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Lemma 21.1 (Isolation Lemma). Let E be a set of m elements and S C 2 be an arbitrary family of subsets
of E. Independently and uniformly randomly assign to each element of E a weight in {1,2,...,N}. Then,

Pr[S has a unique minimum weight set] > 1 — %,

where the weight of a set is the sum of the weights of the elements in it.

We get the desired result in the context of matchings on setting E to be the set of edges and S to be the
collection of perfect matchings.

Proof. Let E = {e1,...,em}. Split S into two parts Sp, Sy, where S = {T'€ S:e; € T} and §; = S\ Sp.
Let us look at the event £ that there is both a minimum weight set that contains e; and a minimum weight
set that does not contain e;. This means that the weights of the minimum weight sets in S and S; are
equal.

What happens if we fix the weights of all elements other than e;? The minimum weight in Sp is determined,
and the minimum weight in S is just equal to some fixed quantity plus the weight of e;. In particular, there
is at most one value of w(e;) such that the two minimum weights are equal. Therefore, Pr[f] < 1/N. In
general, taking the union bound, we have

Prlthere exist two minimum weight sets]

=Pr U there exist minimum weight sets containing e; and not containing e¢; | < —.
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Later, it was proved that the above probability bound can be improved to (1 — —)
The isolation lemma has several surprising applications, for example that UNIQUE- SATEI is NP-hard.

We next look at derandomization. We cannot derandomize the isolation lemma in all its generality, but
we can for specific families that have some structure.
For example, this is very easy for spanning trees and it suffices to assign distinct weights to all edges. Our
main goal is that of derandomizing isolation lemma for bipartite perfect matching. We will only be able to
derandomize it to O(log2 n) random bits unfortunately, which is equivalent to giving nOogn) weight assign-
ments with the assurance that one of them gives a minimum weight matching.

The high-level view of the proof is the following.

The weight construction is done in logn rounds. We start off with some huge (exponentially large) family
of perfect matchings. We then come up with some weight function such that the set of perfect matchings of
minimum weight is comparatively smaller. We then come up with another weight function (with about logn
bits) to break ties among these minimum weight perfect matchings and make the set even smaller. Further,
we ensure that the older non-minimum weight matchings do not suddenly enter this family by appending the
bits of the new weight function to the bits of the previous weight function. After repeating this, we finally
arrive at a weight configuration such that there is only one minimum weight matching. Each of these bit
sequences we append are logn bits, and because there are logn rounds we end at log® n bits in all.

IThis is SAT, except that we know that if there is a satisfying assignment, it is unique.



As before, let the edges be eq,...,en.

For starters, observe that if w(e;) = 2¢ for all 4, then all subsets have distinct weights.

Let Mj, My be two minimum weight perfect matchings. Observe that M; U Ms is a union of cycles (and
possibly isolated edges contained in both M, M3). Further, each cycle in M; U Ms has zero “alternating
weight”. This is the difference of the sum of all “odd” edges in the cycle and the sum of all “even” edges in
the cycle. Indeed, if we instead had that the M; sum was greater than the My sum, we could switch out the
edges in the cycle in M; for edges in the cycle in M5 to get a matching of weight strictly less than that of
My, yielding a contradiction. Below we have a much stronger version of this fact.

Lemma 21.2. Let E' C E be the union of all minimum weight perfect matchings. Then, each cycle in
G = (V, E’) is has zero alternating weight.

Corollary 21.3. If w is a weight assignment such that a cycle C' has nonzero alternating weight, then the
union of minimum weight perfect weight matchings (with respect to w) does not contain C.

The above corollary is the key idea. For a suitable weight assignment on a cycle, we can get rid of at
least one edge in the cycle, and this ensures that all matchings containing that edge are rid of. Our goal
then is to maximize the number of edge-disjoint cycles in the graph.

Given a cycle C and a weight assignment w, let aw(C) be the alternating weight of C' under w.

Proposition 21.4. Let Cy,...,Cy be an arbitrary collection of cycles. Then, for some j € {1,2,...,m?k},
the weight function defined by w(e;) = 2° (mod j) for each i assigns a nonzero alternating weight to every
cycle C,.

Proof. We would like to show that for some j, j is not a factor of the product aw(Cy)aw(Cy) - --aw(Cy).
This product is at most om’k, Recalling that the lecm of the first n numbers is greater than 2" for sufficiently
large n, we have that 2™°F is less than the lem of [m2k], so there is some number in [m2k] that does not
divide the product. O

Note that the list of weight assignments we give as above does not require knowledge of which cycles we
are working with. That is, if we have polynomially many cycles, we can give a polynomially large list of
weight assignments with the guarantee that one of these assignments removes all the cycles.



