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1 A lower bound for pairwise independence

We have seen that we can generate n pairwise independent random bits by using O(logn) independent
random bits. We will now argue that it is optimal.

Claim 4.1. Suppose there is a (deterministic) generator Gen : {0,1}* — {0,1}" that takes k truly random
bits as input and generates n pairwise random bits then we must have 28 > n i.e., k > logn.

Proof. Consider a 2F x n matrix G defined as follows: for a k-bit string s, the corresponding row of the
matrix G is Gen(s). In other words, the output of the algorithm Gen comes uniformly randomly among the
rows of G. We know that the ith output bit of Gen is 0 or 1 with probability 1/2. This means
1) For any 1 <4 < n, the ith column of G should have 2¥ /2 of its entries as 1 and remaining as 0.
Pairwise independence tells us that for any i # j,

Pr[ith output bit = 0, jth output bit = 0] = 1/4.

Hence,
2) when we put ith and jth column together, we should see:

e 00 occurs 2% /4 times
e 01 occurs 2 /4 times
e 10 occurs 2¥ /4 times
e 11 occurs 2¥/4 times.

Now using this pattern, we will argue that the rank of matrix G is at least n, but we also know that rank
of matrix G can be at most the number rows in it, i.e, 2¥. This will prove 2¥ > n, as desired.

Approach 1 The key Idea is to Replace 1, 0 with 1, -1. Then for any i # j, the inner Product of the ith
and jth column will be equal to

2k /4(1 x 1) + 27 /4(1 x —1) + 2% /4(—1 x —1) + 2% /4(—1 x 1) = 0.

This Implies that any pair of columns in G are orthogonal, i.e., we have n orthogonal vectors. That means,
these n vectors must be linearly independent. Hence, rank(G) > n.

Approach 2 (suggested by Amit Rajaraman) Consider the matrix product GTG. Observe that the
ith diagonal entry of GTG will be simply the the number of 1s in the ith column of G, which is 2¥~!. And
for any i # 7, the (i,7) entry of GT G will be the number of common 1s in the ith and jth columns, which
is 2F=2. Hence,

GTG =2""2(I, + J,,)

where I,, is the identity matrix and J,, is the all 1s matrix of size n x n. One can verify that this matrix has
rank n. This implies that G must have rank at least n. O

Now, we will see a construction for pairwise independence different from the previous lecture. This
construction will naturally generalize to k-wise independence, for any k.



2 An algebraic construction of pairwise independence
Let F is a field of size q. Choose two elements a,b € F, uniformly randomly. Then consider the set
{ax+b: 2z € F}

We claim that these ¢ random variables are pairwise independent.

Example. Let F be of size 3. That is, the elements {0, 1,2} with (mod 3) addition and multiplication.
We choose a,b € F randomly. b,a + b,2a + b will be the three different values generated. The below table
gives the values of these three random variables for various choices of a and b

a|bl| b|at+b | 2a+b
0010 0 0
0|1} 1 1 1
0| 2] 2 2 2
1101 0 1 2
1711 2 0
11214 2 0 1
21010 2 1
21111 0 2
2121 2 1 0

Now, observe from the table that if, for example, we fix a + b to 1 then 2a + b is equally likely to be
0,1 or 2. Similarly, if we fix 2a + b to 0 then b is equally likely to be 0,1 or 2. One can verify the pairwise
independence from the table. Note that the three variables are not completely independent. If you fix two
of them, say for example, b and a + b then the third variable 2a + b gets fixed.

Proof of pairwise independence. First let us show that each variable is uniformly distributed. That is, for
any z € F, « € F we have

Prlaz+b=0a] =1/q

a,b
Here the probability is over the choice of a and b from F and ¢ = |F|. To see the above probability observe
that for any fixing of a, there is a unique b that gives az +b = . So, out of ¢* choices of (a,b), exactly ¢ of
them give ax + b = «. Hence, the 1/¢ probability.

Now, we will argue pairwise independence. For any x # y € F, and «, 8 € F, we want to show

Pg[ax+b:aanday+b:ﬁ]:1/q2

Que. How many tuples (a,b) will satisfy ax +b=a and ay+b=p"7
For any given z # y and «, 3, there will be a unique solution for (a,b). This is given by

a=(a—p)(zr—y) " and b= (br—ay)(z—y)"".

Thus, the Probability will be 1/¢?
[

Comparison with construction 1 from the previous lecture. Here, we generated ¢ many random
variables Ry, Ra, ..., R, taking values from IF. Thus, each of these random variables can be viewed as log g
random bits. If we want to generate these using construction 1 (xor of each possible subset), then we should
generate log ¢ independent instances of ¢ pairwise independent random bits. The ith bits of Ry, Ra,..., Ry
will come from the ith instance of ¢ pairwise independent random bits. Recall that for generating ¢ pairwise
independent random bits we need O(logq) random bits. Hence, we would need in total O(log2 q) random
bits.

On the other hand, in the algebraic construction above, we chose a,b randomly. That is, we needed only
2log q random bits.



3 Generalization to k-wise independence

Again, let F be a field of size q. We choose ag, a1, ,ar—1 € F, uniformly randomly. Then consider the set
{ap + a1 + asx®+ - Fap_qxF iz e F}

We claim that these ¢ random variables are k-wise independent.

Proof. We want to show that for any distinct z1,zo,...,zx € F, and aq, s, ..., ar € F, we have

k-1
Pr | ap + a171 + ax? 4 + ap_127 =m
0,015,k —1

k—1
and ag + a1x9 + azzr% + -+ ag—175 = (g

and ag + a1y + asxs + -+ ak,la:’,zfl =] = 1/qk

We argue that this set of k linear equations (viewing ag, a1, ...,ar—1 as unknowns) will have a unique
solution. That will immediately give the probability. To show the uniqueness of the solution, we will prove
that the following matrix, which is known as Vandermonde Matrix, is invertible.

1 oz 2% - x]f_l
1 zo m% e Jr:];_l
1z, ai - x’gfl

It’s known that the determinant of the matrix is ITh<;< <k (z; — x;).

Homework:- Show that the Vandermonde matrix V is Invertible.

Hint: If the matrix is not invertible then it must have a nonzero null vector, say 0 # u € F¥. Now,
argue that this is not possible because of the fact that a polynomial of degree k — 1 can have at most k£ — 1
roots. O

4 Applications

One area with many interesting applications of k-wise independence is that of streaming algorithms. Here
the the input comes as a stream and our storage capacity is much smaller than the input size. For instance,
suppose our working space is bounded by O(logn), while the input size is n. Moreover, we can make only
one pass over the stream. We would still like to compute something useful from the input.

One popular example is to count the number of distinct elements in a stream of elements, say,

ai,as,...,am € {1,2,3,...,n}

Clearly there is a trivial solution that takes O(n) space. Can we use randomization and approximately count
the number using only O(logn) space? We will see an approach in the next lecture.



