in Computational Complexity

Lecture 21(?) (18/Oct/24)

Instructor: Chethan Kamath (Stand-in for Rohit Gurjar)

- What constitutes a proof?
 - Traditional "NP" proofs vs *interactive* proofs

- What constitutes a proof?
 - Traditional "NP" proofs vs *interactive* proofs



■ Zero-knowledge proofs: capture "zero knowledge" via simulation paradigm

- What constitutes a proof?
 - Traditional "NP" proofs vs *interactive* proofs

■ Zero-knowledge proofs: capture "zero knowledge" via simulation paradigm

- Examples. ZKP for:
 - Graph isomorphism (GI)
 - Quadratic residuosity (QR)
 - Graph non-isomorphism (GNI)
 - Quadratic non-residuosity (QNR)

- What constitutes a proof?
 - Traditional "NP" proofs vs *interactive* proofs

■ Zero-knowledge proofs: capture "zero knowledge" via simulation paradigm

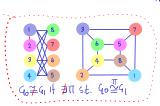
 $(G_0=([I_1\Pi],E_0)\cong G_1=([I_1\Pi],E_1)$ $f = \text{permutation} = G_1$ on $[I_1\Pi]$ $f = G_2$ $f = G_1$ $f = G_2$ $f = G_2$

- Examples. ZKP for:
 - Graph isomorphism (GI)
 - Quadratic residuosity (QR)
 - Graph non-isomorphism (GNI)
 - Quadratic non-residuosity (QNR)

- What constitutes a proof?
 - Traditional "NP" proofs vs *interactive* proofs

■ Zero-knowledge proofs: capture "zero knowledge" via simulation paradigm

- Examples. ZKP for:
 - Graph isomorphism (GI)
 - Quadratic residuosity (QR)
 - Graph non-isomorphism (GNI)
 - Quadratic non-residuosity (QNR)



 $(G_0=([i,n],E_0)\cong G_1=([i,n],E_1)$ (3 permutation - $G_0=([i,n],E_0)$) (3 permutation - $G_0=([i,n],E_0)$) (6)

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Class SZK: Statistical Zero-Knowledge Proof

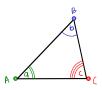
1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Class SZK: Statistical Zero-Knowledge Proof

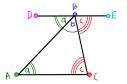
- lacksquare Axioms $\xrightarrow{\text{derivation rules}}$ theorems=true statements
 - E.g.: Axioms of Euclidean geometry

 Theorem: "Sum of angles of a triangle equals 180°"



- Axioms derivation rules theorems=true statements
 - E.g.: Axioms of Euclidean geometry

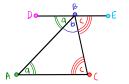
 Theorem: "Sum of angles of a triangle equals 180°"



- Prover vs. verifier
 - Prover does the heavy lifting: derives the proof
 - 1 Construct a line through B parallel to \overline{AC}
 - 2 $\angle DBA = \angle a$ and $\angle EBC = \angle c$ (alternate interior angles)
 - 3 $2 \Rightarrow \angle a + \angle b + \angle c = \angle DBA + \angle b + \angle EBC = 180^{\circ}$

- Axioms derivation rules theorems=true statements
 - E.g.: Axioms of Euclidean geometry

 Theorem: "Sum of angles of a triangle equals 180°"



- Prover vs. verifier
 - Prover does the heavy lifting: derives the proof
 - 1 Construct a line through B parallel to \overline{AC}
 - 2 $\angle DBA = \angle a$ and $\angle EBC = \angle c$ (alternate interior angles)
 - 3 $2 \Rightarrow \angle a + \angle b + \angle c = \angle DBA + \angle b + \angle EBC = 180^{\circ}$
 - Verifier checks the proof, step by step

- Corresponds to class NP
 - lacksquare A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

$$\forall x \in \mathcal{L} \ \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} : \mathsf{V}(x,\pi) = 1$$

- Corresponds to class NP
 - lacksquare A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

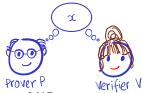
statement
$$\forall x \in \mathcal{L} \ \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} : \mathsf{V}(x,\pi) = 1$$

- Corresponds to class NP
 - lacksquare A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

statement
$$\forall x \in \mathcal{L} \ \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} : \mathsf{V}(x,\pi) = 1$$

- Corresponds to class NP
 - A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

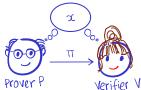
statement
$$\forall x \in \mathcal{L} \ \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} : \mathsf{V}(x,\pi) = 1$$



- "Proof system" view of NP
 - Prover P is *unbounded*: finds short proof π for x (if one exists)
 - lacktriangle Verifier V is *efficient*: checks proof π against the statement x

- Corresponds to class NP
 - lacksquare A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

