CS760 Topics in Computational Complexity

13 August 2024

Lecture 4: PRIMES \in NP; NTM definition of NP

Lecturer: Prof. Rohit Gurjar Scribe: Arnav (210050018)

1 Proof of Pratt's Theorem

1.1 Lucas' Primality Test

Theorem 1.1. p is prime iff $\exists z$

- $z^{p-1} \equiv 1 \pmod{p}$ and
- $\forall r < p-1 : z^r \not\equiv 1 \pmod{p}$

The latter condition is equivalent to

for each prime factor q of p-1, $z^{(p-1)/q} \not\equiv 1 \pmod{p}$

(since if for some r < p-1 we have $z^r \equiv 1 \pmod p$ then r|(p-1) and thus (since r < (p-1)) for some prime factor q of p-1, $r|\frac{p-1}{q}$ and hence $z^{(p-1)/q} \equiv 1 \pmod p$)

1.2 Proof of Lucas' Primality Test

Claim 1.2. If p is prime then $\forall z \not\equiv 0 \pmod{p}$ we have $z^{p-1} \equiv 1 \pmod{p}$.

Proof. We work in \mathbb{Z}_p . We first note that since $z \not\equiv 0$,

$$\{z \cdot i | i \in \mathbb{Z}_p\} = \mathbb{Z}_p$$

(If possible let $a \not\equiv b$ be st $za \equiv zb \implies z(a-b) \equiv 0 \implies a-b \equiv 0$ since $z \neq 0$, a contradiction!)

Now consider $y = z^{p-1} \cdot 1 \cdot 2 \cdot 3 \cdot (p-1)$. By the above result we must have

$$z^{p-1} \cdot 1 \cdot 2 \cdot 3 \cdot (p-1) \equiv 1 \cdot 2 \cdot 3 \cdot (p-1)$$

Since, $1 \cdot 2 \cdot 3 \cdot (p-1) \not\equiv 0$ and p is prime, hence it has a multiplicative inverse in \mathbb{Z}_p^* . Thus we conclude that

$$z^{p-1} \equiv 1$$

Claim 1.3. If p is prime then $\forall z \not\equiv 0 \pmod{p}$ and $k \geq 1$, we have $z^{p^{k-1}(p-1)} \equiv 1 \pmod{p^k}$

Proof. We proceed by induction.

Base case k = 1: Proven above

Inductive step $k \geq 2$: If possible let $k \geq 2$ be such that

$$z^{p^{k-2}(p-1)} \equiv 1 \pmod{p^{k-1}}$$

Then $z^{p^{k-2}(p-1)} = 1 + mq^{k-1}$ and

$$\begin{split} z^{p^{k-1}(p-1)} &= \left(1 + mp^{k-1}\right)^p \\ &= 1 + \sum_{i=1}^{q-1} \binom{p}{i} m^i p^{i(k-1)} + m^p p^{p(k-1)} \end{split}$$

Note that in each term of the sum, power of p is $\geq k$. Thus for some m'

$$z^{p^{k-1}(p-1)} = 1 + m'p^k$$

and we get $z^{p^{k-1}(p-1)} \equiv 1 \pmod{p^k}$.

Thus by principal of mathematical induction, the assertion holds for all $k \geq 1$.

Now we prove one direction of the statement.

Theorem 1.4. If q is not prime then for all z there exists r < q - 1 such that

$$z^r \equiv 1 \pmod{q}$$

Proof. Let q have a prime factorisation $p_1^{n_1}p_2^{n_2}\dots p_k^{n_k}$. Then we have for each z

$$z^{p_i-1} \equiv 1 \pmod{p_i}$$

$$\implies z^{p_i^{n_i-1}(p_i-1)} \equiv 1 \pmod{p_i^{n_i}}$$

$$\implies z^{\prod_{i=1}^{n} p_i^{n_i-1}(p_i-1)} \equiv 1 \pmod{p_i^{n_i}}$$

and since all the $p_i^{n_i}$'s are coprime, we then get

$$z^{\prod_{i=1}^{k} p_i^{n_i-1}(p_i-1)} \equiv 1 \pmod{q}$$

Exponent on LHS is q - 1 for composite q, so we are done.

Let $O_p(z)$ represent the smallest nonzero power (order) of z that is $\equiv 1 \pmod{p}$.

Claim 1.5. For prime p, if we have z_1, z_2 st $r_1 = O_p(z_1), r_2 = O_p(z_2)$ with $GCD(r_1, r_2) = 1$ then $O_p(z_1z_2) = r_1r_2$.

Proof. By definition of order we must have $(z_1z_2)^{r_1r_2} \equiv 1 \pmod{p}$.

If possible let $\exists r, 0 < r < r_1 r_2 \text{ st } (z_1 z_2)^r \equiv 1 \pmod{p}$.

Let us write

$$r = m_1 r_1 + n_1 = m_2 r_2 + n_2$$

for some $0 \le n_1 < r_1, 0 \le n_2 < r_2$.

Now n_1 and n_2 can't both be zero since $GCD(r_1, r_2) = 1$. If $n_1 = 0$ then $1 \equiv (z_1 z_2)^r \equiv z_2^{n_2} \pmod{p}$, a contradiction since $n_2 < r_2$. So we must have $n_1 > 0, n_2 > 0$.

