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Abstract

Given two matroids on the same ground set, the matroid intersection problem asks to find
a common independent set of maximum size. In case of linear matroids, the problem had a
randomized parallel algorithm but no deterministic one. We give an almost complete deran-
domization of this algorithm, which implies that the linear matroid intersection problem is
in quasi-NC2. That is, it has uniform circuits of quasi-polynomial size nO(logn) and O(log2 n)
depth. This generalizes a similar result for the bipartite perfect matching problem. Our main
technical contribution is to derandomize the Isolation lemma for the family of common bases of
two matroids.

We use our isolation result to give a quasi-polynomial time blackbox algorithm for a special
case of Edmonds’ problem i.e., singularity testing of a symbolic matrix, when the given ma-
trix is of the form A0 + A1x1 + · · · + Amxm, for an arbitrary matrix A0 and rank-1 matrices
A1, A2, . . . , Am. This can also be viewed as a blackbox polynomial identity testing algorithm for
the corresponding determinant polynomial. Another consequence of this result is a deterministic
solution to the maximum rank matrix completion problem.

Finally, we use our result to find a deterministic representation for the union of linear ma-
troids in quasi-NC2.

1 Introduction

Matroids are combinatorial structures that generalize the notion of linear independence in Linear
Algebra. A matroid M is a pair M = (E, I), where E is the finite ground set and I ⊆ P(E)
is a family of subsets of E that are said to be the independent sets. There are two axioms the
independent sets must satisfy: (1) closure under subsets and (2) the augmentation property – for
any two independent sets of different sizes, the smaller one can be augmented with an element from
the bigger one to obtain a new independent set (See the Preliminary Section for exact definitions).

Matroids are motivated by Linear Algebra. For an n × m matrix V over some field, let
v1, v2, . . . , vm be the column vectors of V , in this order. We define the ground set E = {1, 2, . . . ,m}
as the set of indices of the columns of V . A set I ⊆ E is defined to be independent, if the collection
of vectors vi, for i ∈ I, is linearly independent. Then M = (E, I) is a matroid: Any subset of
an independent set is again independent. The augmentation property is equivalent to the Steinitz
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Exchange Lemma for two bases of the vector space spanned by the column vectors of V . A matroid
is called linear, if it can be represented by a matrix in the above sense over some field.

Although we will formulate most of our results in terms of general matroids, our main result is
for linear matroids. Hence, for a reader who is unfamiliar with matroid theory, it suffices to think
of a matroid simply as a matrix as described above.

The augmentation property implies that all inclusion-wise maximal independent sets have the
same size. A maximal independent set is called a base of the matroid. The matroid problem consists
in computing a base of a given matroid. It can be solved efficiently by a simple greedy algorithm,
provided that we can efficiently test whether a set is independent. There is also a parallel algorithm
if we are given a rank oracle for the matroid: for each i, include the i-th element in the base if its
inclusion to the set of first i − 1 elements increases the rank of the set. See [KUW88] for parallel
complexity of matroid problems under various oracles.

In the matroid intersection problem, we are given two matroids M1 and M2 over the same
ground set. One has to find the largest set which is independent in both matroids. In the Linear
Algebra example, we are given two matrices U and V of the same dimensions. We want to compute
the largest set I of indices, such that the columns of U and the columns of V indexed by I are
both independent sets. As another example, the bipartite matching problem can be expressed as a
matroid intersection problem.

The matroid intersection problem can be solved in polynomial time by an algorithm due to
Edmonds [Edm68, Edm79]. Edmonds’ algorithm is a generalization of the famous augmenting
path algorithm for bipartite matching. In the case of linear matroids, its parallel complexity is also
similar to the matching problem. Narayanan, Saran, and Vazirani [NSV94] presented a randomized
NC-algorithm based on the Isolation Lemma. Applied to matroid intersection, the Isolation Lemma
states that randomly chosen weights for the elements of the ground sets isolate a common base,
i.e., there is a unique minimum weight common base set, with high probability.

