CS761 Derandomization and Pseudorandomness 2022-23 Sem 1

Lecture 1: 01-08-2022

Scribe: Amit Rajaraman Lecturer: Rohit Gurjar

Problem. Given three n x n matrices A, B, C, decide whether AB = C.

One naive way to do this is to compute AB and check if it is identical to C'. The naive implementation
of this runs in O(n?), while the best known implementation at the time runs in about O(n?-373). Can we do
the required in O(n?) time, perhaps in a random fashion (with some probability of failure)?

Consider the following algorithm to start with. For each row in C, choose an entry randomly and verify
that it matches the corresponding entry in AB. In a similar spirit, a second algorithm is to choose n entries
of C' randomly and verify.

If AB = C, it is clear that no matter how we choose to test, we shall return that the two are indeed
equal. The probability we would like to minimize is

Pr[the algorithm outputs yes],

when AB # C. Of course, this probability depends on A, B,C. The non-deterministic part of it is the
randomness inherent in the algorithm, not in some choosing of A, B, C.

When AB and C differ at only one entry, the earlier proposed algorithm has a success probability of
1/n (so the quantity mentioned above is 1 — 1/n). This is very bad, as it means that to reduce the failure
probability to some constant, we would need to repeat this Q(n) times.

An algorithm that does the job is as follows.

Randomly choose r € {0,1}". Compute ABr and Cr, and verify that the two are equal. This is an O(n?)
algorithm, since multiplying a matrix with a vector takes O(n?) and we perform this operation thrice, in
addition to an O(n) verification step at the end.

We claim that the failure probability of this algorithm is at most 1/2. The failure probability can be
rephrased as follows. Let z,y € RY™. What is Pr[zr = yr] when x # y? The earlier failure probability is
at most equal to this, with equality attained (in a sense) when the two matrices differ at exactly one row.
This in turn is equivalent to the following. Let 2 € R'*"™. What is Pr[zr = 0] when z # 0? Suppose that
z; # 0 for some 4. For any choice of the remaining n — 1 bits, at most one of the two options for the ith bit
can result in zr = 0. Let us do this slightly more formally. Assume without loss of generality that z, # 0.
Then,

z21r1+ o+ Zp—1Tn—1
Zn

_ 2171+ Zn—1Tn—1
T = — \
Zn

Pr[21r1+~~-+znrn—0]—Pr{rn—

< max Pr

T15:0Tn—1 T'n

T1ye-5Tn—1

which is plainly at most 1/2 — we cannot have that both 0 and 1 are equal to the quantity of interest!

Observe that if we instead choose r from {0, 1,...,q—1}" instead, the failure probability now goes down
at most 1/q. There is a tradeoff at play here between the reduction in the failure probability and the increase
in the number of random bits, which goes from n to O(nlogq).

Can we reduce the number of random bits in this algorithm? Can we make it deterministic?

To answer the question of determinism, suppose the algorithm designer chooses k vectors (1), ... ) ¢
R” and tests whether ABr() = Cr(®. This will fail if & < n. Indeed, an adversarial input is a z that is
nonzero but with zr(® = 0 for 1 < i < k. The determinism here is in the sense that the vectors are chosen
before the inputs are provided.

On the other hand, we can reduce the number of random bits used. In fact, we can go to about O(logn)
bits. The goal of derandomization is to use a smaller number of random bits, perhaps by conditioning
together previously independent bits, without losing the power of the earlier independent bits. Let

Ax) = ag + a1z + - + agz?



be a nonzero polynomial of degree d. Choose x randomly from {0, 1,...,¢—1}. It is not difficult to see that

[A(z) = 0] <

(SRS

Pr
z~{0,1,...,q—1}

by the Fundamental Theorem of Algebra.
Inspired by this, we can reduce randomness as follows. Choose x randomly from {0,1,...,2n — 1}, and set
r=(1,z,2%,...,2"1). Then for any z # 0,

| =

n—1
Pr[zi7ry + 2979 + -+ - + 257, = 0] = Pr [Zl + 2oz + 232 + -+ zx" ZO} < 9 1 < 5

n —
There are some other issues that enter the picture here, namely the bit complexity now that 2"~1 has O(n)
bits. One easy fix for this is to perform all operations modulo some large enough prime p. The prime p
should be larger than n as well as the largest number in the matrices AB and C. All our arguments will

then be over the finite field GF(p). In particular, the fact that a degree d polynomial has at most d roots
holds true over any field.