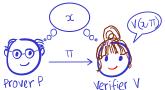
statement
$$\forall x \in \mathcal{L} \exists \pi \in \{0,1\}^{\text{poly}(|x|)} : V(x,\pi) = 1$$



- "Proof system" view of NP
 - Prover P is *unbounded*: finds short proof π for x (if one exists)
 - lacksquare Verifier V is *efficient*: checks proof π against the statement x

- Corresponds to class NP
 - A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

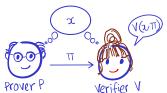
statement
$$\forall x \in \mathcal{L} \ \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} : \mathsf{V}(x,\pi) = 1$$



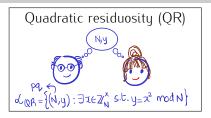
- "Proof system" view of NP
 - Prover P is *unbounded*: finds short proof π for x (if one exists)
 - lacktriangle Verifier V is *efficient*: checks proof π against the statement x

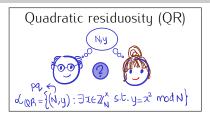
- Corresponds to class NP
 - lacksquare A language $\mathcal{L} \in \mathsf{NP}$ if there exists a polynomial-time deterministic machine V such that

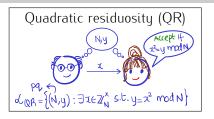
statement
$$\forall x \in \mathcal{L} \exists \pi \in \{0,1\}^{\text{poly}(|x|)} : V(x,\pi) = 1$$

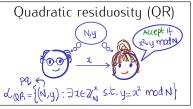


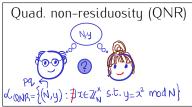
- "Proof system" view of NP
 - Prover P is *unbounded*: finds short proof π for x (if one exists)
 - lacktriangle Verifier f V is *efficient*: checks proof π against the statement x
 - Completeness: $x \in \mathcal{L} \Rightarrow P$ finds $\pi \Rightarrow V(x, \pi) = 1$
 - Soundness: $\mathbf{x} \notin \mathcal{L} \Rightarrow \exists \pi \in \{0,1\}^{\mathsf{poly}(|x|)} \text{ s.t. } \mathsf{V}(x,\pi) = 1$

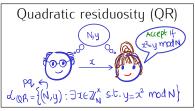


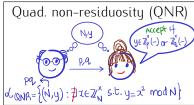


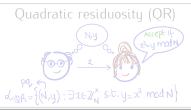




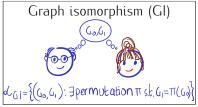


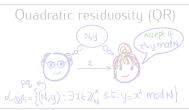


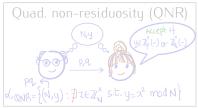


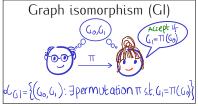




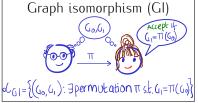


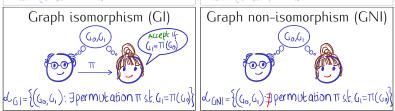


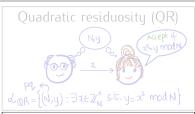


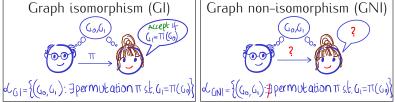


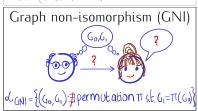


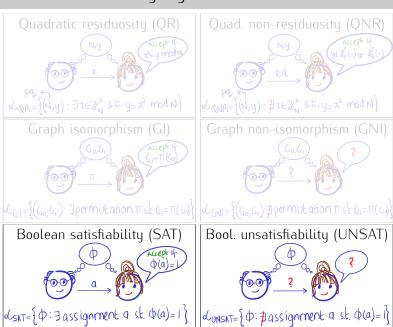












- Difference from NP proofs:
 - (\$) 1 Verifier **V** is randomised
 - → 2 Prover P and V *interact* and V accepts/rejects in the end

- Difference from NP proofs:
 - (\$) 1 Verifier **V** is randomised
 - Prover P and V interact and V accepts/rejects in the end

Defintion 1

An interactive protocol (P, V) for a language \mathcal{L} is an interactive proof (IP) system if the following holds:

- Difference from NP proofs:
 - (\$) 1 Verifier **V** is randomised

Defintion 1

An interactive protocol (P, V) for a language \mathcal{L} is an interactive proof (IP) system if the following holds:

■ Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \ge 1 - 1/3$

- Difference from NP proofs:
 - (\$) 1 Verifier **V** is randomised

Defintion 1

An interactive protocol (P,V) for a language $\mathcal L$ is an interactive proof (IP) system if the following holds:

- Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \ge 1 1/3$
- Soundness: for every $x \notin \mathcal{L}$ and malicious prover P^* , $\Pr[1 \leftarrow \langle P^*, V \rangle(x)] \le 1/3$

- Difference from NP proofs:
 - () 1 Verifier V is randomised

Defintion 1

An interactive protocol (P,V) for a language $\mathcal L$ is an interactive proof (IP) system if the following holds: completeness error $\varepsilon_c(n)$

- Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \ge 1 1/3$
- Soundness: for every $x \notin \mathcal{L}$ and malicious prover P^* , $\Pr[1 \leftarrow \langle P^*, V \rangle(x)] \leq \frac{1}{3} \leqslant \text{Soundres}$ after \mathcal{E}_s for

- Difference from NP proofs:
 - () 1 Verifier V is randomised
 - Prover P and V interact and V accepts/rejects in the end

Defintion 1

An interactive protocol (P,V) for a language $\mathcal L$ is an interactive proof (IP) system if the following holds: completeness error $\varepsilon_c(n)$

- Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \ge 1 1/3$
- Soundness: for every $x \notin \mathcal{L}$ and malicious prover P^* , $Pr[1 \leftarrow \langle P^*, V \rangle(x)] \leq \frac{1/3}{2} < \frac{1}{2}$

Exercise 1 (Robustness of Defintion 1)

Show that languages captured by Defintion 1 doesn't change when 1) $\epsilon_c \leq 1/2^{|x|}$, $\epsilon_s \leq 1/2^{|x|}$; 2) $\epsilon_c \leq 1/2 - 1/|x|$, $\epsilon_s \leq 1/2 - 1/|x|$

- Difference from NP proofs:
 - () 1 Verifier V is randomised
 - Prover P and V interact and V accepts/rejects in the end

Defintion 1

An interactive protocol (P,V) for a language $\mathcal L$ is an interactive proof (IP) system if the following holds: completeness error $\varepsilon_c(n)$

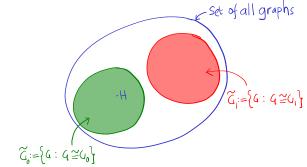
- Completeness: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle P, V \rangle(x)] \ge 1 1/3$
- Soundness: for every $x \notin \mathcal{L}$ and malicious prover P^* , $Pr[1 \leftarrow \langle P^*, V \rangle(x)] \leq \frac{1/3}{2} < \frac{1}{2}$

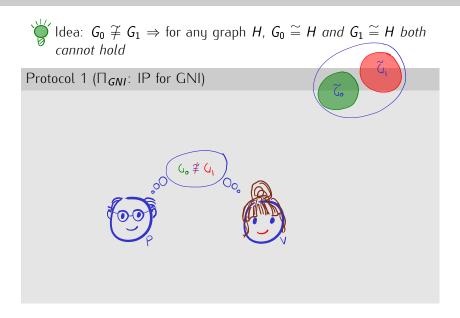
Exercise 1 (Robustness of Defintion 1)

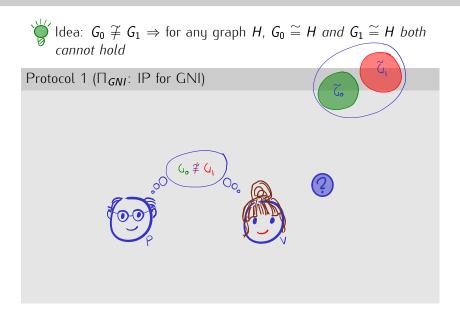
Show that languages captured by Defintion 1 doesn't change when 1) $\epsilon_c \leq 1/2^{|x|}$, $\epsilon_s \leq 1/2^{|x|}$; 2) $\epsilon_c \leq 1/2 - 1/|x|$, $\epsilon_s \leq 1/2 - 1/|x|$

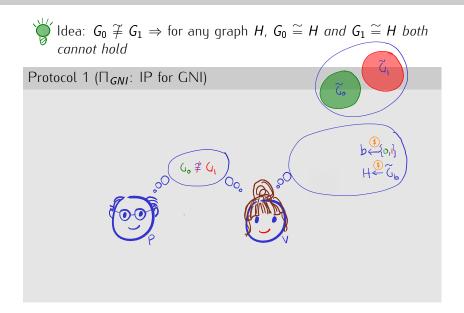
Power of Randomness+Interaction: IP for GNI