In order to obtain deterministic parallel algorithms, the derandomization of the Isolation Lemma
is a major open problem. Recently, the authors together with Fenner [FGT16] (almost) achieved
this in the case of bipartite perfect matching and presented a quasi-NC-algorithm for this problem.
In the current paper, we generalize the matching algorithm to a quasi-NC-algorithm for linear
matroid intersection. Our main result (Theorem 3.1) is:

Linear Matroid Intersection is in quasi-NC.

This puts a rich class of problems in quasi-NC. To give a few examples, besides perfect matching,
the following combinatorial problems NC-reduce to linear matroid intersection (see [Sch03]), and
thus, fall into the class quasi-NC.

• finding an r-arborescence in a directed graph,

• finding two edge-disjoint spanning trees in a graph,

• finding a rainbow spanning tree in an edge-colored graph,

• finding a shortest R− S biconnector and a longest R− S biforest of a graph.

See Section 4.4 for definitions and reductions to linear matroid intersection. To the best of our
knowledge, there is no better bound known on the parallel complexity of the last three problems.
In fact, the last two problems generalize the bipartite matching problem, for which quasi-NC is
still the best known bound. On the other hand the r-arborescence problem already had an NC
algorithm due to Lovász [Lov85].
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Our main technique is to deterministically construct a weight assignment that isolates a common
base of the two given matroids. Hence this can again be seen as a derandomization of the Isolation
Lemma in this setting. Following the approach of the matching result [FGT16], we look at the
isolation question in the corresponding polytope. However, since the matroid intersection polytope
has a more complicated description than the bipartite matching polytope, we need more ideas. The
novel part is to analyze the faces of the matroid intersection polytope (Section 3.2) and to come
up with an appropriate definition of cycles in the intersection of two matroids (Section 3.3). As
before, our weights have O(log2 n) bits, and so we obtain circuits of quasi-polynomial size nO(logn).
Hence, we get linear matroid intersection in quasi-NC2.

It remains open whether the problem is in NC. We would like to point out that our isolating
weight assignment actually works for general matroid intersection and even for polymatroid inter-
section. However, we get the quasi-NC-bound only in the case of linear matroids, because only
there do we have a connection to the determinant.

Subsequent to this work, our derandomization of the Isolation Lemma has been generalized to
a larger class of families [GTV17].

1.1 Polynomial Identity Testing (PIT) and Singularity of Symbolic Matrices

Our derandomization of the Isolation Lemma in the above setting also gives a blackbox polynomial
identity testing algorithm for an interesting class of polynomials. The polynomial identity problem
asks whether a given multivariate polynomial is the zero-polynomial. The polynomial can be given,
for example, as an arithmetic circuit, an arithmetic branching program, or a symbolic matrix. In
the latter case, the polynomial is the defined as the determinant of the symbolic matrix. Given a
polynomial in one of these representations, it might take exponential time to compute an explicit
representation as a sum of monomials. However, evaluating the polynomial at a point is easy,
and this suffices for an easy randomized polynomial identity test: just evaluate the polynomial at a
random point. It is known that a nonzero polynomial will have a nonzero evaluation with high prob-
ability [DL78, Sch80, Zip79]. However, no nontrivial deterministic tests are known. Deterministic
PIT is known to have connections with arithmetic circuit lower bounds [KI03, Agr05].

The singularity problem of symbolic matrices, also known as Edmonds’ problem [Edm67], is a
special case of PIT. Given a matrix A whose entries are linear forms in a set of formal variables,
one has to determine whether A is singular, i.e., whether det(A) is the zero-polynomial. This
problem captures PIT for small degree arithmetic circuits, with only a quasi-polynomial blow-
up [Val79, VSBR83]. Efficient polynomial singularity tests are known only for very restricted cases.
One such case which has received a lot of attention is when A is of the form A =

