
CS761 Derandomization and Pseudorandomness 2022-23 Sem I

Lecture 10: 08/09/22
Scribe: Raj Aryan Agrawal Lecturer: Rohit Gurjar

As we saw previously, in an expander graph, a random walk converges to uniform distribution in O(log n)
steps. In particular, this means that starting from any vertex, any other vertex can be reached in O(log n)
steps. Then we can check (s, t) connectivity by iterating over all O(log n) length paths from s, which requires
O(d log n) space, where d is the degree. Assuming the degree of the expander graph is constant, this is a
logspace algorithm.

To solve connectivity in logspace for a general graph, the idea is to convert any given graph into an
expander via some operations that preserve connectivity. We will use 2 graph operations.

Expander Graph Operations

Squaring a Graph

Definition 10.1 (Square of Graph). Given a graph G(n, d, λ), the square of the graph G2 is the graph formed
by all 2 length paths in G, that is V (G2) = V (G) and

E(G2) = {(u, v)|∃t ∈ V (G) such that (u, t), (t, v) ∈ E(G)}

By definition, number of vertices remains the same, n. For the degree of a vertex u, we have d neighbours
of u and d neighbours from each of those neighbours, giving degree of any vertex u as d2 (we allow multiple
edges to exist between same pair).

Finally, for the parameter of expander graph, by considering all the 2 length paths only, the random walk
matrix for G2 is equivalent to M2 where M is the random walk matrix matrix for G. Since λ is the second
largest eigenvalue of M , λ2 is the second largest eigenvalue of G2, as long as G does not have eigenvalue −1.
Thus the operation is

G(n, d, λ)→ G2(n, d2, λ2)

This operation increases the degree significantly while also increasing the connectivity (since λ < 1,
λ2 < λ).

Zig Zag Product

In the previous operation we increased the connectivity but at the cost of increasing the degree. This second
operation decreases the degree, while not hurting the connectivity too much.

Given 2 graphs G(n,D, λ1) and H(D, d, λ2), we will define their zig-zag product denoted as G z H. We
explain the construction of G z H in steps.

Vertices

Replace each vertex in G by all D vertices of H, that is, each vertex is duplicated D times with index (a, i)
where a and i are labels for vertices in G and H respectively.

Edges

Firstly, for each vertex in G, order the edges connected to it as 1, 2, ..., D arbitrarily and similarly for each
vertex in H, order the edges in 1, 2, . . . , d arbitrarily. For edges in G z H, we first take a random step in H,
then a deterministic step in G (determined by our first random step) and finally a random step in H. The
reason and intuition for this will be explained at the end of the construction. Thus, for each vertex (a, i), the

1

neighbour is defined by the 2 random steps in graph H giving degree d2. We can index a given edge from
(a, i) as a tuple (j, k) where j, k ∈ {1, 2, . . . , d}. The other end point of this edge index can be determined as

• i′ ← jth neighbour of i in H

• b← i′th neighbour of a in G and
j′ ← index of a in neighbour list of b

• l← kth neighbour of j′ in H

Then the other end point of edge with index (j, k) is (b, l).

One can imagine that for each vertex a in G we have a H-cloud in G z H. And one step in G z H is
equivalent to taking three steps: a H-step, a G-step, and a H-step. Intuitively, instead of taking a random
step directly in G, we first take a random step in the H-cloud which tells us the edge to take in G. Then
take the corresponding step in G. That is, in some sense we reduce the randomness from logD to log d in
taking a random step. Also, we take a final step in the H-cloud so that the edge relation between (a, i) and
(b, l) is symmetric.

Parameter λ

We now argue that the parameter λ′ of G z H is not too much greater than λ1, λ2. For convenience, we will
use the spectral gap defined before γi = 1− λi

We first make a small claim about being able to split our matrix in 2 components

Claim 10.2. Let A be the random walk matrix for a graph G with second eigenvalue λ. We can write A as

A = γJ + λE,

where J is the random walk matrix for a complete graph (with self loops) with same number of nodes. Then
‖E‖ ≤ 11.

Proof. Since the vector 1
n1 is an eigenvector for both A and J , with eigenvalues 1, 1

n1 is also an eigenvector
of E with eigenvalue 1. Now, we need to show that this is the largest eigenvalue. Consider a vector x, we
write x⊥ for component perpendicular to uniform vector 1

n1 and x|| for component along the uniform vector
1
n1. Then

‖Ex‖ = ‖Ex|| + Ex⊥‖

≤ ‖x|| +
1

λ
(Ax⊥ − γJx⊥)‖

≤ ‖x|| +
1

λ
λx⊥ − 0‖ ∵ all other eigenvalues of complete graph are 0

for any vector orthogonal to 1, A can multiply at most λ in the norm

= ‖x‖

So ‖Ex‖ ≤ ‖x‖ for any vector x. Thus the largest eigenvalue is at most 1.
Fun fact, by triangle inequality, we have

‖E‖ ≥ 1

λ
(‖A‖ − γ‖J‖) = 1

giving us ‖E‖ = 1.

Using this, we can prove the result

1‖E‖ stands for the spectral norm, i.e., maxv 6=0‖Ev‖/‖v‖. For symmetric matrices, spectral norm is equal to the largest
eigenvalue.)

