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Definition 9.1. A graph G is said to be an (n,d, A)-expander if
o V(@) =n,
e G is d-regular, and
e )\ is the second largest eigenvalue A\(G) of G in absolute value.

Definition 9.2 (Spectral expanders). A sequence {Gn}n>0 of d-regular graphs is said to be a spectral
expander family if for some A < 1, M(G,,) < X for all n.

We saw in last lecture that random walks on expander graphs converge to the uniform distribution in
O(logn) steps.
This means that there are only d®(°8™) = poly(n) paths to explore. Therefore, there is a deterministic
polynomial time algorithm to determine connectivity of expander graphs.

Definition 9.3 (Edge expansion). Given a d-reqular graph G, define the normalized edge expansion
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Tt is evident that h(G) < 1. If skip the d in the denominator, that is just known as the edge expansion.

It is natural to see that h(G) measures (in some sense) how well-connected a graph is. If it is low, there
is some “bottleneck” in the graph where the random walk can get stuck — a set of high measure with very
few outgoing edges.

Definition 9.4 (Combinatorial expanders). A sequence {Gp}n>0 of d-regular graphs is said to be a combi-
natorial expander family if for some h > 0, h(G,) > h for all n.

Theorem 9.5 (Cheeger’s Inequality). For any graph G with second eigenvalue Ay and sparsity h,

1— A\
5 2 <h< 20— A).

In particular, spectral expanders are combinatorial expanders and vice-versa.

Markov chain Monte Carlo methods find many uses in problems such as sampling random spanning trees,
random independent sets etc. The idea in these is that we start with an arbitrary spanning tree (say), and
then randomly move to a “neighbouring” spanning tree — add a random edge not in the spanning tree and
remove a random edge from the cycle thus formed. After sufficiently many steps, we are at a(n almost)
uniformly random spanning tree. This massive graph composed of spanning trees as vertices ends up being
an expander! Because the graph of spanning trees has only exponentially many vertices, we get a polynomial
time algorithm to randomly sample spanning trees.

Cheeger’s inequality is also seen to be asymptotically tight by the following examples:

e The n-cycle C,,. It has edge expansion h(C,) = 2/n, and A\(C,,) = cos(27/n) ~ 1 — (27/n)2.

e The hypercube graph H,,, with vertex set {0,1}" and edge between two vertices iff they differ at
precisely one coordinate. It has sparsity h(H,) = 1/n, and A\(H,) =1— 1.



What guarantee do we even have that expanders exist? It turns out that a random d-regular graph is a
(combinatorial) expander with high probability! The probabilistic argument is similar to what we had seen
for showing existence of magical graphs.

However, how do we construct expander graphs? Our goal is to use expander graphs to reduce randomness
in algorithms, so it does not make sense to construct them using the above random argument. In some
applications, we also want the algorithm itself to run in polylog time — this requirement makes sense in light
of our remarks towards the end of Lecture 6. An strongly explicit construction of expander graphs would be
one, where given a vertex and an index i, we should be able to find the ith neighbor of the vertex in time

poly(log n).

Example. Let p be a prime and consider the 3-regular graph over IF,,, where each = is adjacent to x +
1,2 — 1,27 (define 0~! as 0). This graph is known to be an expander; the proof goes via some results in
number theory.

Theorem 9.6 (Expander Mixing Lemma). Let G be a (n,d, \)-ezpander. Then, for any S, T CV,

d
E(S,T) = —ISIIT]| < dAVIS|IT].

If G were a random graph, then the expected number of edges between S, T is precisely (d/n)|S||T| — of
the d|S| edges out of S, we expect a |T|/n fraction to be incident on 7.

Proof. Let M be the transition matrix of the random walk on Gj it is equal to (1/d) times the adjacency
matrix of G. For any set X, let 1x be the indicator vector of X, with 1s at vertices in X and 0 elsewhere.
Observe that

1
SE(S.T) = 1L M1y,

Now, we have M = . Aiuju; using the spectral theorem, where (u;)?_; are orthonormal eigenvectors of
M with corresponding real eigenvalues (A;)?_;. Note in particular that A\; = 1 and wu; is the vector with all
coordinates having value 1/+/n.

Let 1s = >, ayu; and 1p = ), fiu,. It is seen that oy = (1g,u1) = |S|/v/n and B1 = |T|//n.

Using orthonormality,
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We shall now see how to save randomness using expanders.

Let A be an algorithm that uses & independent random bits. Let G be a (2", d, \)-expander. Starting at
an arbitrary vertex v, perform a random walk for ¢ steps through vertices vy, vs, ..., vs. Run the algorithm
on each of these inputs vy, ..., v, (interpreting the 2* elements of V(G) as length k bit strings).

Recall that if running A once (using k bits) has error probability 3, running the algorithm ¢ times (using
k¢ bits) reduces this to an error probability of 4¢. It turns out that running the algorithm ¢ times in the
manner described above (using O(k + ¢logd) bits) reduces the error probability to (8 + \)*!

In purely graph theoretic terms, this says the following.

Theorem 9.7. Let G be a (n,d,\)-expander, and let B CV be of size Bn. Starting at a uniformly random
vertex vi, consider £ steps of the random walk going through vertices vy, v, ... ,ve. Then,

Pr [all v; are in B] < (8 + \)-.

Proof sketch. Consider the diagonal matrix D with 1s at vertices in B and 0 elsewhere. Let p(® be the
initial (uniform) distribution of wy. Verify that the sum of components of (DM)*~1Dp(® is precisely the
probability that each v; is in B for i = 1,2,...,£. For any probability vector u try to upper bound the /5
norm of DM Du as follows: split u into its components along and orthogonal to the uniform distribution
vector. Verify that after applying DM D, the norm of the along component reduces by at least 8 and the
orthogonal component by A. Using this ¢ times gives the bound. O

Theorem 9.8 (Alon-Boppana bound). For any (n,d, \)-expander,

2v/d —1
A2 21— o)),

Definition 9.9 (Ramanujan Graph). A (n,d, \)-ezpander is said to be a Ramanujan graph if
2v/d—1
AL ———.
- d
Ramanujan graphs are “ideal” expanders in some sense.

It was proved in 2014 by Adam Marcus, Daniel Spielman, and Nikhil Srivastava that there exist infinite
families of bipartite Ramanujan graphs of every degree greater than 2.