∑
i ziAi, where

the Ai’s are rank-1 matrices [Edm67, Lov89, Mur93]. Singularity testing for this case corresponds
exactly to the linear matroid intersection question (see Sections 2.4 and 4.1), and thus has a
polynomial-time algorithm [Edm79, Lov89]. However, no blackbox PIT algorithm was known for
this case. A blackbox algorithm does not read its input, it only uses the input size. In our case,
the algorithm does not use the entries of the given matrices, just the number of matrices and their
dimension. The goal is to construct a hitting set, a set of points such that if the polynomial is
nonzero, then it evaluates to nonzero at least at one of the points. With our derandomization of
the Isolation Lemma we get a hitting set for det(

∑
i ziAi), when the Ai’s are of rank 1.

As a generalization of the above, we add an arbitrary constant matrix A0, i.e., we consider
matrices of the form A = A0+

∑
i ziAi. There is a polynomial-time whitebox algorithm to determine

the singularity of such A’s [Mur93, Gee99, IKS10]. Using reductions from Anderson, Shpilka and
Volk [ASV16] and Murota [Mur93], our hitting set from above also works for this case (Theorem 4.2).

In quasi-polynomial time we can construct a hitting set for polynomials of the form
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det(A0 +
∑m

i=1 ziAi), where A0 is an arbitrary matrix and Ai is a matrix of rank 1, for
1 ≤ i ≤ m.

This result can also be used for a blackbox solution to another version of Edmonds’ prob-
lem [Edm67]: given set of matrices, find a matrix of maximum rank in the linear span these
matrices. In the case when the given matrices are of rank 1, one of the points in our hitting set
provides the linear combination of the given matrices which achieves maximum rank. To see this,
suppose the given matrices are A1, A2, . . . , Am and consider the symbolic matrix A =

∑
i ziAi. Let∑

i αiAi be a linear combination that achieves the maximum rank, say r. Then there are r × r
sub-matrices Bi of Ai, for i = 1, . . . ,m such that

∑
i αiBi is non-singular. Thus B =

∑
i ziBi is

non-singular as well. Note that matrices Bi have rank 1. Therefore, our hitting set for det(A)
also works for det(B). That is, when the variables z = (z1, z2, . . . , zm) are substituted with points
in our hitting set, det(B(z = α)) will be nonzero for at least one of the points α. For such a
point α, matrix A(α) has the maximum rank. That is, α is the desired linear combination that
solves Edmonds’ problem.

1.2 Maximum Rank Matrix Completion

The above PIT result also provides a blackbox solution to the maximum rank matrix completion
problem. Given a partially filled matrix, the objective is to fill in the blank entries so as to maximize
the rank of the matrix. There is a simple randomized solution: filling in random values for the
blank entries achieves the maximum rank with high probability [DL78, Sch80, Zip79]. The argument
goes via a reduction to PIT (see Section 4.2). The problem also had a deterministic polynomial
time algorithm (see [Mur93, Gee99, IKS10]). What is currently open is the question of finding a
polynomial time blackbox solution, that is, filling in the blank entries without looking at the given
matrix. We do this in quasi-polynomial time.

Given a partially filled matrix, we give a fixed substitution for the blank entries (with
size quasi-polynomial in the input size) which maximizes the rank of the matrix for all
choices of the already filled in entries.

1.3 A Representation for Matroid Union

For matroids M1,M2, . . . ,Mk with ground sets E1, E2, . . . , Ek, respectively, the matroid union
M = M1 ∨M2 ∨ · · · ∨Mk is a matroid with ground set

⋃k
i=1Ei. A set I is independent in M ,

if I =
⋃k

i=1 Ii, for independent sets I1, I2, . . . , Ik of M1,M2, . . . ,Mk, respectively. The problem
of finding a maximum independent set in a matroid union reduces to matroid intersection (see
Section 4.3). Thus, this problem is in quasi-NC for linear matroids.

