

Lecture 19: 17-10-2022

Scribe: Amit Rajaraman

Lecturer: Rohit Gurjar

In the last lecture, we saw that the relative distance of the Reed Muller code was $1 - d/|\mathbb{F}|$, when viewed as a code on alphabet \mathbb{F} . When viewed as a code on alphabet $\{0, 1\}$ however, this goes to $(1 - d/|\mathbb{F}|)/\log |\mathbb{F}|$. This issue of the relative distance being $o(1)$ cannot be fixed even by changing \mathbb{F}, ℓ, d .

To fix this, we will concatenate Reed-Muller code with another binary code. Let $x \in \mathbb{F}^{|\mathbb{F}|^\ell}$ be a codeword of the Reed-Muller code. For each coordinate $x_i \in \mathbb{F}$, we will view it as a binary string in $\{0, 1\}^{\log |\mathbb{F}|}$ and then apply a binary code $\{0, 1\}^{\log |\mathbb{F}|} \rightarrow \{0, 1\}^t$ on it.

This second code is the *Walsh-Hadamard code*, defined as follows. The encoding is a function $\text{WH} : \{0, 1\}^k \rightarrow \{0, 1\}^{2^k}$, where for each $S \subseteq [k]$, we have $(\text{WH}(x))_S = \bigoplus_{i \in S} x_i$.

We claim that the relative distance of this code is $1/2$. Indeed, any two strings differing on some r bits, their encodings will differ on precisely the coordinates corresponding to those subsets that contain an odd number of these r bits. The number of such subsets will be exactly $2^k/2$. Further, it turns out that the Walsh-Hadamard code is optimal.

Proposition 19.1. *Let $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$ be a code with $m < 2^n - 1$. Then, the relative distance of E is at most $1/2$.*

Proof sketch. Suppose instead that E is a function to $\{-1, 1\}^m$ (replacing 0 with -1) with relative distance $\Delta > (1/2)$. Note that $\langle f(x), f(y) \rangle < 0$ for any distinct $x, y \in \{0, 1\}^n$. The number of such vectors is at most $m + 1 < 2^n$ (see, for example, here) so we are done. \square

In fact, a similar argument can show that we cannot have an arbitrary size code with distance more than $1/2$. That is, for any constant δ more than $1/2$, there is a number m_0 such that any binary code with distance δ must have size at most m_0 .

In addition, the Walsh-Hadamard code is locally decodable. Given some corruption of the encoding $\text{WH}(x)$, we can consider sets of the form T and $T \cup \{i\}$, where $i \notin T$. Adding (XORing) the two bits $(\text{WH}(x))_T \oplus (\text{WH}(x))_{T \cup \{i\}}$ will give us x_i , in case these particular two bits are not corrupted. When there is corruption, we can just choose a bunch of random sets T and perform this same operation, taking the majority finally. Suppose the encoding $\text{WH}(x)$ has been corrupted in ρ fraction of coordinates. The probability that either of the $\text{WH}(x)_T$ and $\text{WH}(x)_{T \cup \{i\}}$ is corrupted is at most 2ρ (by union bound). Hence, we get the correct value of x_i with probability $1 - 2\rho$. The probability of success is more than half whenever $\rho < 1/4$. We can boost the probability by repetition.

In conclusion, our final code is $\text{WH}(\text{RM}(x))$.¹ Here, WH is a mapping from $\{0, 1\}^{\log |\mathbb{F}|} \rightarrow \{0, 1\}^{|\mathbb{F}|}$. The relative distance of this code is $(1/2)(1 - d/|\mathbb{F}|)$, which is $\Theta(1)$ for appropriate $d, |\mathbb{F}|$. We can handle an error fraction of $\rho \approx \Delta/2 \approx (1/4)$. For local decoding, one needs to combine the two local decoding algorithms for Reed-Muller and Walsh-Hadamard. One interesting thing is that due to the previous proposition, we cannot do better than $1/4$.

Now, we have gone from exponential H_{worst} to exponential $H_{\text{avg}}^{1-\rho}$, which in the limiting case is $H_{\text{avg}}^{3/4}$. How do we go from this to H_{avg} ? We do not delve into the details of this, but the main result used is the following.

Theorem 19.2 (Yao's XOR Lemma). *Given a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, define the function $\hat{f} : \{0, 1\}^{nk} \rightarrow \{0, 1\}$ defined by*

$$f(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k) = f(\bar{x}_1) \oplus f(\bar{x}_2) \oplus \dots \oplus f(\bar{x}_k),$$

where each \bar{x}_i is in $\{0, 1\}^n$.

If $\delta > 0$ and $\epsilon > 2(1 - \delta)^k$,

$$H_{\text{avg}}^{(1/2)+\epsilon}(\hat{f}) \geq \frac{\epsilon^2}{400n} H_{\text{avg}}^{1-\delta}(f).$$

¹mildly abusing notation to mean that we apply WH on a coordinate-by-coordinate basis to $\text{RM}(x)$.

Given a function with exponentially large $H_{\text{avg}}^{1-\delta}$, making ϵ appropriately exponentially small.

Alternatively, one way to go directly from H_{worst} to H_{avg} is to use *local list decoding*. List decoding allows us to go beyond error fraction $\Delta/2$, and in fact arbitrarily close to Δ . Hence, we can boost hardness to $H_{\text{avg}}^{1/2+\epsilon}$ for any $\epsilon > 0$.