
CS761 Derandomization and Pseudorandomness 2022-23 Sem I

Lecture 9: 29-08-2022
Scribe: Aniruddha Joshi Lecturer: Rohit Gurjar

1 Magical Graphs and Codes

In the last lecture we saw the definition and existence of magical graphs. We will show how good error
correcting codes can be constructed using such magical graphs.

Definition 9.1. A bipartite graph (L,R,E) is a (n,m, d)-magical graph if the following holds

• |L| = n

• |R| = m

• m ≥ 3n
4

• ∀v ∈ L deg(v) = d

• ∀S ⊆ L, |S| ≤ n
10d =⇒ |Γ(S)| ≥ 5d|S|

8

Claim 9.2. For any S ⊆ L such that |S| ≤ n
10d , there exists a vertex v ∈ Γ(S) such that v has exactly one

neighbour in S.

Proof. We prove this by contradiction. Since Γ(S) is the set of neighbours of S, every vertex v ∈ Γ(S) has at
least one neigbour in S. Suppose every vertex v has at least two neighbours in S, then E(Γ(S), S) ≥ 2|Γ(S)|
and so E(Γ(S), S) ≥ 10d|S|

8 , which is a contradiction as E(Γ(S), S) = d|S| (because every vertex in S has
degree d).

Now we will look at a construction of an error correcting code.

Definition 9.3 (Linear Codes). A code C ⊆ {0, 1}n can be viewed as C ⊆ Fn
2 . C is called a linear code if

∀x, y ∈ Fn
2 , (x ∈ C ∧ y ∈ C) =⇒ x+ y ∈ C . Note that the + operation is in the field F2.

Let’s consider a (n,m, d)-magical graph, such that m = 3n
4 (in the last class we saw that such a graph

exists).

Definition 9.4. We define a matrix M ∈ Rm×n as follows:

Mij = 1 iff i ∈ R and j ∈ L are adjacent.

Definition 9.5. Let us define a code as C = {x : Mx = 0}. (Note that the matrix multiplication is over
F2) The matrix M in the above definition is called a parity check matrix.

Example 1. Let M = [1, 1, 1], the code C such that C = {x : Mx = 0} is then given as C =
{(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)}. Here dH(C) = 2 and r(C) = 2

3 .

From definition 9.5, we can see that |C | = 2n−rank(M) (because n − rank(M) is the dimension of null

space and power of 2 because it is in field F2). So, r(C) = n−rank(M)
n ≥ 1

4

Claim 9.6. dH(C) > n
10d

Proof. Since dH(x, y) = α =⇒ dH(x − y, 0) = α. Hence, dH(C) is nothing but the minimum weight
(number of nonzero entries) in any codeword other than 0n. For the sake of contradiction, suppose Z is a
(nonzero) codeword with n

10d non-zero entries, then let’s define S = {v ∈ L : Zv = 1}, that is S is the set
of all columns of M such that their indices have non-zeros entries in Z. Notice that MZ is just the sum of
all the column vectors corresponding to S. So, by claim 9.2 there exists a row i such that there is exactly
one vector in S which has entry 1 in row i, so MZ 6= 0. That means, Z is not a codeword, which is a
contradiction.

1

2 Undirected Connectivity

Problem 1. Given a graph G, and two vertices s, t ∈ G, is there a path between s and t? (we are looking
for a log-space algorithm)

Let us look at an algorithm.
IsPath(s, t,2`) outputs whether there is a path between s and t with length at most 2l.
Algorithm

IsPath(s, t, 2`){
if (s, t) ∈ E then

return YES;
else

for v ∈ V do
if IsPath(s, v, 2`−1) ==YES and IsPath(v, t, 2`−1) ==YES then

return YES;
end

end
return NO;

end
}

Algorithm 1: Function IsPath

We can see that algorithm 1 works in O(log n × log n) space. We can see this as follows, the maximum
depth of the algorithm is O(`) = O(log n) and in each instance, we need O(log n) space to store the number
corresponding to v, s, t and `. Also, note that the algorithm is not polynomial time.

Now we will see a randomized algorithm for the same problem with O(log n) space.
Algorithm

1. v ← s

2. u← a neighbour of v chosen uniformly randomly

3. if u == t return YES

4. otherwise v ← u, go to 1.

Claim 9.7. Pr
[
t is seen within O(n3 log n) steps

]
≥ 1

2

We will see the proof of this claim in the next class.
Side note: This algorithm will not work for directed graphs (i.e in O(n3logn) steps. There may be an

exponentially small probability to reach t from s. Counter-example: consider a family of graphs Gn such that
the vertices are V = {1, 2, · · · , n}∪{s, t} and the edges are E = {(i, i+1)|i < n}∪{(i, s)|∀i}∪{(s, 1), (n, t)}.

We will only consider undirected graphs for this algorithm.
For simplicity let us assume that the given graph is d-regular (if the graph is not d-regular then add self

loops).

Definition 9.8. Let us define a random walk matrix M such that

Mij =
δij
d
, where δij is the number of edges between vertex i and vertex j

2

We define a probability vector v(t) ∈ Rn such that v
(t)
i is the probability of reaching at vertex i at time

t. Clearly, for all i, 0 ≤ v(t)i ≤ 1 and
∑
i

v
(t)
i = 1. Observe that

v(t+1) = Mv(t).

If our walk starts at s then v
(0)
s = 1 and for i 6= s, v

(0)
i = 0.

So it is easy to see that v(t) = M tv(0) (does v(t) converge to a probability distribution?)

Observation 1. If u = (1
n ,

1
n , · · · ,

1
n), then Mu = u

Are there any other stationary distributions?
If G is not connected then there can be several stationary distributions.

1
3

1
3

1
3 0

0

Figure 1: Graph with non-uniform stationary distribution

3

	Magical Graphs and Codes
	Undirected Connectivity

