CS761 Derandomization and Pseudorandomness 2022-23 Sem 1

Lecture 13: 27-09-2022

Scribe: Amit Rajaraman Lecturer: Rohit Gurjar

A general question one can ask is this: for any polynomial-time randomized algorithm, is it possible to
derandomize it to get a polynomial-time deterministic algorithm doing the same job?

It has been shown that given a “hard” function, one can construct very good pseudorandom bits. However,
no explicit hard functions are known.

Consider the notion of worst case hardness. For example, if we can show for some language that no
algorithm that runs in O(n!°) time can compute the output correctly on all inputs, then the language is
hard in some sense.

We also have the notion of average case hardness. Here, if we can show for some language that no
algorithm that runs in O(n!?) time can compute the output correctly on more than 3/4 of the inputs, then
the language is hard in some sense. It is not too difficult to see that average case hardness is a stronger
notion than worst case hardness.

Problems that are average case hard yield good pseudorandom generators. Another question of concern
is converting worst case hardness to average case hardness, which is done through error correcting codes.
This will be discussed in subsequent lectures.

Definition 13.1 (Randomized polynomial time (RP)). A language L is said to be in RP if there is a
randomized algorithm A running in polynomial time such that

1. forx e L,
Pr[A(z,r) = yes| >

DN | =

2. forx & L,
Pr [A(z,r) = yes| = 0.

In other words, the problems in class RP have probabilistic algorithms that make one-sided error. For
example, we had discussed an algorithm for determining (s, t)-connectivity in a graph. The algorithm would
do a random walk starting from s and says yes if it sees ¢ in a bounded number of steps, otherwise says
not connected. Observe that if s and ¢ are not connected then the algorithm will correctly say that with
probability 1. But, if they are connected then the algorithm may give the wrong answer (not connected)
with some probability. That’s what we mean by one-sided error.

We can also define a complexity class for algorithms that are allowed to make two-sided errors.

Definition 13.2 (Bounded-error probabilistic polynomial time (BPP)). A language L is said to be in BPP
if there is a randomized algorithm A running in polynomial time such that

1. forx e L,
2
Pr[A(z,r) = yes] > 3

2. forx ¢ L,

Prr [A(z,7) = yes] <

Here, the choice of numbers 2/3 and 1/3 was arbitrary. We can take any two numbers where there is a
constant gap, for example, 1/4 and 1/6.

Next, let us look at pseudorandom distributions. The goal of these is to find some universal set of random
bits which we can substitute in place of the (ideally) uniformly random bits being used in an algorithm.
Denote by U, the uniform distribution on {0, 1}™.

The idea is that a distribution D is pseudorandom (with respect to A) if for the given algorithm A, for all
inputs x,
Pr [A(z,r) =yes] — Pr [A(z,r) = yes]| <e.
re~Up, re~D
One convenient way to think about algorithms with input is circuits.

In fact, any deterministic algorithm can be viewed as a family (Cy,)n>1 of circuits, with C,, computing the
output correctly if the input is of size n. We can view a randomized algorithm as a deterministic one with
two inputs, and r. The circuit then has n + m input leaves, where n is the size of the input z and m is the
number of random bits r. If we fix the z part of the input, we get a circuit in the remaining input, namely
71, ...,Tm. We will call a given distribution pseudorandom if a small circuit cannot distinguish it from the
uniform distribution.

Definition 13.3 (Pseudorandom distribution). A distribution D on {0,1}™ is called (S, €)-pseudorandom
if for any circuit C on m input gates and size at most S,

Definition 13.4 (Pseudorandom generator (PRG)). Let G = (Gr)een be a family of functions, where
Gy :{0,1} = {0,1}™O (for some appropriate increasing function m). G is said to be a m(¢)-pseudorandom
generator if for each £,

(a) For a given r € {0,1}, G¢(r) can be computed in 2°°) time, and

(b) the distribution G(Uy), that is the distribution over {0,1}™®) obtained by taking a uniformly random
element s from {0,1}* and outputting G(s), is (m(¢)3,1/10)-pseudorandom.

The existence of the above PRG would imply that any randomized algorithm in BPP using m random

bits and running time m® can be simulated by a deterministic algorithm with running time 2°(9m?. We
merely run the algorithm on G(r) for all » € {0,1}*, and output whatever answer (yes or no) occurs more
frequently.
If we want to completely derandomize our randomized polynomial-time algorithm to get a deterministic
polynomial time algorithm, we will need a PRG with m(¢) = 20(8) " That is, if a pseudorandom generator
with seed length £ = O(log m) exists, then BPP = P. When this is true, we say that the PRG has exponential
stretch.

Our goal in the next few lectures will be to show that “circuit lower bounds” imply the existence of
pseudorandom generators. First we give an argument which shows why we can expect such PRGs to exist.

Theorem 13.5. There exists a “PRG” with exponential stretch which satisfies only (b) in the definition.

Proof. Choose a random G — for each s € {0,1}*, set G(s) to be a uniformly random string in {0, 1}".
Fix a circuit C of size at most m3. Suppose that Pr,y,, [C(r) = 1] = p, and let

Be = {re{0,1}™: C(r) =1}.

Note that the random variable
Xc = |{s € {0, 1} G(s) € B}

is the sum of 2¢ Bernoulli random variables equal to 1 with probability p. By the Chernoff bound,

Pr [|Xc - E[X¢]| > 626] < 26_(52€)2/3E[XC] = 26_(622)2/(3”'2[) < 26_622[/3.
5 < <

Now, the number of circuits with size at most m? is bounded from above by 23m° An application of the
union bound yields that

%r[for some C of size at most m?®, | X¢ — E[X¢]| > €2¢] < e (€2/3)+HIn2)(3m°+1),

For ¢ = 1/10, £ = 4logm, and sufficiently large m, the RHS is less than 1, so there exists some G that
satisfies (b) in the definition of a PRG. O

https://en.wikipedia.org/wiki/Boolean_circuit

Finally, is it possible to get a PRG with even larger (than 20(5)) stretch? The answer is no. Observe
that the distribution G(Uy) is supported on 2¢ strings. Hence, one can construct a circuit of size m x 2¢
that accepts exactly those strings which are in the support of G(Uy). This circuit distinguishes G(Uy) from
the uniform distribution U,,. In other words we cannot hope to fool all circuits of size m x 2¢. That
means, according to the above definition of a PRG, we must have m < 2¢/2. Hence, at best we can have an
exponential stretch in a PRG.

