CS761 Derandomization and Pseudorandomness 2022-23 Sem 1

Lecture 3: 09/08/22

Scribe: Raj Aryan Agrawal Lecturer: Rohit Gurjar

Pairwise Independence

Definition 3.1 (Pairwise Independence). Let X1, Xo,..., X, be random wvariables such that for any i,j
1 # j, we have
Va, B Pr(X; = o|X; = 8) = Pr(X; = a)

Or we can write it as

Pr(X; =a,X; =) = Pr(X; = a)Pr(X; = j3)

This can be extended to k-wise independence.
Notation: We will use X € S to denote that the random variable X is chosen uniformly randomly
from S.

Claim 3.2. Choose X1 € {0,1} and X5 € {0,1} and set X3 = X1 ® Xy (where & is the XOR operation).
Then the variables X1, X9, X3 are pairwise independent.

To see the claim verify that Pr(X3 = a|X; =) = 1/2 for ¢ = 1,2 and for any «, 8 € {0, 1}.

Max Cut Problem

Problem 3.3 (Max Cut Problem). Given a graph G = (V, E), the maz cut problem is to find a partition of
V = AU B such that
|{(’U1,U2) ek | v € A, Vg € B}|

s maximized.

That is, we need to find a cut with the maximum number of cut edges. The problem is known to be NP-
hard, so we don’t expect an efficient algorithm that gives an exact answer. Let us see a simple randomized
algorithm that gives a good approximation.

Randomized (1/2)-Approximation Algorithm

Algorithm 3.4. For each vertex v € V, put it in set S with probability 1/2, independently. Then the set of
cross edges is

6(5) ={(w,v)|lu € S,v ¢ S}
The partition is then S and V — S.

Claim 3.5. In expectation, this algorithm gives the size of the cut within 1/2 approzimation of the mazimum

cut. That is
MaxCut

BlI3(S)) = =

Proof. For each edge e € F, define

0 otherwise

Xe:{l if e €d8(S)

First, let us note that Pr[X, = 1] = 1/2 because for any edge, its two endpoints will fall into different parts
with probability 1/2. Hence, E[X.] = 1/2. Now, the expected number of cross edges would be

E[6(S)1 =E

E
er] =) EX]=) 1/2="

eckE eckE ecE

by using linearity of expectation. Since MaxCut < |E|, we have

Efja(s)]) > 1

O

Question. In the above analysis, have we really used the fact that the vertices were put in S independently
of each other? The answer is no. Linearity of expectation certainly does not need any kind of independence
assumption. So, the only crucial part is to find the probability Pr[X. = 1] = 1/2. This probability will be
1/2, as long as the two endpoints fall in S randomly and independently of each other. In other words, we
only need that any two vertices are independent of each other. We do not need complete independence. And
that’s exactly pairwise independence.

Here is a modified algorithm.

Algorithm 3.6. Generate n pairwise independent random bits, say by, ba, ..., b,. Put the ith vertex in S if
and only if b; = 1.

The advantage is that to generate n pairwise independent bits, we need much fewer random bits than n.
Let’s see one such generation procedure.

Generating pairwise independent bits

The idea is inspired from the XOR example seen above.

Algorithm 3.7. Take k independent random bits by, bo, ..., by, we can generate 28 — 1 random variables
defined as, VS C {1,2,...,k}, S # ¢, define

bs = P bs

€S
The correctness of the construction can be seen by the below 2 propositions
Proposition 3.8. Pribg =1 =1 VS C {1,2,... k}.
Proposition 3.9. For any S # T and for any o, 3 € {0,1}, Prlbs = a | by =] = 3

For the latter, we can argue that if we fix all bits of T', we still have some bits in S which are randomly
set, which gives probability of 1/2. This argument only works when S € T. If S C T, then we will argue
that b is independent of bg, which is equivalent to saying that bg is independent of bp.