When M1,M2, . . . ,Mk are linear matroids, then their union M is also linear. An interesting
question is to find a matrix that represents M . Narayanan, Saran, and Vazirani [NSV94] present a
randomized parallel algorithm for this problem. Our PIT result from above gives a quasi-polynomial
time solution for this question (Theorem 4.7).

Given matrices representing linear matroids M1,M2, . . . ,Mk, we can deterministically
construct a matrix representing the matroid union M1 ∨M2 ∨ · · · ∨Mk whose entries
have a quasi-polynomially bounded size.

2 Preliminaries

For a set E, we denote the power set of E by P(E). For an integer m, we define [m] = {1, 2, . . . ,m}.
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2.1 Complexity Classes

Barrington [Bar92] generalized the class NCk to define a class quasi-NCk as the class of problems

which have uniform circuits of quasi-polynomial size 2log
O(1) n and poly-logarithmic depth O(logk n).

The class quasi-NC is the union of classes quasi-NCk, over all k ≥ 0. Here, uniformity means quasi-
polynomial time uniformity.

2.2 Matroids

Matroid theory originated in the middle of the 1930s. There is a huge literature on matroids by now.
For an introduction, see for example the excellent textbooks of Oxley [Oxl06] or Schrijver [Sch03].
Below we give some basic definitions and facts about matroids.

A matroid M is a pair M = (E, I), where E is the finite ground set and I ⊆ P(E) is a nonempty
family of subsets of E that satisfies the following two axioms.

1. Closure under subsets. For every I ∈ I and J ⊆ I we have J ∈ I.

2. Augmentation property. For every I, J ∈ I where |I| < |J |, there is an j ∈ J such that
I ∪ {j} ∈ I.

We denote m = |E| throughout the paper. The sets in I are called the independent sets of M .
An inclusion-wise maximal set B ∈ I is called a base. Note that by the augmentation property, all
base sets have the same size. Let B ⊆ I denote the collection of base sets.

As an example, we already mentioned linear matroids in the Introduction which come from
linear independence in Linear Algebra. A very simple subclass of linear matroids are partition
matroids. Such a matroid is given by a partition B1, B2, . . . , Bk of the groundset E, and numbers
b1, b2, . . . , bk. A set I ⊆ E is independent, if |I ∩Bi| ≤ bi, for all i = 1, 2, . . . , k.

Another well known example are graphic matroids. Given an undirected graph G = (V,E), we
take E as the ground set and the forests in G as the independent sets. It is not hard to see that
forests fulfill the matroid axioms.

Matroid rank. Motivated by Linear Algebra, there is a rank-function of a matroid that is defined
for every subset A ⊆ E as the size of the largest independent set that is contained in A,

rank(A) = max{ |I| | I ∈ I and I ⊆ A }.

The size of every maximal independent set is rank(E). This number is called the rank of M . The
matroid problem is to compute a maximal independent set.

An important property of the rank-function is its submodularity. In general, a func-
tion f : P(E)→ R is called submodular, if for any sets S, T ⊆ E, we have

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Lemma 2.1 (See [Sch03]). The rank-function of a matroid is submodular.

Proof. Let S, T ⊆ E. Let I, J ∈ I be maximal such that I ⊆ S ∩ T and I ⊆ J ⊆ S ∪ T . Hence
rank(S ∩ T ) = |I| and rank(S ∪ T ) = |J |.

Define S′ = J ∩ S and T ′ = J ∩ T . Note that S′, T ′ ∈ I and S′ ∩ T ′ = I. Hence, we get

r(S) + r(T ) ≥ |S′|+ |T ′| = |S′ ∪ T ′|+ |S′ ∩ T ′|
≥ |J |+ |I|
= r(S ∪ T ) + r(S ∩ T ).
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Dual Matroid. There is a concept of duality in matroid theory. Let M = (E, I) be a matroid
with base sets B. Define B∗ as the complements of the base sets, B∗ = {B | B ∈ B }. Then B∗
are the base sets of a matroid M∗, the dual of M . In terms of independent sets, we can write
M∗ = (E, I∗), where

I∗ = { I | ∃B ∈ B B ∩ I = ∅ }.