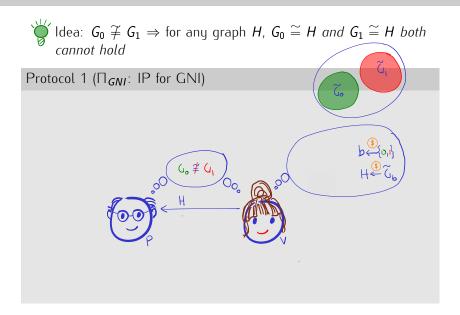
Idea: $G_0 \not\cong G_1 \Rightarrow$ for any graph H, $G_0 \cong H$ and $G_1 \cong H$ both cannot hold

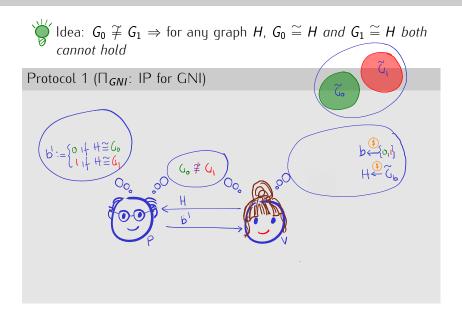


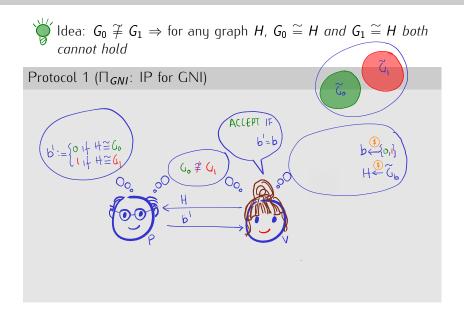


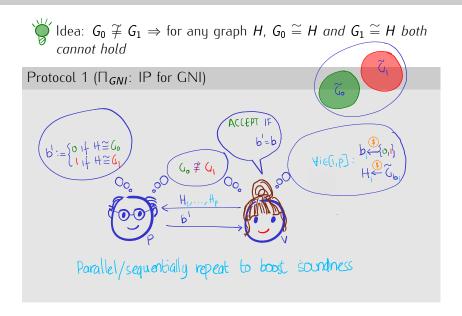


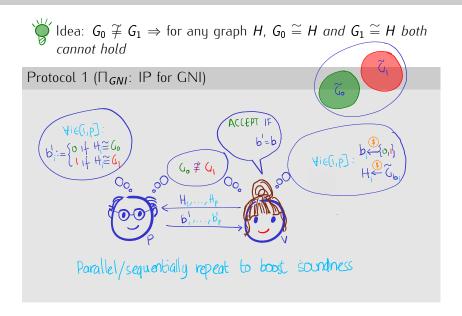


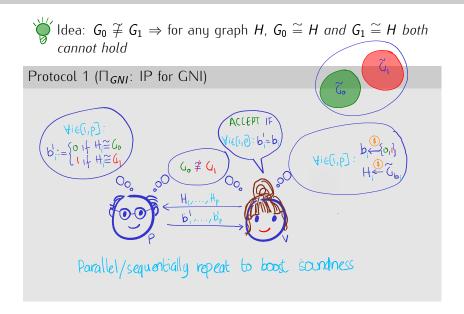












Theorem 1

 Π_{GNI} is an IP for \mathcal{L}_{GNI}

Theorem 1

 Π_{GNI} is an IP for \mathcal{L}_{GNI}

Proof.

- Completeness:
 - $G_0 \not\cong G_1 \Rightarrow P$ can recover b_i from H_i with certainty

$$\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V} \rangle (G_0, G_1)] = 1 \geq 2/3$$

Theorem 1

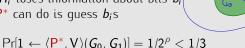
Π_{GNI} is an IP for \mathcal{L}_{GNI}

Proof.

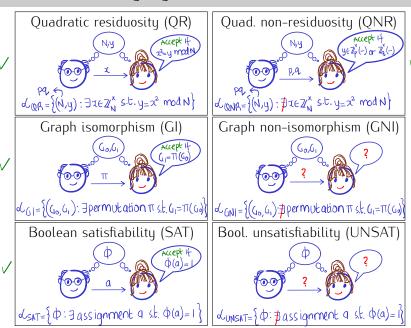
- Completeness:
 - \blacksquare $G_0 \not\cong G_1 \Rightarrow \mathsf{P}$ can recover b_i from H_i with certainty

$$\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V}
angle (\mathit{G}_{\mathsf{0}}$$
 , $\mathit{G}_{\mathsf{1}})] = 1 \geq 2/3$

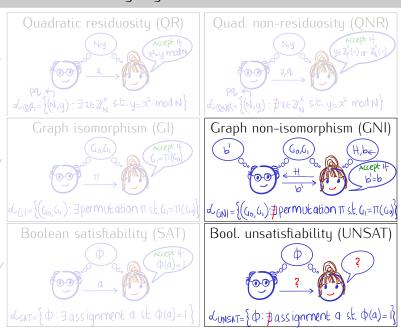
- Soundness:
 - \blacksquare $G_0 \cong G_1 \Rightarrow H_i$ loses information about bits b_i
 - Hence best P^* can do is guess b_i s