Thus

$$z_1^{n_1} z_2^{n_2} \equiv 1 \pmod{p}$$

Raising to r_1 , we get

$$z_1^{n_1r_1}z_2^{n_2r_1} \equiv 1 \pmod{p}$$

$$\implies z_2^{n_2r_1} \equiv 1 \pmod{p}$$

Thus we must have $r_2|n_2r_1$, and since r_1, r_2 are coprime,

$$r_2|n_2$$

which is a contradiction since $0 < n_2 < r_2$. Hence $O_p(z_1 z_2) = r_1 r_2$.

Claim 1.6. For prime p, let r be the maximum order among elements of \mathbb{Z}_p^* . Then

$$\forall z, \ z^r \equiv 1 \ (\bmod \ p)$$

Proof. Let z be such that $O_p(z) = r$.

If possible let there be a z' with order r' < r st $z^r \not\equiv 1 \pmod{p}$.

Let w = GCD(r, r'). Let $\tilde{r} = \frac{r'}{w}$ ($\tilde{r} > 1$ since r' < r). Then we must have $\text{GCD}(r, \tilde{r}) = 1$.

Consider $\tilde{z} = z'^w$. Then $O_p(z) = r$, $O_p(\tilde{z}) = \tilde{r}$. Thus using the preceding result,

$$O_n(z\tilde{z}) = r\tilde{r} > r,$$

a contradiction. Hence the assertion holds.

Now we prove the reverse direction.

Theorem 1.7. If p is prime, $\exists z O_p(z) = p - 1$.

Proof. Let r be the maximum order among elements of \mathbb{Z}_p^* . Then the polynomial z^r-1 has at most p-1 distinct roots. Hence $r \geq p-1$. We also know that order $\leq p-1$. Hence r=p-1 and thus some element of \mathbb{Z}_p^* has order p-1.

1.3 Proof of size of certificate

For a prime p, the Pratt certificate lists the prime factors of p-1 and the witness z that satisfies Lucas' test for p. Adjoined to this are the certificates for the listed prime factors (2 is a special case and does not require a certificate).

Theorem 1.8. The Pratt certificate for a prime p is of size $\mathcal{O}(\log_2(p))$.

2 Nondeterministic Turing Machines and NP

Definition 2.1. A Nondeterministic Turing Machine is a tuple $N = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle$ where

- ullet Q is a finite non-empty set of states,
- Γ is a finite non-empty set of tape symbols,
- $b \in \Gamma$ is the blank symbol,
- $\Sigma \subseteq \Gamma \setminus b$ is the set of input symbols,
- $q_0 \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states, and
- $\delta: (Q \setminus F) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$ is the transition function.

Here the function δ takes the current state and the current tape symbol and outputs a set of possible transitions. Each possible transition describes the new state, the new symbol written at the head, and the movement of the head. At any step, the non-deterministic TM can choose any transition from the set of transitions given by δ . That means for a given input an NTM has multiple possible computation paths (possibly exponential in the number of steps).

A language $L \subseteq \Sigma^*$ is said to be accepted by an NTM N when

 $x \in L \iff \exists \ computation \ path \ in \ N \ with \ input \ x \ halting \ in \ F$

An NTM N is said to be polytime if \exists polynomial $p : \mathbb{N} \to \mathbb{N}$ such that for all inputs x, N halts in at most p(|x|) steps on all computation paths.

Theorem 2.2. A language $L \subseteq \{0,1\}^*$ is in NP iff there exists a polytime NTM N accepting L.

Proof. $\underline{L \in \mathsf{NP}} \stackrel{?}{\Longrightarrow} \exists N$ Since $L \in \mathsf{NP}$, there exists verifier DTM V and a polynomial bound q on size of the certificate. We construct an NTM N that on input x does the following:

1. N first nondeterministically writes a size q(|x|) certificate to the tape.

¹Pratt, V. R. (1975) 'Every Prime Has A Succint Certificate', SIAM Journal on Computing, 4(3)

2. Then it runs V on the resulting tape.

The first step takes time $\mathcal{O}(q(|x|))$.

If $x \in L$, then for some $c \in \{0,1\}^{q(|x|)}$, V will halt and accept in polynomial time by definition. Thus N is a polytime NTM accepting L.

 $\exists N \stackrel{?}{\Longrightarrow} L \in \mathsf{NP}$ Let p be the polynomial bounding the number of transitions taken by polytime NTM N for any accepted input.

For an input $x \in L$, consider the accepting run of N. This can be encoded as a sequence of choices made, one at each transition, by N. Let us encode this in $\{0,1\}^*$ as c; it will have size p(|x|) with appropriate padding.

Now we construct a DTM V that takes an input x and a certificate c and simulates N on the input x until atmost p(|x|) steps, taking a single transition at each step according to what is encoded in c (if encoding is invalid or N halts then V halts and rejects).

If $x \in L$ then using the certificate described before, V halts and accepts in polynomial time in |x|.

OTOH if $x \notin L$ then there cannot be an accepting run in N, so no certificate can cause V to halt and accept.