
CS761 Derandomization and Pseudorandomness 2022-23 Sem I

Lecture 5: 22/08/22
Scribe: Raj Aryan Agrawal Lecturer: Rohit Gurjar

Let us see a problem in the streaming setting where it turns out that the use of pseudorandomness is essential
(as opposed to true randomness). Suppose you want to count the number of distinct visitors to your website
in a day. However, you do not have enough space to store the names of all the visitors. Let us define the
problem formally.

Streaming Data

Problem 5.1 (Number of distinct elements). The problem is to find number of distinct elements in a
streaming data. More formally, given a sequence of values

a1, a2, . . . , am ∈ {1, 2, . . . N}

We wish to find the number of distinct elements in the sequence using only O(logN) space.

As one can guess, to find the exact count of distinct elements, one has to use at least O(m) or O(N)
space (whichever is smaller). So, we will have to relax the question to only finding an approximate count.
Even an approximate count cannot be obtained via a deterministic algorithm (see for example, https:

//people.csail.mit.edu/rrw/6.045-2020/notestream.pdf). Hence, to make it work in only O(logN)
space, we must use randomness.

Let us first see a simple randomized algorithm to the problem that assumes we have a hash function
distributed uniformly over [0, 1]

Independent Hash Values

Algorithm 5.2. Suppose we are given h : {1, 2, . . . , N} → [0, 1], where each h(i) is uniformly randomly and
independently assigned from the range [0, 1]. Set M =∞ and then

For each ai in stream : M ← min(M,h(ai))

Finally output 1
M − 1.

The intution for this algorithm comes from the following claim.

Claim 5.3.

E[M] =
1

d+ 1

where d is the number of distinct elements

Proof. We first find the probability distribution of M . Let S be the set of elements which appear in the
stream, so |S| = d.

Pr[M > λ] = Pr[∀i ∈ S, h(i) > λ]

=
∏
i∈S

Pr(h(i) > λ) independence of values of h(i)

= (1− λ)d

1

https://people.csail.mit.edu/rrw/6.045-2020/notestream.pdf
https://people.csail.mit.edu/rrw/6.045-2020/notestream.pdf

Let the probability density function for M be f(λ). Then,

f(λ) =
d

dλ
Pr[M ≤ λ]

=
d

dλ
(1− Pr[M > λ])

= − d

dλ
(1− λ)d

= d(1− λ)d−1

Thus, the expected value is

E[m] =

∫ 1

0

λf(λ)dλ

=

∫ 1

0

λd(1− λ)d−1dλ

= d

∫ 1

0

(1− λ)λd−1dλ by substitution

= d

[
λd

d
− λd+1

d+ 1

]1
0

=
1

d+ 1

Some issues with the algorithm. One obvious issue is that one cannot obtain a real number randomly
uniformly from [0, 1]. But, that is not a big issue. We can suitably discretize the range, say for example,
{0, 1/k, 2/k, . . . , (k − 1)/k}. However, the main issue is the generation of h(i). Whenever we generate h(i),
we will need to store it for future use when the ith item comes again. That would mean we will need to
store at least O(d) bits. But, we do not have such large space.

To fix this, we need a function h such that all h(i) values can be generated using only small amount
of storage. However, h(i) should still remain randomly uniform in a certain range. And that brings us to
pseudorandomness. The plan is to first generate some small amount of random bits (O(logN)) and store
it, before the stream starts. Then whenever we see the ith item, we will compute h(i) using i and the
stored random bits. Naturally, now the random values {h(1), h(2), . . . , h(N)} are not completely indepen-
dent. However, there will be enough independence that will suffice for our purposes. In fact, only pairwise
independence will suffice.

Reducing number of random bits

Let F be a finite field of size ≥ N .

Algorithm 5.4. We define our hash function using 2 pre-computed random values a, b ∈R F. Define

h(i) = ai+ b (multiplication and addition is over F.)

Initialize M ←∞.

For each aj in stream : M ← min(M,h(aj))

Finally output N
M − 1.

Note that the min operation is applied while treating the values h(aj) as integers in the range {1, 2, . . . , N}
(min does not make sense over a finite field). Observe that this algorithm only uses O(logN) bits of ran-
domness. From the previous lectures, we know that the values {h(i)}i are pairwise independent. Recall that
in the above analysis, while computing expectation we needed complete independence of the h(i)variables.

2

Now, we cannot reason about E[M] in the same way. Instead, we shall show that the value of M lies close
to what is expected with a decent probability. That is, we wish to show

(1− ε) N

d+ 1
≤M ≤ (1 + ε)

N

d+ 1
with Probability > δ,

for some reasonable constants ε, δ.