It is known that the dual of a linear matroid is again linear. Moreover, given the matrix that
represents a linear matroid, the matrix that represents the dual matroid can be computed in
NC2 [NSV94].

Matroid intersection. Our main focus is the matroid intersection problem. Given two matroids
M1 = (E, I1) andM2 = (E, I2) over the same ground set, compute a maximum size set in I1∩I2, the
common independent sets. Let B1 and B2 be the collections of base sets of M1 and M2, respectively.
In another variant of the problem, one has to decide whether the matroids have a common base,
i.e., whether B1 ∩B2 is nonempty, and in this case, to construct such a base B ∈ B1 ∩B2. The two
variants are equivalent for linear matroids. The reduction from former to the latter is implicit in
Narayanan et al. [NSV94, Theorem 4.2]. Note that in general (E, I1∩I2) is not a matroid anymore.

Matroid intersection captures many interesting combinatorial problems.

• We already mentioned the common linear independent columns of two matrices.

• A well known example is bipartite maximum matching. Let G = (L ∪ R,E) be a bipartite
graph. We define two partition matroids ML and MR over the ground set E. In matroid ML,
for v ∈ L, define sets Bv = { e ∈ E | v ∈ e } that partition E. A set I ⊆ E is independent, if
|I ∩Bv| ≤ 1, for all v ∈ L, i.e., if no two edges have a common end point in L. Matroid MR

is defined similarly with respect to vertex set R. Then any common independent set of ML

and MR is a matching in the graph G. Note that ML and MR are linear matroids.

We provide more examples in Section 4.4.

2.3 Matroid Polytope

The polytopes we consider in this paper are convex polytopes defined as the convex hull of finitely
many points in Rm. Any convex polytope P can be described as the intersection of halfspaces,
i.e., as P = {x ∈ Rm | Ax ≤ b }, for some matrix A ∈ Rk×m and vector b ∈ Rk. A face of the
polytope P is the set of points in P minimizing or maximizing a linear function. If the polytope P
is described by Ax ≤ b, then any face of P can be described as {x ∈ P | A′x = b′ }, where

(
A′ b′

)
is some subset of the rows of

(
A b

)
.

With every matroid, there is an associated matroid polytope. This polytope is crucial for our
arguments.

For a set I ⊆ E, its characteristic vector xI ∈ RE is defined as

xIe =

{
1, if e ∈ I,
0, otherwise.

For any collection of sets A ⊆ P(E), the polytope P (A) ⊂ RE is defined as the convex hull of the
characteristic vectors of the sets in A,

P (A) = conv{xI | I ∈ A}.
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For a matroid M = (E, I), its matroid polytope is defined as P (I) ⊂ RE , i.e., the convex hull of
the characteristic vectors of the independent sets. The points {xI | I ∈ I } are the corners of the
matroid polytope P (I).

Edmonds [Edm70] gave a simple description of this polytope which uses the rank function of
the matroid (see also [Sch03]). For convenience, we define for any x ∈ RE and S ⊆ E,

x(S) =
∑
e∈S

xe.

Lemma 2.2 ([Edm70]). For a matroid (E, I) with rank function r, a point x ∈ RE is in P (I) iff

xe ≥ 0 ∀ e ∈ E (1)

x(S) ≤ r(S) ∀S ⊆ E. (2)

It is easy to see that any 0-1 corner of the polytope given by (1) and (2) corresponds to an
independent set in I. The nontrivial part is to show that the described polytope does not have a
non-integral corner. Let B be the family of base sets of the matroid (E, I). Let n be the rank of
the matroid, i.e., the size of any base set. The matroid base polytope, defined as P (B), is clearly a
face of the matroid polytope P (I). Putting the following equation together with (1) and (2) will
give a description of P (B),

x(E) = n. (3)

Matroid Intersection Polytope. The intersection of two matroids also has an easy polytope
description: Edmonds [Edm70] showed a surprising result that one can describe the matroid in-
tersection polytope P (I1 ∩ I2) just by putting together the constraints of the two matroid poly-
topes P (I1) and P (I2) (see also [Sch03]).