2

Claim 10.3. We claim that
γ(G z H) ≥ γ1γ22 .

Which implies
λ′ ≤ λ1 + 2λ2

Proof. Let us try to construct the random walk matrix for for G z H by considering the three steps (H-step,
G-step, H-step).

Suppose the random walk matrices for graphs G and H are A and B respectively. Then consider the
matrix B̂ which is for the H-step in the zig-zag product. For each of the n copies of a vertex of H, we need
to do the same action, so we can say the matrix is

B̂ = In ⊗B

where ⊗ denotes the tensor product.
Now, consider the G-step in the zig-zag product. In the G-step, we go from (a, i′) to (b, j′), where b is

the i′th neighbor of a and a is the j′th neighbor of b. Observe that the G-step is deterministic and hence
the corresponding matrix is a permutation matrix (nd× nd). Let this matrix be Â.

Then, we can write the matrix for the zig-zag product as

M = B̂ÂB̂.

Now using the Claim 10.2, we can write B = γ2J + λ2E, where ‖E‖ ≤ 1. Taking the tensor product with
In in this equation, we have

B̂ = In ⊗B = γ2In ⊗ J + λ2In ⊗ E = γ2Ĵ + λ2Ê,

where we define Ĵ and Ê as In ⊗ J and In ⊗ E. We get

M = γ22 ĴÂĴ + λ2γ2(ĴÂÊ + ÊÂĴ) + λ22ÊÂÊ

The first term is simply the matrix for the zig zag product of G with a complete graph. Observe that the
resultant graph from this is identical to G in behaviour since each H cloud is just a complete graph and every
pair of vertices between 2 clouds have an edge. Thus a random walk in the product is same as a random
walk in G, thus the second largest eigenvalue is λ1. We will use this result below.

So, for the second largest eigenvalue of M , consider an x such that ‖x‖ = 1 and x · 1 = 0 which is an
eigenvector for M , then for this,

Mx = γ22 ĴÂĴx+ (λ2γ2(ĴÂÊ + ÊÂĴ) + λ22ÊÂÊ)x

The norm of the first component ‖ĴÂĴx‖ is at most ‖λ1x‖ by the fact that the second largest eigenvalue is
λ1. And for the remaining, the norm of each term is at most 1 (using the fact ‖AB‖ ≤ ‖A‖‖B‖), giving us

‖(λ2γ2(ĴÂÊ + ÊÂĴ) + λ22ÊÂÊ)x‖ ≤ ‖(2λ2γ2 + λ22)x‖ = ‖(1− γ22)x‖

Thus,
‖Mx‖ ≤ γ22λ1‖x‖+ (1− γ22)‖x‖

So,
λ(M) ≤ γ22 − γ22γ1 + 1− γ22 = 1− γ22γ1

Thus,
γ(M) ≥ γ22γ1

Also,

λ(M) ≤ 1− (1− λ2)2(1− λ1)

= 1− (1− 2λ2 + λ22 − λ1 + 2λ2λ1 − λ22λ1)

= λ1 + 2λ2 − (2λ2λ1 − λ22γ1)

≤ λ1 + 2λ2

3

Application of Expander Graph Operations

Construction of Large Expander Graphs

Start with a constant size expander graph H(D4, D, 18) for example. We can hope for a small λ since degree
is quite large compared to number of nodes (explicit constructions exist for these, as given in assignment 1).
Then we run the following steps

G1 ← H2

Gk ← G2
k−1 z H ∀k ≥ 2

Then Gk is of the form Gk(D4k, D2, λ)

Claim 10.4. λ ≤ 1
2 ∀k ≥ 1

Proof. Base case for k = 1 is trivial to see as λ = (1/8)2 = 1/64. Now for inductive case, we have

λ(Gk) ≤ λ(G2
k−1) + 2λ(H) ≤

(
1

2

)2

+ 2
1

8
=

1

2

Thus repeating the second step for as long as we want gives us increasing size expander graphs with the
degree still being D2.

Converting an arbitrary graph into an expander graph

Now, we describe how we can convert an arbitrary graph into an expander of polynomial size. This leads to
the logspace algorithm for connectivity. Given an arbitrary graph, we can convert it to a regular graph of
degree 3, which can then be squared an appropriate number of times to get a graph of form

G0

(
n,D2, 1− 1

poly(n)

)
,

for some large enough degree D2. Recall that for any non-bipartite connected graph, the second eigenvalue
is at least 1 − 1/poly(n). Repeating same steps as above with the graph H (Gk ← G2

k−1 z H), we can
construct Gk which is of form

Gk(nD4k, D2, λ).

Claim 10.5. In k = O(log n) steps, we get λ ≤ 1
2 .

Proof. From the result of zig zag product we know that

γk ≥ (1− λ2k−1)

(
7

8

)2

= (2γk−1 − γ2k−1)
49

64

Assuming γk−1 ≤ 1/2, we have

γk ≥
49

64
× 3

2
γk−1 =

147

128
γk−1.

Thus, on each step γk increases by a constant multiple. Since we started with γ0 = 1/poly(n), in O(log n)
steps, we must reach γ = 1/2.

Observe that the number of vertices at the end nD4k remains polynomially bounded for k = O(log n).

4

