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In the last lecture, we saw that the relative distance of the Reed Muller code was 1 — d/|F|, when viewed
as a code on alphabet F. When viewed as a code on alphabet {0, 1} however, this goes to (1 —d/|F|)/log |F|.
This issue of the relative distance being o(1) cannot be fixed even by changing F, ¢, d.

To fix this, we will concatenate Reed-Muller code with another binary code. Let z € FIF I be a codeword
of the Reed-Muller code. For each coordinate x; € F, we will view it as a binary string in {0, 1}'°8/Fl and
then apply a binary code {0, 1}°2lFl — {0,1}* on it.

This second code is the Walsh-Hadamard code, defined as follows. The encoding is a function WH :
{0,1}* — {0,1}2", where for cach S C [k], we have (WH(z))g = Dics i

We claim that the relative distance of this code is 1/2. Indeed, any two strings differing on some r bits,
their encodings will differ on precisely the coordinates corresponding to those subsets that contain an odd
number of these r bits. The number of such subsets will be exactly 2¥/2. Further, it turns out that the
Walsh-Hadamard code is optimal.

Proposition 19.1. Let E : {0,1}" — {0,1}™ be a code with m < 2™ — 1. Then, the relative distance of E
is at most 1/2.

Proof sketch. Suppose instead that E is a function to {—1,1}™ (replacing 0 with —1) with relative distance
A > (1/2). Note that (f(z), f(y)) < 0 for any distinct z,y € {0,1}". The number of such vectors is at most
m+ 1 < 2™ (see, for example, here) so we are done. O

In fact, a similar argument can show that we cannot have an arbitrary size code with distance more
than 1/2. That is, for any constant § more than 1/2, there is a number mg such that any binary code with
distance § must have size at most mg.

In addition, the Walsh-Hadamard code is locally decodable. Given some corruption of the encoding
WH(z), we can consider sets of the form 7" and T U {i}, where ¢ ¢ T. Adding (XORing) the two bits
(WH(z))r © (WH(2))rugsy will give us 2, in case these particular two bits are not corrupted. When there is
corruption, we can just choose a bunch of random sets T and perform this same operation, taking the majority
finally. Suppose the encoding WH(x) has been corrupted in p fraction of coordinates. The probability that
either of the WH(z)r and WH(x)pyu(,) is corrupted is at most 2p (by union bound). Hence, we get the
correct value of x; with probability 1 — 2p. The probability of success is more than half whenever p < 1/4.
We can boost the probability by repetition.

In conclusion, our final code is WH(RM(:U)) Here, WH is a mapping from {0, 1}!°¢ /¥l — {0, 1}/¥l. The
relative distance of this code is (1/2)(1 —d/|F|), which is ©(1) for appropriate d, |F|! We can handle an error
fraction of p &~ A/2 ~ (1/4). For local decoding, one needs to combine the two local decoding algorithms for
Reed-Muller and Walsh-Hadamard. One interesting thing is that due to the previous proposition, we cannot
do better than 1/4.

Now, we have gone from exponential Hyost to exponential H;\;c,”’, which in the limiting case is Hg’\{é .
How do we go from this to Haz? We do not delve into the details of this, but the main result used is the

following.
Theorem 19.2 (Yao’s XOR Lemma). Given a function f : {0,1}* — {0,1}, define the function f :
{0,1}™ — {0,1} defined by
f@L T2, 7)) = (@) @ f(T2) © - @ f(Tn),
where each T; is in {0,1}™.

If 6 >0 and € > 2(1 — 6)¥,
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Imildly abusing notation to mean that we apply WH on a coordinate-by-coordinate basis to RM(z).



https://mathoverflow.net/questions/31436/largest-number-of-vectors-with-pairwise-negative-dot-product

Given a function with exponentially large H ;V_g‘57 making € appropriately exponentially small.

Alternatively, one way to go directly from Hyorst t0 Hayg is to use local list decoding. List decoding allows
us to go beyond error fraction A/2, and in fact arbitrarily close to A. Hence, we can boost hardness to

H;\{g%e for any € > 0.