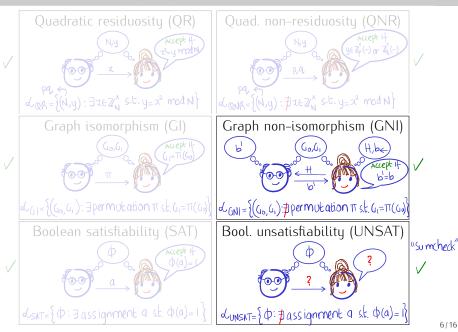
Which Languages have IPs?



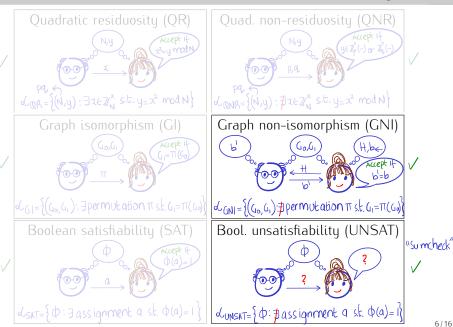
Which Languages have IPs?



Which Languages have IPs?



Which Languages have IPs? PSPACE Languages



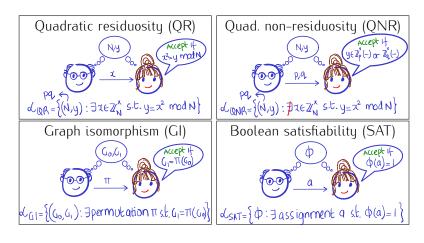
Plan for Today's Lecture

1 Interactive Proof (IP

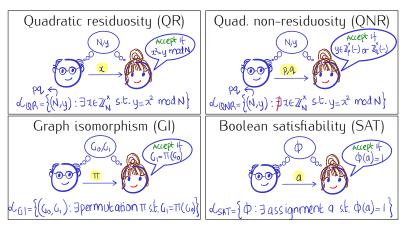
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Class SZK: Statistical Zero-Knowledge Proof

Any Issues with the NP Proofs We Saw?

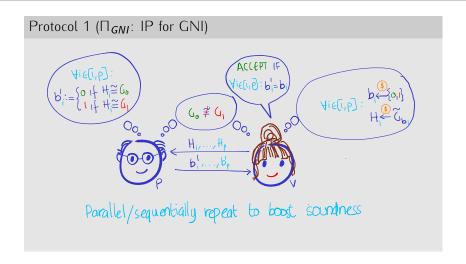


Any Issues with the NP Proofs We Saw?

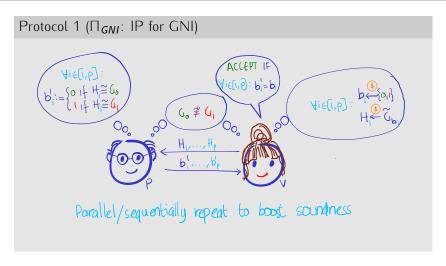


- Verifier gains "non-trivial knowledge" about witness w
 - Not desirable, e.g., when x = pk and w = sk (identification)

What About the IP We Saw?

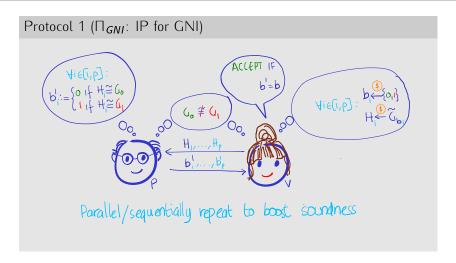


What About the IP We Saw?



■ Seems V gains no knowledge beyond validity of the statement

What About the IP We Saw?



- Seems V gains no knowledge beyond validity of the statement
- We will see that Π_{GNI} is (honest-verifier) zero-knowledge!

