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We had stated the following at the end of the previous lecture.

Theorem 16.1 (Yao). Let D be a distribution on {0, 1}m. Suppose that for any i and any circuit of size
2S,

Pr
y∼D

[C(y1, . . . , yi) = yi+1] <
1

2
+ ε.

Then, for any circuit B of size S,∣∣∣∣ Pr
y∼D

[B(y) = 1]− Pr
y∼Um

[B(y) = 1]

∣∣∣∣ < mε.

Proof. We shall show the contrapositive of the statement. Let B be a circuit of size S such that

Pr
y∼D

[B(y) = 1]− Pr
y∼Um

[B(y) = 1] ≥ mε.

We remove the modulus because if the other inequality is true, we can instead consider the probability that
the output value is 0. Define a sequence of distributions D0, D1, . . . , Dm, where Di is obtained by drawing
x from D, and then replacing the last m− ii coordinates with draws from the uniform distribution. That is,
a draw is (y1, . . . , yi, zi+1, . . . , zm), where y ∼ D and z ∼ Um. Note that D0 = Um and Dm = D, and also
that Di and Di−1 differ only at the ith bit.
Let

Pi = Pr
r∼Di

[B(r) = 1].

Because Pm − P0 ≥ mε, there is some i such that Pi − Pi−1 ≥ ε.
We shall give an algorithm to predict yi given y1, . . . , yi−1 (for y ∼ D). Randomly draw z ∼ Um. If
B(y1, . . . , yi−1, zi, . . . , zm) = 1, then output zi, and if it is 0 then output 1− zi. For the sake of succinctness,
let x = (y1, . . . , yi−1, zi, . . . , zm). Now, the probability of success is

1

2

Pr[B(x) = 1 | yi = zi]︸ ︷︷ ︸
Pi

+ Pr[B(x) = 0 | yi = 1− zi]︸ ︷︷ ︸
(1−α), say


We have

Pi−1 = Pr[B(x) = 1] =
1

2
(Pr[B(x) = 1 | yi = zi] + Pr[B(x) = 1 | yi = 1− zi]) =

1

2
(Pi + α).

Therefore,

probability of success =
1

2
(Pi + 1− α) =

1

2
+ Pi − Pi−1 ≥

1

2
+ ε.

To get the final circuit C, note that on a random choice of z ∼ Um in our algorithm, we succeed with
probability at least (1/2) + ε. That is, the expected probability of success is at least (1/2) + ε. Therefore,
there exists some specific choice which gives a probability of success at least (1/2) + ε, which is precisely
what we want.

Let us now come to the proof of the Nisan-Wigderson result, which we restate.

Theorem 16.2 (Nisan-Wigderson). If there exists a function computable in time 2O(n) with Havg(f) ≥ 22n/3,
then there exists a (2`/45)-PRG and in particular, BPP = P.
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The idea is as follows. Inspired by the one-bit extension in the previous lecture, we would like to consider
a collection of subsets of [`], and apply a hard function f to each of them to get one extra bit to append. In
all, the number of bits we append is the number of subsets we choose. If we choose all subsets to be disjoint,
then the resulting new bits are completely independent of each other, but we do not get exponentially many
new bits. Therefore, we allow some small amount of intersection of the subsets, and thus some small amount
of correlation, without compromising the uncorrelation of the new bits by too much.

Definition 16.3. An (`, k, d)-combinatorial design is a collection I1, . . . , Ir ⊂ {1, 2, . . . , `} of size k subsets
such that for distinct i, j ∈ [r], |Ii ∩ Ij | ≤ d.

Proposition 16.4. For k = `/30, d = k/3, there exists an (`, k, d)-design of size at least 2d/10 ≥ 2`/900.

One can construct such a set by keep selecting random sets (each element selected independently with
probability say, 2k/`). One can argue that with good probability the generated sets all have size at least k
and their intersections at most d.

Proof of Nisan-Wigderson. Set ` = 900 log n, and k as from the above.
Fix some combinatorial design I = {I1, . . . , In} guaranteed by the above proposition, and let f : {0, 1}k →
{0, 1} be a hard function. Then, given z ∈ {0, 1}`, the final pseudorandom bits we output are f(zIr ) for each
r ∈ [n]. For simplicity, denote f(Ir) = f(zIr ).

Let f be computable in time 2O(k) and Havg(f) ≥ 22k/3. Denote the resulting PRG by NWf
I . We shall show

that NWf
I(U`) is (n20/2, 1/10)-pseudorandom.

Now, we shall use Yao, by showing unpredictability instead. That is, we are done if we show that for any
circuit C of size at most n20/2,

Pr
z∼U`

[
C(f(zI1), . . . , f(zIi−1

)) = f(zIi)
]
≤ 1

2
+
ε

n
,

where ε = 1/10.
Suppose otherwise, and let C be a circuit violating the above. Let z′ = z[`]\Ii , and z′′ = zIi . Let fj(z) =
f(zIj ) for each j. Then,

Pr
z∼U`

[C(f1(z′, z′′), . . . , fi−1(z′, z′′)) = f(z′′)] >
1

2
+
ε

n
.

By averaging argument we can say that there exists a fixing of z′ bits such that above probability does not
decrease (this was done in precisely the same way in Yao’s Theorem). We abuse notation to denote the new
functions by fj as well. Then,

Pr
z∼U`

[C(f1(z′′), . . . , fi−1(z′′)) = f(z′′)] >
1

2
+
ε

n
.

using this, we get a circuit for f that succeeds with probability at least (1/2) + ε
n (recall n = 2k/30).

The crucial observation here is that each fj(z
′′) uses at most d bits (because |Ii ∩ Ij | ≤ d). By taking

trivial circuits for each fj(z
′′), which are each of size at most about d2d, we get a circuit for f(z′′) of size

d2d2d/10 + 22d/2 ≤ 22d = n20, contradicting the hardness of f .
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