

## Lecture 1: 01-08-2022

Scribe: Amit Rajaraman

Lecturer: Rohit Gurjar

**Problem.** Given three  $n \times n$  matrices  $A, B, C$ , decide whether  $AB = C$ .

One naïve way to do this is to compute  $AB$  and check if it is identical to  $C$ . The naïve implementation of this runs in  $O(n^3)$ , while the best known implementation at the time runs in about  $O(n^{2.373})$ . Can we do the required in  $O(n^2)$  time, perhaps in a random fashion (with some probability of failure)?

Consider the following algorithm to start with. For each row in  $C$ , choose an entry randomly and verify that it matches the corresponding entry in  $AB$ . In a similar spirit, a second algorithm is to choose  $n$  entries of  $C$  randomly and verify.

If  $AB = C$ , it is clear that no matter how we choose to test, we shall return that the two are indeed equal. The probability we would like to minimize is

$$\Pr[\text{the algorithm outputs yes}],$$

when  $AB \neq C$ . Of course, this probability depends on  $A, B, C$ . The non-deterministic part of it is the randomness inherent in the algorithm, not in some choosing of  $A, B, C$ .

When  $AB$  and  $C$  differ at only one entry, the earlier proposed algorithm has a success probability of  $1/n$  (so the quantity mentioned above is  $1 - 1/n$ ). This is very bad, as it means that to reduce the failure probability to some constant, we would need to repeat this  $\Omega(n)$  times.

An algorithm that does the job is as follows.

Randomly choose  $r \in \{0, 1\}^n$ . Compute  $ABr$  and  $Cr$ , and verify that the two are equal. This is an  $O(n^2)$  algorithm, since multiplying a matrix with a vector takes  $O(n^2)$  and we perform this operation thrice, in addition to an  $O(n)$  verification step at the end.

We claim that the failure probability of this algorithm is at most  $1/2$ . The failure probability can be rephrased as follows. Let  $x, y \in \mathbb{R}^{1 \times n}$ . What is  $\Pr[xr = yr]$  when  $x \neq y$ ? The earlier failure probability is at most equal to this, with equality attained (in a sense) when the two matrices differ at exactly one row. This in turn is equivalent to the following. Let  $z \in \mathbb{R}^{1 \times n}$ . What is  $\Pr[zr = 0]$  when  $z \neq 0$ ? Suppose that  $z_i \neq 0$  for some  $i$ . For any choice of the remaining  $n - 1$  bits, at most one of the two options for the  $i$ th bit can result in  $zr = 0$ . Let us do this slightly more formally. Assume without loss of generality that  $z_n \neq 0$ . Then,

$$\begin{aligned} \Pr[z_1r_1 + \cdots + z_nr_n = 0] &= \Pr\left[r_n = -\frac{z_1r_1 + \cdots + z_{n-1}r_{n-1}}{z_n}\right] \\ &\leq \max_{r_1, \dots, r_{n-1}} \Pr\left[r_n = -\frac{z_1r_1 + \cdots + z_{n-1}r_{n-1}}{z_n} \mid r_1, \dots, r_{n-1}\right] \end{aligned}$$

which is plainly at most  $1/2$  – we cannot have that both 0 and 1 are equal to the quantity of interest!

Observe that if we instead choose  $r$  from  $\{0, 1, \dots, q-1\}^n$  instead, the failure probability now goes down at most  $1/q$ . There is a tradeoff at play here between the reduction in the failure probability and the increase in the number of random bits, which goes from  $n$  to  $O(n \log q)$ .

Can we reduce the number of random bits in this algorithm? Can we make it deterministic?

To answer the question of determinism, suppose the algorithm designer chooses  $k$  vectors  $r^{(1)}, \dots, r^{(k)} \in \mathbb{R}^n$  and tests whether  $ABr^{(i)} = Cr^{(i)}$ . This will fail if  $k < n$ . Indeed, an adversarial input is a  $z$  that is nonzero but with  $zr^{(i)} = 0$  for  $1 \leq i \leq k$ . The determinism here is in the sense that the vectors are chosen before the inputs are provided.

On the other hand, we *can* reduce the number of random bits used. In fact, we can go to about  $O(\log n)$  bits. The goal of derandomization is to use a smaller number of random bits, perhaps by conditioning together previously independent bits, without losing the power of the earlier independent bits. Let

$$A(x) = a_0 + a_1x + \cdots + a_dx^d$$

be a nonzero polynomial of degree  $d$ . Choose  $x$  randomly from  $\{0, 1, \dots, q-1\}$ . It is not difficult to see that

$$\Pr_{x \sim \{0, 1, \dots, q-1\}} [A(x) = 0] \leq \frac{d}{q}$$

by the Fundamental Theorem of Algebra.

Inspired by this, we can reduce randomness as follows. Choose  $x$  randomly from  $\{0, 1, \dots, 2n-1\}$ , and set  $r = (1, x, x^2, \dots, x^{n-1})$ . Then for any  $z \neq 0$ ,

$$\Pr[z_1 r_1 + z_2 r_2 + \dots + z_n r_n = 0] = \Pr[z_1 + z_2 x + z_3 x^2 + \dots + z_n x^{n-1} = 0] \leq \frac{n-1}{2n-1} \leq \frac{1}{2}.$$

There are some other issues that enter the picture here, namely the bit complexity now that  $x^{n-1}$  has  $O(n)$  bits. One easy fix for this is to perform all operations modulo some large enough prime  $p$ . The prime  $p$  should be larger than  $n$  as well as the largest number in the matrices  $AB$  and  $C$ . All our arguments will then be over the finite field  $GF(p)$ . In particular, the fact that a degree  $d$  polynomial has at most  $d$  roots holds true over any field.