- Knowledge vs. information in the information-theoretic sense
 - Knowledge is computational

- Knowledge vs. information in the information-theoretic sense
 - Knowledge is computational: e.g., consider NP proof for GI
 - Given (G_0, G_1) , the isomorphism π contains no *information*
 - But when given π , V "gains knowledge" since she couldn't have computed π herself

■ Knowledge vs. information in the information-theoretic sense

- lacksquare Given (G_0, G_1) , the isomorphism π contains no *information*
- But when given π , V "gains knowledge" since she couldn't have computed π herself
- Knowledge pertains to public objects:
 - Flipping a private fair coin b and (later) revealing its outcome leads to V gaining information
 - But V does not gain knowledge: she could herself have tossed the private coin and revealed it

■ Knowledge vs. information in the information-theoretic sense

But when given π , V "gains knowledge" since she couldn't have computed π herself

 Flipping a private fair coin b and (later) revealing its outcome leads to V gaining information

■ But V *does not gain knowledge*: she could herself have tossed the private coin and revealed it

(ther than the validity of x)

Intuitively, "V gains no knowledge" if anything V can *compute* after the interaction, V could have computed *without it*

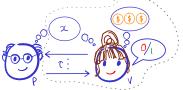
■ Formalised via "simulation paradigm": View_V($\langle P, V \rangle(x)$) can be *efficiently* simulated given only the instance

> V's "view"=x+ transcript + coins

■ Formalised via "simulation paradigm": View_V($\langle P, V \rangle(x)$) can be efficiently simulated given only the instance

> V's "view"=x+ transcript o + coins

■ Formalised via "simulation paradigm": $View_V(\langle P, V \rangle(x))$ can be *efficiently* simulated given only the instance



> V's "view"=x+ transcript o + coins

■ Formalised via "simulation paradigm": View_V($\langle P, V \rangle(x)$) can be efficiently simulated given only the instance

Defintion 2 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$Pr[D(View_V(\langle P, V \rangle(x))) = 1] - Pr[D(Sim(x)) = 1]$$

Defintion 2 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\Pr[\mathsf{D}(\mathsf{View}_{\mathsf{V}}(\langle \mathsf{P},\mathsf{V}\rangle(x)))=1]-\Pr[\mathsf{D}(\mathsf{Sim}(x))=1]$$

- \blacksquare Malicious-Verifier ZK: honest verifier $V \to all$ verifiers V^*
 - lacktriangle For every V^* there exists a PPT simulator Sim

statistical

Defintion 2 (Honest-Verifier Perfect ZK)

Statistical An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\left| \Pr[\mathsf{D}(\mathsf{View}_{\mathsf{V}}(\langle \mathsf{P},\mathsf{V} \rangle(x))) = 1] - \Pr[\mathsf{D}(\mathsf{Sim}(x)) = 1] \right|$$

- \blacksquare Malicious-Verifier ZK: honest verifier $V \to all$ verifiers V^*
 - \blacksquare For every V^* there exists a PPT simulator Sim
- Statistical ZK: relax "zero" to "negligible"
 - Equivalently: relax "distributions identical" to "distributions statistically close"

Defintion 2 (Honest-Verifier Perfect ZK)

An IP Π is honest-verifier perfect ZK if there exists a PPT simulator Sim such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\Pr[\mathsf{D}(\mathsf{View}_\mathsf{V}(\langle \mathsf{P},\mathsf{V}\rangle(x)))=1] - \Pr[\mathsf{D}(\mathsf{Sim}(x))=1]$$

- \blacksquare Malicious-Verifier ZK: honest verifier $V \to all$ verifiers V^*
 - For every V* there exists a PPT simulator Sim
- Statistical ZK: relax "zero" to "negligible"
 - Equivalently: relax "distributions identical" to "distributions statistically close"

Exercise 2

What happens when one invokes the simulator on $x \notin \mathcal{L}$?

Π_{GNI} is Honest-Verifier ZK

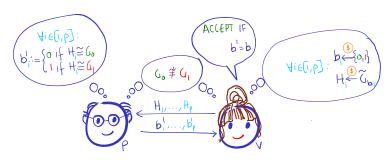
Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

Π_{GNI} is Honest-Verifier ZK

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

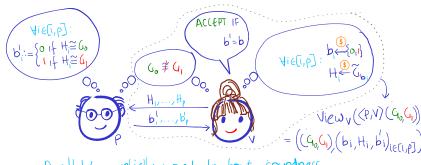


Parallel/sequentially repeat to boost soundness

Π_{GNI} is Honest-Verifier ZK

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$



Parallel/sequentially repeat to boost soundness

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

Proof.

$$\text{View}_{V}\left(\langle P,V\rangle \left(G_{o_{i}}G_{i}\right)\right):=\left(\left(G_{o_{i}}G_{i}\right)\left(b_{i},H_{i},b_{i}\right)_{i\in\{1,p\}}\right)$$

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

Proof.

$$\forall \ \mathsf{G}_{l_0} \not\cong \mathsf{G}_{l_1} : \\ \forall \ \mathsf{G}_{l_0} \not\cong \mathsf{G}_{l_1} : \\ \mathsf{Sim} \left(\mathsf{G}_{l_0} \mathsf{G}_{l_1} \right) := \bigcirc$$

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

Proof.

