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Definition 14.1 (Multiplicity code). Let F be a finite field of size at least n, α1, . . . , αn ∈ F. The message
set is {f ∈ F[x],deg f < k}. We map f to the n-dimensional vector M over Fs, where

(Mi)j = f (j)(αi) :=
∂j−1f

∂xj−1
(αi).

When talking about the derivative, we mean the syntactic derivative, which evaluates (on exponents of x)
exactly the same as ordinary derivatives in functions over R. One has to assume that the field characteristic
is large enough, so that derivatives do not become zero. Note that the messages are encoded in Fs, so errors
mean errors anywhere in an entire vector of derivatives.

The rate of this code is approximately k/ns, which is worse than in Reed-Solomon codes. The distance
however, jumps up to n− k−1

s
A unique decoding algorithm for the multiplicity is very similar to Berlekamp-Welch, and we omit the details.

Note that in contrast to Reed-Solomon codes, we can allow the degree of the polynomial to be more than n.

Theorem 14.2 (Neilsen ’01, Kopparty ’13, Guruswami-Wang ’14). For every ε > 0, for sufficiently large s,
univariate multiplicity codes are efficiently list decodable from fractional agreement k

ns + ε.

We can get arbitrarily close to the (hard) bound (!) – we cannot hope to get a degree k polynomial with
fewer than k datapoints. Further, this can be done with a constant list size, with the constant depending on
ε. This was shown by Kopparty, Saraf, Ron-Zewi, and Wootters in 2018.
The fraction of agreement here is k

sn + ε = Rate + ε. Compare this to what we had studied about Reed-

Solomon codes, where we only had
√

Rate (>> Rate).

The remainder of this section is dedicated to the proof of this theorem; we shall look at the version due
to Guruswami-Wang which gives a polynomial size list (instead of constant size).

The input to the algorithm is an s× n matrix Y . We wish to find all polynomials p of degree at most k
whose encoding has “large” agreement with Y . More precisely, there is a set T ⊆ [n] of size greater than t
such that for all i ∈ T and j ∈ [s],

p(j)(αi) = Yji.

Denote by L the set of polynomials p such that the above is true. We want t to be as small as possible.
Sticking with the Welch-Berlekamp idea, the proof/algorithm go as follows.

1. Find a nonzero (m+ 2)-variate polynomial

Q(x, z0, z1, . . . , zm) = z0A0(x) + z1A1(x) + · · ·+ zmAm(x)

such that

• deg(Ai) < D for some D we shall fix later,

• certain multiplicity constraints are satisfied, which we shall come up with later, and

• Q “explains” the given data: for every i ∈ [n], Q(αi, Y0,i, Y1,i, . . . , Ym,i) = 0; we want it to explain
the top m rows of the matrix.

2. Show that for all p ∈ L,
Q(x, p(x), p(1)(x), . . . , p(m)(x)) ≡ 0. (1)
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3. Find all low degree solutions to Q satisfying Equation (1). Note that we cannot rely on factoring for
this, and it is more complicated.

Set R(x) equal to the LHS of Equation (1) for some polynomial p, so it is

R(x) = A0p+A1p
(1) + · · ·+Amp

(m).

If Y and the encoding of p agree at αi, then R(αi) = 0.1 The multiplicity constraint means that we also
want the derivative of R to be zero at αi. We have

dR

dx
= A

(1)
0 p+A0p

(1) +A
(1)
1 p(1) +A1p

(2) + · · ·+A(1)
m p(m) +Amp

(m+1),

so if m < s,

0 =
dR

dx

∣∣∣∣
αi

= A
(1)
0 (αi)Y0,i +A0(αi)Y1,i +A

(1)
1 (αi)Y1,i +A1(αi)Y2,i + · · ·+A(1)

m (αi)Ym,i +Am(αi)Y(m+1),i.

So, at each i, the aforementioned multiplicity constraints correspond to about s−m−1 additional constraints
of the above form. That is, for each 0 ≤ ` ≤ s−m− 1, we put the constraint

0 =
d`R

dx`

∣∣∣∣∣
αi

=
∑̀
h=0

(
A

(`−h)
0 (αi)Yh,i

)
+
∑̀
h=0

(
A

(`−h)
1 (αi)Yh+1,i

)
+ · · ·+

∑̀
h=0

(
A(`−h)
m (αi)Yh+m,i

)
.

Now, we would like to set D in the first step such that it has a solution. There are Dm variables and
n(s−m− 1) constraints. So, we require Dm ≥ n(s−m− 1). Set

D =
n

m
(s−m).

Let us now look at step 2. For a given polynomial p(x) in L, the degree of R(x) is at most D + k − 1. To
ensure that R is identically zero, we need that t(s−m−1) ≥ D+k. This is sufficient because our constraints
imply that αi is a root of R(x) with multiplicity s −m − 1, for any i ∈ T . That means total t(s −m − 1)
roots for R(x), which is more than the degree D + k − 1. So, we need

t >
1

s−m
(D + k)

=
n

m
+

k

s−m
t

n
>

k

n(s−m)
+

1

m
.

Setting m as around 1/ε and s > 1/ε2 does the job!

Finally, it remains to see if it is possible to find all low degree solutions p to Q(x, p, p(1), . . . , p(m)(x)) ≡ 0.
That is, given polynomials A0(x), A1(x), . . . , Am(x), we wish to find p(x) satisfying

A0(x)p(x) +A1(x)p(1)(x) + · · ·+Am(x)p(m)(x) ≡ 0.

Note that this condition gives us a set of linear equations in the coefficients of p(x). One can show that the
solution space is at most m+ 1 dimensional.

For simplicity, let us look at just the trivariate case, with Q(x, p, p′) ≡ 0. That is,

A0(x)p(x) +A1(x)p(1)(x) +A2(x)p(2)(x) ≡ 0.

We may assume wlog that two of the Ais are nonzero, as the problem is not very interesting otherwise.
Suppose that A2 6≡ 0. This means that there exists some β ∈ F such that A2(β) 6= 0. We can assume wlog

1Stopping here would lead to unique decoding, by setting m as s or s− 1 or so.
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that β = 0 by “shifting” the axis by β otherwise. Dividing by a constant, we can also assume that the
constant term in A2 is 1, so

A0(x)p(x) +A1(x)p(1)(x) + (1 + xÃ2(x))p(2)(x) ≡ 0.

Let p we wish to find be of the form

p(x) = p0 + p1x+ p2x
2 + · · · pk−1xk−1.

Plugging this into the previous equation, we have

A0(x)(p0 + p1x+ · · · ) +A1(x)(p1 + 2p2x+ · · · ) + (1 + xÃ2(x))(2p2 + 3 · 2p3x+ · · · ) ≡ 0.

Now, we argue that the solution space is only of 2-dimension. To see this, consider the degree-0 terms in the
above expression.

A0,0p0 +A1,0p1 + 2p2 = 0.

This means that once we fix p0 and p1, the value of p2 is uniquely determined. Now, let us consider the
degree-1 terms.

A0,1p0 + (A0,0 +A1,1)p1 + (A1,0 +A2,1)2p2 + 6p3 = 0.

Once we have p0, p1, p2 fixed, p3 is also uniquely determined from the above equation. Hence, after fixing
p0, p1, every other coefficient in p(x) is uniquely determined. This proves that the solution space is 2-
dimensional.

In general, the solution space lives in an (m+1)-dimensional subspace. Because m depends on ε, we only
need to check the elements of the subspace, which numbers about |F|1/ε.
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