

Pairwise Independence

Definition 3.1 (Pairwise Independence). *Let X_1, X_2, \dots, X_n be random variables such that for any i, j $i \neq j$, we have*

$$\forall \alpha, \beta \Pr(X_i = \alpha | X_j = \beta) = \Pr(X_i = \alpha)$$

Or we can write it as

$$\Pr(X_i = \alpha, X_j = \beta) = \Pr(X_i = \alpha) \Pr(X_j = \beta)$$

This can be extended to k-wise independence.

Notation: We will use $X \in_R S$ to denote that the random variable X is chosen uniformly randomly from S .

Claim 3.2. *Choose $X_1 \in_R \{0, 1\}$ and $X_2 \in_R \{0, 1\}$ and set $X_3 = X_1 \oplus X_2$ (where \oplus is the XOR operation). Then the variables X_1, X_2, X_3 are pairwise independent.*

To see the claim verify that $\Pr(X_3 = \alpha | X_i = \beta) = 1/2$ for $i = 1, 2$ and for any $\alpha, \beta \in \{0, 1\}$.

Max Cut Problem

Problem 3.3 (Max Cut Problem). *Given a graph $G = (V, E)$, the max cut problem is to find a partition of $V = A \cup B$ such that*

$$|\{(v_1, v_2) \in E \mid v_1 \in A, v_2 \in B\}|$$

is maximized.

That is, we need to find a cut with the maximum number of cut edges. The problem is known to be NP-hard, so we don't expect an efficient algorithm that gives an exact answer. Let us see a simple randomized algorithm that gives a good approximation.

Randomized (1/2)-Approximation Algorithm

Algorithm 3.4. *For each vertex $v \in V$, put it in set S with probability $1/2$, independently. Then the set of cross edges is*

$$\delta(S) = \{(u, v) \mid u \in S, v \notin S\}.$$

The partition is then S and $V - S$.

Claim 3.5. *In expectation, this algorithm gives the size of the cut within $1/2$ approximation of the maximum cut. That is*

$$E[|\delta(S)|] \geq \frac{\text{MaxCut}}{2}$$

Proof. For each edge $e \in E$, define

$$X_e = \begin{cases} 1 & \text{if } e \in \delta(S) \\ 0 & \text{otherwise} \end{cases}$$

First, let us note that $\Pr[X_e = 1] = 1/2$ because for any edge, its two endpoints will fall into different parts with probability $1/2$. Hence, $\mathbb{E}[X_e] = 1/2$. Now, the expected number of cross edges would be

$$\mathbb{E}[|\delta(S)|] = \mathbb{E} \left[\sum_{e \in E} X_e \right] = \sum_{e \in E} \mathbb{E}[X_e] = \sum_{e \in E} 1/2 = \frac{|E|}{2}$$

by using linearity of expectation. Since $\text{MaxCut} \leq |E|$, we have

$$\mathbb{E}[|\delta(S)|] \geq \frac{\text{MaxCut}}{2}$$

□

Question. In the above analysis, have we really used the fact that the vertices were put in S *independently* of each other? The answer is no. Linearity of expectation certainly does not need any kind of independence assumption. So, the only crucial part is to find the probability $\Pr[X_e = 1] = 1/2$. This probability will be $1/2$, as long as the two endpoints fall in S randomly and *independently* of each other. In other words, we only need that any two vertices are independent of each other. We do not need complete independence. And that's exactly pairwise independence.

Here is a modified algorithm.

Algorithm 3.6. Generate n pairwise independent random bits, say b_1, b_2, \dots, b_n . Put the i th vertex in S if and only if $b_i = 1$.

The advantage is that to generate n pairwise independent bits, we need much fewer random bits than n . Let's see one such generation procedure.

Generating pairwise independent bits

The idea is inspired from the XOR example seen above.

Algorithm 3.7. Take k independent random bits b_1, b_2, \dots, b_k , we can generate $2^k - 1$ random variables defined as, $\forall S \subseteq \{1, 2, \dots, k\}$, $S \neq \emptyset$, define

$$b_S = \bigoplus_{i \in S} b_i$$

The correctness of the construction can be seen by the below 2 propositions

Proposition 3.8. $\Pr[b_S = 1] = \frac{1}{2} \ \forall S \subseteq \{1, 2, \dots, k\}$.

Proposition 3.9. For any $S \neq T$ and for any $\alpha, \beta \in \{0, 1\}$, $\Pr[b_S = \alpha \mid b_T = \beta] = \frac{1}{2}$

For the latter, we can argue that if we fix all bits of T , we still have some bits in S which are randomly set, which gives probability of $1/2$. This argument only works when $S \not\subseteq T$. If $S \subset T$, then we will argue that b_T is independent of b_S , which is equivalent to saying that b_S is independent of b_T .

Thus our algorithm can run using only $\log |V|$ number of random bits. Now, we will use this fact crucially to make the algorithm completely deterministic. The idea is that any randomized algorithm using k bits can be simulated deterministically with a 2^k blow up in the running time.

