
CS761 Derandomization and Pseudorandomness 2022-23 Sem I

Lecture 21: 27-10-2022
Scribe: Amit Rajaraman Lecturer: Rohit Gurjar

Lemma 21.1 (Isolation Lemma). Let E be a set of m elements and S ⊆ 2E be an arbitrary family of subsets
of E. Independently and uniformly randomly assign to each element of E a weight in {1, 2, . . . , N}. Then,

Pr [S has a unique minimum weight set] ≥ 1− m

N
,

where the weight of a set is the sum of the weights of the elements in it.

We get the desired result in the context of matchings on setting E to be the set of edges and S to be the
collection of perfect matchings.

Proof. Let E = {e1, . . . , em}. Split S into two parts S0,S1, where S0 = {T ∈ S : e1 ∈ T} and S1 = S \ S0.
Let us look at the event E that there is both a minimum weight set that contains e1 and a minimum weight
set that does not contain e1. This means that the weights of the minimum weight sets in S0 and S1 are
equal.
What happens if we fix the weights of all elements other than e1? The minimum weight in S1 is determined,
and the minimum weight in S0 is just equal to some fixed quantity plus the weight of e1. In particular, there
is at most one value of w(e1) such that the two minimum weights are equal. Therefore, Pr[E ] ≤ 1/N . In
general, taking the union bound, we have

Pr[there exist two minimum weight sets]

= Pr

 ⋃
i∈[m]

there exist minimum weight sets containing ei and not containing ei

 ≤ m

N
.

Later, it was proved that the above probability bound can be improved to
(
1− 1

N

)m
.

The isolation lemma has several surprising applications, for example that UNIQUE-SAT1 is NP-hard.

We next look at derandomization. We cannot derandomize the isolation lemma in all its generality, but
we can for specific families that have some structure.
For example, this is very easy for spanning trees and it suffices to assign distinct weights to all edges. Our
main goal is that of derandomizing isolation lemma for bipartite perfect matching. We will only be able to
derandomize it to O(log2 n) random bits unfortunately, which is equivalent to giving nO(logn) weight assign-
ments with the assurance that one of them gives a minimum weight matching.

The high-level view of the proof is the following.
The weight construction is done in log n rounds. We start off with some huge (exponentially large) family
of perfect matchings. We then come up with some weight function such that the set of perfect matchings of
minimum weight is comparatively smaller. We then come up with another weight function (with about log n
bits) to break ties among these minimum weight perfect matchings and make the set even smaller. Further,
we ensure that the older non-minimum weight matchings do not suddenly enter this family by appending the
bits of the new weight function to the bits of the previous weight function. After repeating this, we finally
arrive at a weight configuration such that there is only one minimum weight matching. Each of these bit
sequences we append are log n bits, and because there are log n rounds we end at log2 n bits in all.

1This is SAT, except that we know that if there is a satisfying assignment, it is unique.
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As before, let the edges be e1, . . . , em.
For starters, observe that if w(ei) = 2i for all i, then all subsets have distinct weights.
Let M1,M2 be two minimum weight perfect matchings. Observe that M1 ∪M2 is a union of cycles (and
possibly isolated edges contained in both M1,M2). Further, each cycle in M1 ∪M2 has zero “alternating
weight”. This is the difference of the sum of all “odd” edges in the cycle and the sum of all “even” edges in
the cycle. Indeed, if we instead had that the M1 sum was greater than the M2 sum, we could switch out the
edges in the cycle in M1 for edges in the cycle in M2 to get a matching of weight strictly less than that of
M1, yielding a contradiction. Below we have a much stronger version of this fact.

Lemma 21.2. Let E′ ⊆ E be the union of all minimum weight perfect matchings. Then, each cycle in
G = (V,E′) is has zero alternating weight.

Corollary 21.3. If w is a weight assignment such that a cycle C has nonzero alternating weight, then the
union of minimum weight perfect weight matchings (with respect to w) does not contain C.

The above corollary is the key idea. For a suitable weight assignment on a cycle, we can get rid of at
least one edge in the cycle, and this ensures that all matchings containing that edge are rid of. Our goal
then is to maximize the number of edge-disjoint cycles in the graph.
Given a cycle C and a weight assignment w, let aw(C) be the alternating weight of C under w.

Proposition 21.4. Let C1, . . . , Ck be an arbitrary collection of cycles. Then, for some j ∈ {1, 2, . . . ,m2k},
the weight function defined by w(ei) = 2i (mod j) for each i assigns a nonzero alternating weight to every
cycle Cr.

Proof. We would like to show that for some j, j is not a factor of the product aw(C1) aw(C1) · · · aw(Ck).

This product is at most 2m
2k. Recalling that the lcm of the first n numbers is greater than 2n for sufficiently

large n, we have that 2m
2k is less than the lcm of [m2k], so there is some number in [m2k] that does not

divide the product.

Note that the list of weight assignments we give as above does not require knowledge of which cycles we
are working with. That is, if we have polynomially many cycles, we can give a polynomially large list of
weight assignments with the guarantee that one of these assignments removes all the cycles.
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