$$\forall \ \mathsf{G}_{o} \not\cong \mathsf{G}_{i} \colon \\ \forall \ \mathsf{G}_{o} \not\cong \mathsf{G}_{i} \colon \\ \mathsf{Sim} \left(\mathsf{G}_{o}, \mathsf{G}_{i}\right) \coloneqq \left(\left(\mathsf{G}_{o}, \mathsf{G}_{i}\right), \left(\mathsf{b}_{i}, \mathsf{H}_{i}, \mathsf{b}'\right)_{i \in \left(\mathsf{I}, p\right)}\right) \\ \forall \ \mathsf{G}_{o} \not\cong \mathsf{G}_{i} \colon \\ \mathsf{O/P} \left(\left(\mathsf{G}_{o}, \mathsf{G}_{i}\right), \left(\mathsf{b}_{i}, \mathsf{H}_{i}, \mathsf{b}_{i}\right)_{i \in \left(\mathsf{I}, p\right)}\right) \\ \forall \ \mathsf{G}_{o} \not\cong \mathsf{G}_{i} \colon \mathsf{View}_{\mathsf{V}}\left(\langle \mathsf{P}, \mathsf{V} \rangle \left(\mathsf{G}_{o}, \mathsf{G}_{i}\right)\right) \text{ identically distributed to } \mathsf{Sim}\left(\mathsf{G}_{o}, \mathsf{G}_{i}\right).$$

Theorem 2

 $\Pi_{ extit{GNI}}$ is honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{ extit{GNI}}$

Proof.

$$\forall G_{0} \not\cong G_{1}: = \left(\left(G_{0}, G_{1} \right) \left(b_{1}, H_{1}, b_{1} \right)_{l \in \left[I, P \right]} \right)$$

$$\forall G_{0} \not\cong G_{1}: = \forall i \in \left[I, P \right] : \forall i \in \left[I, P \right] \text{ and } H_{1} \leftarrow \widetilde{G}_{b_{1}}$$

$$0/P \left(\left(G_{0}, G_{1} \right) \left(b_{1}, H_{1}, b_{1} \right)_{l \in \left[I, P \right]} \right)$$

Exercise 3

- $oxed{\mathbb{I}}$ What happens if V is malicious and can deviate from protocol?
- 2 Using ideas from Π_{GNI} , build honest-verifier ZKP for \mathcal{L}_{QNR}

Are Randomness and Interaction Necessary?

Exercise 4

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L \in \mathsf{BPP}$

Are Randomness and Interaction Necessary?

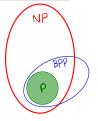
HIED: Pr[V(x)=1] 723.

LEBPP & JPPT V: Yxdd: Pr[V(x)=1] 813

Bounded-error probabilistic polyomial (BPP):

Exercise 4

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L \in \mathsf{BPP}$



Are Randomness and Interaction Necessary?

4xed: Pr[V(x)=1] 723.

Bounded-error probabilistic polyomial (BPD)

Exercise 4

If $\mathcal L$ has a non-interactive (i.e, one-message) ZKP then $\mathcal L \in \mathsf{BPP}$

§ Randomness is necessary

Exercise 5

If $\mathcal L$ has an IP with deterministic verifier then $\mathcal L \in \mathsf{NP}$

Exercise 6

If \mathcal{L} has an ZKP with deterministic verifier then $\mathcal{L} \in \mathsf{BPP}$

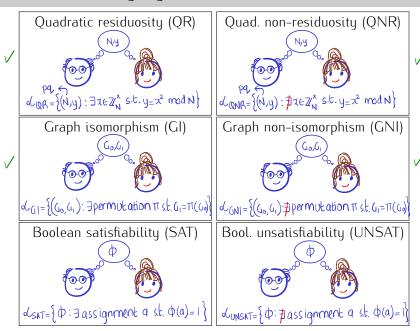
Plan for Today's Lecture

1 Interactive Proof (IP)

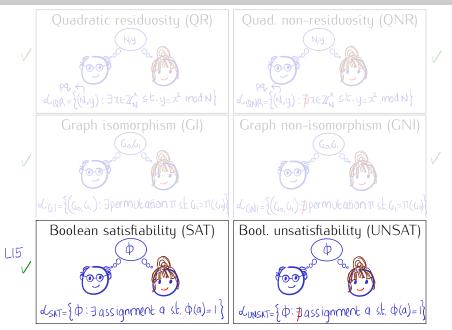
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Class SZK: Statistical Zero-Knowledge Proof

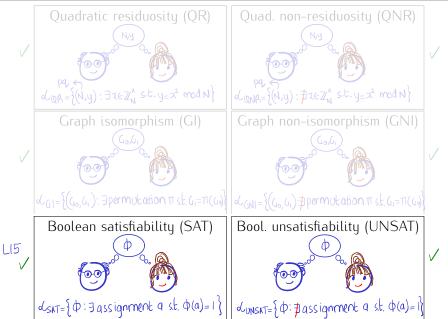
Which Languages have ZKPs?