Deterministic Algorithm

Algorithm 3.10. Enumerate over all choices of $(b_1, b_2, \dots, b_k) \in \{0, 1\}^{\log |V|}$, and for each choice, and assign the vertices according to the random bits $\{b_T\} \forall T \subseteq \{0, 1\}^{\log |V|}$.

That is, we have $2^{\log |V|} = |V|$ many choices for (b_1, b_2, \dots, b_k) and thus, we have the same number of partitions. The guarantee we have is that the expectation of the cut-set size over these $|V|$ many partitions is at least $|E|/2$. In particular, one of these partitions will have cut-set size at least $|E|/2$. Note that this deterministic algorithm does not even look at the input graph. It is just going over a pre-determined small set of partitions and one of them is guaranteed to be large enough.

The following example will be helpful. Suppose $|V| = 8$. Then we will take three bits b_1, b_2, b_3 , and go over all 8 possibilities for them. For each fixing of b_1, b_2, b_3 , we will generate the following 8 bits:

$$0, b_1, b_2, b_3, b_1 \oplus b_2, b_2 \oplus b_3, b_1 \oplus b_3, b_1 \oplus b_2 \oplus b_3.$$

These eight bits will determine which vertex goes to which part. The following table describes different partitions of vertices we will go over. The vertices are indexed as v_0, v_1, \dots, v_7 .

v_0	v_1	v_2	v_3	v_4	v_5	v_6	v_7	Partition
0	b_1	b_2	b_3	$b_1 \oplus b_2$	$b_2 \oplus b_3$	$b_1 \oplus b_3$	$b_1 \oplus b_2 \oplus b_3$	
0	0	0	0	0	0	0	0	$\{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \cup \phi$
0	1	0	0	1	0	1	1	$\{v_0, v_2, v_3, v_5\} \cup \{v_1, v_4, v_6, v_7\}$
0	0	1	0	1	1	0	1	$\{v_0, v_1, v_3, v_6\} \cup \{v_2, v_4, v_5, v_7\}$
0	0	0	1	0	1	1	1	$\{v_0, v_1, v_2, v_4\} \cup \{v_3, v_5, v_6, v_7\}$
0	1	1	0	0	1	1	0	$\{v_0, v_3, v_4, v_7\} \cup \{v_1, v_2, v_5, v_6\}$
0	0	1	1	1	0	1	0	$\{v_0, v_1, v_5, v_7\} \cup \{v_2, v_3, v_4, v_6\}$
0	1	0	1	1	1	0	0	$\{v_0, v_2, v_6, v_7\} \cup \{v_1, v_3, v_4, v_5\}$
0	1	1	1	0	0	0	1	$\{v_0, v_3, v_4, v_5\} \cup \{v_1, v_2, v_3, v_7\}$

Our guarantee is that no matter what the graph is on 8 vertices, one of the above 8 partitions will have at least $|E|/2$ cut edges.

We have seen that using $\log n$ independent random bits, we can generate n pairwise independent bits. Is this optimal? Can we do the same using a small number of random bits? It turns out that $\log n$ is indeed the optimal.

Proposition 3.11. *For any sequence of n pairwise independent random bits, the sample space size must be at least n .*

We will prove this in the next lecture.

Pairwise Independent Variables

Suppose we want to construct random variables which are not bits, but have a larger sample space. Can we still generate pairwise independent random variables. It will be convenient to see the sample space as a finite field. We will construct n random variables $X_1, X_2, \dots, X_n \in \mathbb{F}$ for a finite field \mathbb{F} and $n = |\mathbb{F}|$. We want that,

$$\forall \alpha \in \mathbb{F}, \forall i \Pr(X_i = \alpha) = \frac{1}{|\mathbb{F}|}$$

and

$$\forall \alpha, \beta \in \mathbb{F}, \forall i, j \Pr(X_i = \alpha, X_j = \beta) = \frac{1}{|\mathbb{F}|^2}$$

Claim 3.12. *Choose k independent random values $b_1, b_2, \dots, b_k \in_R \mathbb{F}$. Define for any $S \subseteq \{1, 2, \dots, k\}$*

$$b_S = \sum_{i \in S} b_i$$

The summation is over the field. The random variables $\{b_S : S \subseteq \{1, 2, \dots, k\}, S \neq \phi\}$ are pairwise independent.

The argument for this is the same as before. Remember that we had used \oplus for bits, which is simply the addition operation in $GF(2)$. Thus, our seed length is roughly $\log n \cdot \log |\mathbb{F}|$. Also, it is not clear if we can generalize this construction to k -wise independence. We will discuss a different construction which easily generalizes to k -wise independence and also has a better seed length.

Claim 3.13. *Randomly choose $a, b \in_R F$ and then generate the following random variables*

$$\{az + b : z \in \mathbb{F}\}.$$

These $|\mathbb{F}|$ random variables are pairwise independent.

To generalize to k -wise independence, we would use degree $k - 1$ polynomial. We will discuss in the next lecture.