Thus our algorithm can run using only log |V| number of random bits. Now, we will use this fact crucially
to make the algorithm completely deterministic. The idea is that any randomized algorithm using k bits
can be simulated deterministically with a 2* blow up in the running time.

Deterministic Algorithm

Algorithm 3.10. Enumerate over all choices of (by,ba,...,by) € {0,1}10"5"/‘, and for each choice, and
assign the vertices according to the random bits {by} YT C {0,1}1°8IV],

That is, we have 2'°¢!Vl = |V| many choices for (b1, bs,...,by) and thus, we have the same number of
partitions. The guarantee we have is that the expectation of the cut-set size over these |V| many partitions
is at least |E|/2. In particular, one of these partitions will have cut-set size at least |E|/2. Note that this
deterministic algorithm does not even look at the input graph. It is just going over a pre-determined small
set of partitions and one of them is guaranteed to be large enough.

The following example will be helpful. Suppose |V| = 8. Then we will take three bits by, by, b3, and go
over all 8 possibilities for them. For each fixing of by, bs, b3, we will generate the following 8 bits:

0,b1,b2,b3,b1 @ b2, by @ b3, b1 D b3, by D by D bs.

These eight bits will determine which vertex goes to which part. The following table describes different

partitions of vertices we will go over. The vertices are indexed as vg, v1, ..., v7.

Vg | V1 | V2 | U3 Vg Us V6 vr

0 b1 bg b3 b1 D b2 b2 D b3 bl D bg b1 D b2 D b3 Partition
olololo 0 0 0 0 {vo, v1,v2,v3, 04,05, v6,v7} U @
01010 1 0 1 1 {vo,v2,v3,v5} U {v1,v4, 06,07}
0lo0|11]0 1 1 0 1 {vo,v1,v3,v6} U {v2,v4,v5, 07}
00011 0 1 1 1 {vo, v1, v, v4} U {vs, 5, 6,07}
Ol 1|11/0 0 1 1 0 {vo,v3,v4,v7} U {v1,v2, 05,06}
010111 1 0 1 0 {vo,v1,v5,v7} U {va, v3, 04,6}
0101 1 1 0 0 {vo, va, vg, v7} U {v1, v3, 04,05}
01|11 0 0 0 1 {vo,v3,v4,v5} U {v1,v2,v3, 07}

Our guarantee is that no matter what the graph is on 8 vertices, one of the above 8 partitions will have at
least |E|/2 cut edges.

We have seen that using logn independent random bits, we can generate n pairwise independent bits. Is
this optimal? Can we do the same using a small number of random bits? It turns out that logn is indeed
the optimal.

Proposition 3.11. For any sequence of n pairwise independent random bits, the sample space size must be
at least n.

We will prove this in the next lecture.

Pairwise Independent Variables

Suppose we want to construct random variables which are not bits, but have a larger sample space. Can
we still generate pairwise independent random variables. It will be convenient to see the sample space as a
finite field. We will construct n random variables X1, Xo,...,X,, € F for a finite field F and n = |F|. We
want that,

Va € F,Vi Pr(X; = a) = ﬁ
and 1
Vo, € F.Vij PriXi=a,X; = 8) = 5

Claim 3.12. Choose k independent random values by, bs, ..., b €r F. Define for any S € {1,2,...,k}

bS:Zbi

i€S

The summation is over the field. Th random variables {bs : S C {1,2,...,k}, S # ¢} are pairwise indepen-
dent.

The argument for this is the same as before. Remember that we had used @ for bits, which is simply the
addition operation in GF(2). Thus, our seed length is roughly logn - log |F|. Also, it is not clear if we can
generalize this construction to k-wise independence. We will discuss a different construction which easily
generalizes to k-wise independence and also has a better seed length.

Claim 3.13. Randomly choose a,b €r F and then generate the following random variables
{az+b:zecF}.
These |F| random variables are pairwise independent.

To generalize to k-wise independence, we would use degree k — 1 polynomial. We will discuss in the next
lecture.