Which Languages have ZKPs?



Which Languages have ZKPs? PSPACE Languages



■ The class of languages which admit *malicious verifier* statistical zero-knowledge proofs

- The class of languages which admit *malicious verifier* statistical zero-knowledge proofs
- Why is it interesting?
 - Contains a host of languages with connections to cryptography.
 - 1 Number-theoretic problems: QR, QNR
 - 2 Lattice problems: approximate shortest-vector problem, closest vector problems
 - 3 .

- The class of languages which admit *malicious verifier* statistical zero-knowledge proofs
- Why is it interesting?
 - Contains a host of languages with connections to cryptography.
 - 1 Number-theoretic problems: QR, QNR
 - 2 Lattice problems: approximate shortest-vector problem, closest vector problems
 - 3 .
 - Has complete problems: e.g., statistical difference (SD)
 - Given two circuits C_0 , C_1 : $\{0,1\}^n \to \{0,1\}^m$, decide whether the distributions induced inputting C_0 and C_1 are statistically "close" or "far".

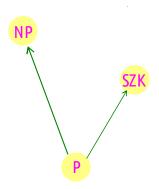
- The class of languages which admit *malicious verifier* statistical zero-knowledge proofs
- Why is it interesting?
 - Contains a host of languages with connections to cryptography.
 - 1 Number-theoretic problems: QR, QNR
 - 2 Lattice problems: approximate shortest-vector problem, closest vector problems
 - 3 .
 - Has complete problems: e.g., statistical difference (SD)
 - Given two circuits C_0 , C_1 : $\{0,1\}^n \to \{0,1\}^m$, decide whether the distributions induced inputting C_0 and C_1 are statistically "close" or "far".

Exercise 7

Can you think of a honest-verifier SZK proof for SD?

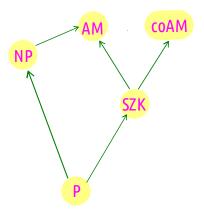
What do we know about SZK?

+ Closed under complement, i.e., SZK = coSZK



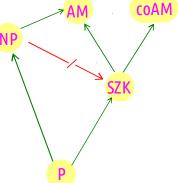
What do we know about SZK?

- + Closed under complement, i.e., SZK = coSZK
- + Contained in AM \cap coAM
 - AM: public-coin, one-round IP



What do we know about SZK?

- + Closed under complement, i.e., SZK = coSZK
- + Contained in AM \cap coAM
 - AM: public-coin, one-round IP
- NP cannot be contained in SZK (unless polynomial hierarchy collapses)



- Traditional "NP" proofs vs *interactive* proofs
 - IP is more powerful: IP for GNI

- Traditional "NP" proofs vs *interactive* proofs
 - IP is more powerful: IP for GNI
- Zero-knowledge proofs
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm

- Traditional "NP" proofs vs *interactive* proofs
 - IP is more powerful: IP for GNI
- Zero-knowledge proofs
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (HW: QNR)

- Traditional "NP" proofs vs *interactive* proofs
 - IP is more powerful: IP for GNI
- Zero-knowledge proofs
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (HW: QNR)
- Class SZK

References

- 1 [Gol01, Chapter 4] for details of today's lecture
- **2** [GMR89] for definitional and philosophical discussion on ZK. Salil Vadhan's thesis [Vad99] is also an excellent resource.
- 3 The ZKPs for GI and GNI are taken from [GMR89, GMW91]
- IP for all of PSPACE is due to [LFKN92, Sha90]. Computational ZKP for all of PSPACE is due to [GMW91].
- [Oka96] showed that SZK is closed under complement. That NP cannot be contained in SZK (unless PH collapses) is due to [For87]

The complexity of perfect zero-knowledge (extended abstract).

In Alfred Aho, editor, *19th ACM STOC*, pages 204–209. ACM Press, May 1987.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.

The knowledge complexity of interactive proof systems. *SIAM J. Comput.*, 18(1):186–208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems.

J. ACM, 38(3):691–729, 1991.

Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.

Algebraic methods for interactive proof systems.

J. ACM, 39(4):859-868, October 1992.

Tatsuaki Okamoto.

On relationships between statistical zero-knowledge proofs. In 28th ACM STOC, pages 649–658. ACM Press, May 1996.

Adi Shamir.

IP=PSPACE.

In 31st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.

Salil Vadhan.

A study of statistical zero-knowledge proofs.

PhD thesis, Massachusetts Institute of Technology, 1999.