CS761 Derandomization and Pseudorandomness 2022-23 Sem 1

Lecture 17: 10-10-22

Scribe: Punna Hitesh Kumar Lecturer: Rohit Gurjar

From worst case hardness to average case hardness

In the last few lectures, we have seen that a function which is hard in average case can be used to design a
pseudorandom generator. We know that there exist functions which are exponentially hard in worst case.
But, do we even know existence of functions which are hard on average? In the next few lectures, we will
see that starting from a worst case hard function, we can construct an average case hard function. This
is known as amplifying hardness. That would mean that PRGs can be constructed from worst case hard
functions. The key idea that will be used is error correcting codes.

Definition 17.1. For a number p € (0,1) and function : f: {0,1}" — {0,1}, we define Hf,,(f) to be the
largest number S such that for any circuit C of size S,

ze{Poa}n[f(x) = C(I)] < p.

Note that the worst case hardness can be defined as H,.s(f) = H}, 4(f). In other words, the largest size
of circuits that do not compute f correctly on all inputs. Recall that we had defined average case hardness

Hog(f) as the largest S such that for any circuit of size S
Prycioay[Clz) = f(2)] <1/2+1/S.

Intuition. For any worst case hard function f: {0,1}"™ — {0,1}, consider the truth table of the function
which can be viewed as a 2" bit string. The idea is to apply an error correcting code on this 2" bit string and
obtain a possibly larger, say 22" bit string. Then view this new string as a function f’: {0,1}*" — {0,1}.
We would like to claim that f’ is hard on average case. Worst case hardness of f means that for any small
enough circuit C, the truth tables of f and C will disagree on at least one bit. If we apply an error correcting
codes on both the truth tables then we will get that the two encodings disagree on a significant fraction of
bits. In other words, f’ is computed incorrectly on a significant fraction of inputs by the ‘circuit’ C' (which
is obtained by encoding of C'). However, we want to show a stronger statement for any small enough circuit,
f’ is computed incorrectly on a significant fraction of inputs. Let’s try to argue this formally.

Let, E be the encoding function of a code where E : {0, 1}2" — {0, 1}2%. Let’s say the relative distance
of the code is A = 1/4. The new function f’: {0,1}*" — {0,1} is defined such that

truth-table(f’) = E(truth-table(f)).

Consider the contrapositive statement. Suppose there is a circuit B of size S on 2n-bit inputs, such that,
B(y) and f(y) agree on a large set (say 0.9 fraction of inputs) i.e., Prycqo,132»[B(y) = f(y)] = 0.9. Then we
need to show there is a circuit C of size poly(S) such that Pr,cio13[C(2) = f(z)] = 1.

How can we construct the circuit C' from B. From the property of the error correcting codes, we know
that given any string in {0, 1}22" which agrees with the codeword truth-table(f’) on a large fraction, we
can use the decoding algorithm to recover the ‘message’, which is the truth-table(f). Once we have the
truth-table for f, we can try to construct a circuit for f. The problem with this approach is that to decode,
one needs the whole 227 bit string (truth-table of B). And that means the circuit for f will be at least 227
times the size of B. To fix this issue, what we need is local decoding.



Local decoding. Instead of going through the entire encoded word, we will get to see only a few randomly
chosen locations in the word, and from that we will need to decode some part of the message.

Definition 17.2 (Local decoding). Let E be an encoding algorithm, E : {0,1}" — {0,1}. Encoding should
be doable in poly(N) time. A local decoder for handling p errors is an algorithm D, that given a random
access to a string y € {0, 1Y such that Ay, E(x)) < p for some x € {0,1}Y, and an index j € [1, N], runs
in time poly(log(M)) and outputs x; with probability at least 2/3.

Note that in particular, the above definition implies that a local decoding algorithm can see only
poly(log(M)) locations (can be randomly chosen) of the given codeword. Now, let us see how local de-
coding can help with amplifying hardness.

Theorem 17.3. Let D be a local decoder for handling p errors for encoding function E : {0,1}" — {0,1}M.

Suppose there is a function f: {0,1}"™ — {0,1} and f € E (exponential time computable) and Hyyrs(f) >

S(n). Then there exist € > 0 and there is f' € E (exponential time computable) on m-bits, such that
Hay 0 (f') = S(em)/ poly(m).

avg

Proof. Let N = 2™ and M = 2™. Define f’ such that
truth-table(f’) = E(truth-table(f)).
Let B be a circuit of size T such that Pr,[B(x) = f'(z)] > 1 — p. Equivalently,
A(truth-table(B), truth-table(f')) < p.

Hence, we can use the decoding algorithm D on truth-table(B) to recover a particular bit in truth-table(f).
Each time we compute B(y) for some y, we spend time T'. Since D runs in poly(log M)) time, the size of
the circuit C' computing f will be

T poly(log M)) = T poly(m).

Note that m = O(n). Now, using the hardness assumption on f will give us the desired result.

One important point to note is that the decoder algorithm D is randomized. To get a deterministic circuit
for f, we can simply say that there exist one good choice of random bits that ensures correct computation,
and just hardcode this choice in the circuit. But, that would mean we need the same choice of random bits
to work for every input = € {0,1}. To get this, first one needs to boost the success probability of the decoder
to very high (more than 1 —1/2™). And then apply union bound, to argue that there is a choice of random
bits that works for every x. O



