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In the previous lecture, we had said the following (after defining what a PRG is).
Theorem 15.1. If a 2°()-PRG exists, BPP = P.

Note that an m(¢)-PRG does not exist for m(¢) > 2¢/% (please refer to the definition of PRG in Lecture
13). Consider a PRG G : {0,1}¢ — {0,1}™®). We can always design small enough circuit that fools this
PRG. The circuit size will be 2¢. Consider a circuit C' that is 1 precisely at each point in {0,1}™® that is
in the image set of the PRG, and is 0 everywhere else. Then,

2(
Pr [C(r)=1]=1and Pr [O(r) =1 = —,
P (O =1=tad PriC)=1 =

which are clearly not within 1/10 of each other. Note that there is such a circuit C of size 2¢ (the number
of strings accepted by C). Since we require that the PRG should fool every circuit of size m3, we get that
2¢ > m3. Equivalently, m < 2¢/3.

While no PRGs are known that fool all circuits of size bounded by m(£)3, there are PRGs known under
more specific conditions on the circuit. For example, we can get a PRG that fools any randomized algorithm
that is log—spaceﬂ It is also known that there exist (non-trivial) PRGs which fool constant-depth circuits.

Now, what are circuit lower bounds? We had remarked in the previous lecture that they imply the
existence of PRGs.

Definition 15.2 (Worst-case hardness). For f : {0,1}" — {0,1}, its worst-case hardness H.opst(f) is
the largest number S such that for any circuit of size at most S, there exists some x € {0,1}" such that

C(x) # f(=).

In other words, we cannot compute a function correctly on all inputs, using a circuit of size any smaller
than its worst-case hardness. The implementation of the truth table yields that the worst-case hardness of
any function on n-bit inputs is at most about O(2").

Does there exist any function which is actually this hard? There are 22" functions from {0,1}" — {0,1},
and there are (about) S2° circuits of size at most S. Consequently, some functions do require an S of at
least about 2" /n. However, no such function is explicitly known — this is another huge open question! In
fact, the hardest explicit function we know has worst-case hardness just 3n — o(n).

Definition 15.3 (Average-case hardness). For f : {0,1}" — {0,1}, its average-case hardness Hg,q(f) is
the largest number S such that for any circuit of size S,
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Note that we can trivially get a circuit that is equal to f with probability > 1/2, setting it as either the
constant 0 or the constant 1 (depending on which value f takes more often).
Clearly, the average-case hardness of any function is at most the worst-case hardness.

Theorem 15.4 (Nisan-Wigderson). If there exists a function computable in time 200 with H ,,,(f) > 227/3,
then there exists a (2*/*5)-PRG and in particular, BPP = P.

1This does not make sense in our current framework, but it is possible to modify the definition of PRGs appropriately. In
this setting, we do not have exponential stretch, but we can go from Q(log2 m) to m. The question of whether RL = L is a huge
open question.



This links the worlds of algorithms (in the time complexity of f), circuits, and derandomization.

To go from just £ to £4 1, a logical idea is to use the hardness of the function to generate a new bit that is
difficult to predict given all the previous bits. That is, letting f : {0,1}¢ — {0, 1} be such that H,.(f) > ¢4,
G defined by

G(r)=(r1,...,re, f(r)) = (r, f(1))

is a PRG. That G is PRG is essentially equivalent to say that unpredictability implies indistinguishability.
This is precisely what Yao proved.

Theorem 15.5 (Yao (unpredictability implies indistinguishability)). Let D be a distribution on {0,1}™.
Suppose that for any ¢ and any circuit of size 2.5,

1
yEl;D[C(yl,...,yi) =yit1] < 3 +e.

Then, for any circuit B of size S,

JriBy) =1 DPr [Bly)=1]| <me.