Rephrasing the problem

Suppose L and U are some numbers and we wish to show

L ≤M ≤ U

with good probability. We can say that

M > L if and only if no element appearing in the stream is mapped to ≤ L
M ≤ U if and only if at least one element appearing in the stream is mapped to ≤ U

Define

Yi,λ =

{
1 if h(i) ≤ λ
0 otherwise

and
Yλ =

∑
i∈S

Yi,λ

where S is the set of elements which appear in the stream. Clearly, Yλ is the number of elements in the
stream which are mapped to ≤ λ. Then we can write

M > L if and only if YL = 0 and

M ≤ U if and only if YU ≥ 1.

We now compute the probabilities for each of these events.

Left Condition: M > L

We will use E[YL] to reason about Pr[YL = 0].

E[Yi,L] = Pr(h(i) ≤ L) =
L

N
.

Then

E[YL] = E

[∑
i∈S

Yi,L

]
=
∑
i∈S

E[Yi,L] (by linearity of expectation)

=
∑
i∈S

L

N
=
dL

N
(|S| = d).

Now, consider Markov’s inequality.

3

Theorem 5.5 (Markov’s Inequality). If Z is a non negative random variable then,

Pr(Z ≥ α) ≤ E[Z]

α

Proof.

E[Z] =

∫ ∞
0

zf(z)dz

=

∫ α

0

zf(z)dz +

∫ ∞
α

zf(z)dz

≥
∫ ∞
α

αf(z)dz

= αPr(Z ≥ α)

Using the above theorem, we have

Pr(YL ≥ 1) ≤ E[YL]

1
=
dL

N
.

Substituting L = (1− ε)Nd , we have

Pr

(
M > (1− ε)N

d

)
= Pr[YL = 0] = 1− Pr(YL ≥ 1) ≥ 1− dL

N
= ε

Right Condition: M ≤ U

Here U = (1 + ε)Nd , we have
E[YU] = 1 + ε

Using just the expected value, we cannot get a good lower bound for Pr(YU ≥ 1). We also require some
knowledge for the variance. That is, we want to reason about V ar[YU] = V ar[

∑
i∈S Yi,U].

Theorem 5.6. Consider random variables X1, X2, . . . , Xn, which are pairwise independent. Then

V ar

[
n∑
i=1

Xi

]
=

n∑
i=1

V ar[Xi].

Proof.

V ar

[
n∑
i=1

Xi

]
= E

(n∑
i=1

Xi

)2
− E

[(
n∑
i=1

Xi

)]2

=

n∑
i=1

E[X2
i] + 2

∑
i 6=j

E[XiXj]−
n∑
i=1

E[Xi]
2 − 2

∑
i 6=j

E[Xi]E[Xj]

by linearity of expectation

=

n∑
i=1

(
E[X2

i]− E[Xi]
2
)

+
∑
i 6=j

(E[XiXj]− E[Xi]E[Xj])

=

n∑
i=1

V ar[Xi] + 0

since pairwise independent, E[XiXj] = E[Xi]E[Xj].

4

Now, as mentioned before, our construction for h ensures that the variables h(i) are pairwise independent.
Thus, we can use the above theorem for our use. Since Yi,U is a Bernoulli random variable, we have

V ar[Yi,U] = Pr[Yi,U = 1](1− Pr[Yi,U = 1]) =
U

N

(
1− U

N

)
.

Since U = (1 + ε)Nd , we get

V ar[YU] =
∑
i∈S

V ar[Yi,U]

=
∑
i∈S

1 + ε

d

(
1− 1 + ε

d

)
= (1 + ε)

(
1− 1 + ε

d

)
≤ (1 + ε)

Now consider Chebyshev’s inequality.

Theorem 5.7 (Chebyshev’s Inequality). For any random variable X

Pr(|X − E[X]| ≥ α) ≤ V ar[X]

α2
.

Proof.

Pr(|X − E[X]| ≥ α) = Pr((X − E[X])2 ≥ α2)

≤ E[(X − E[X])2]

α2
using Markov’s Inequality

=
V ar[X]

α2

Using this inequality, we have

Pr[YU = 0] = Pr(|YU − E[YU]| ≥ E[YU])

≤ V ar[YU]

E[YU]2

≤ (1 + ε)

(1 + ε)2

≤ 1

1 + ε
.

Thus, we have

Pr

(
M ≤ (1 + ε)

N

d

)
= Pr[YU ≥ 1] = 1− Pr[YU = 0] ≥ ε

1 + ε
.

Combining the 2 results, and taking the union upper bound, we have

Pr

(
(1− ε1)

N

d
< M ≤ (1 + ε2)

N

d

)
≥ ε1 +

ε2
1 + ε2

− 1.

Taking ε1 = 2/3 and ε2 = 2, we get that

Pr

(
1

3

N

d
< M ≤ 3N

d

)
≥ 1/3.

This is not a very good probability bound, so to improve the confidence, we can run multiple instances of
the algorithm. Since the data is streaming, we can only visit it once, so we can run the multiple instances
concurrently. And finally choose the median of the results - median will likely give a better answer than
the mean as less likelihood that the median will skew, unlike mean which can due to just a single bad seed.

5