Theorem 2.3 ([Edm70]). For two matroids (E, I1) and (E, I2),

P (I1 ∩ I2) = P (I1) ∩ P (I2).

That is, a point x ∈ RE is in the polytope P (I1 ∩ I2) iff

xe ≥ 0 ∀ e ∈ E, (4)

x(S) ≤ r1(S) ∀S ⊆ E, (5)

x(S) ≤ r2(S) ∀S ⊆ E, (6)

where r1 and r2 are the rank functions of the two matroids, respectively.

Let B1 and B2 be the families of base sets of the matroids (E, I1) and (E, I2), respectively.
Note that there can be a common base set only if the two matroids have same rank, say n. To
obtain the common base polytope P (B1∩B2) one just needs to put the constraint (3) together with
inequalities (4), (5) and (6).
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2.4 An RNC-Algorithm for Linear Matroid Intersection

Narayanan, Saran, and Vazirani [NSV94] showed that the linear matroid intersection problem is
in RNC. Their technique was to reduce the problem to a polynomial identity test (PIT), namely
whether the determinant of a symbolic matrix is nonzero. Moreover, they show that to construct
a maximum common independent set, it suffices to have an isolating weight function for a family
of common bases of two matroids.

Let w : E → Z be a weight function. The weight of a set B ⊆ E is defined as w(B) =
∑

e∈B w(e).

Definition 2.4. A weight function w : E → Z is isolating for a family of sets A ⊆ P(E), if there
is a unique minimum weight set in A.

We give some details on the argument, because we will use the same algorithm, except that we
will deterministically compute the isolating weight function.

Let the linear matroids M1 and M2 be given by two matrices U and V . We want to find out
whether M1 and M2 have a common base. Without loss of generality, we can assume that both
matrices are n×m and have full row rank.

Lemma 2.5. Let Z be an m ×m diagonal matrix with variables on the diagonal, Ze,e = ze, for
e = 1, 2, . . . ,m. Define the n× n symbolic matrix D = UZV T. Then M1 and M2 have a common
base ⇐⇒ det(D) 6≡ 0.

Proof. By the Binet-Cauchy formula, we can write

det(D) =
∑

B⊆[m]
|B|=n

(∏
e∈B

ze

)
det(UB) det(VB),

where UB and VB are submatrices of U and V , respectively, with columns indexed by B. Let B1
and B2 be the collections of bases for M1 and M2, respectively. Clearly, det(UB) det(VB) 6= 0 if and
only if B ∈ B1∩B2. Hence, the monomials of det(D) are coming precisely from the common bases,

det(D) =
∑

B∈B1∩B2

(∏
e∈B

ze

)
det(UB) det(VB). (7)

This proves the lemma.

Now, let w be an isolating weight assignment for B1∩B2. Replace each variable ze in equation (7)
by zw(e), for a new variable z. Then det(D) becomes a univariate polynomial det(D)(z). The
monomial

∏
e∈B ze in equation (7) becomes zw(B) in det(D)(z).

If B1 ∩ B2 6= ∅, then the minimum degree term in det(D)(z) is unique, as w is isolating. Thus,
det(D)(z) 6= 0 ⇐⇒ B1 ∩ B2 6= ∅.

The RNC-algorithm now simply uses random weights. The Isolation Lemma [MVV87] states
that a random weight function w with polynomially bounded weights is isolating for any family A
with high probability. Moreover, the determinant polynomial det(D)(z) can be computed in NC,
when the entries are small degree univariate polynomials [BCP84].

Theorem 2.6 ([NSV94]). Linear Matroid Intersection is in RNC.

One can also compute the common base set B∗ that is isolated. For each e ∈ E, in parallel,
delete e and re-compute det(D)(z). If the minimum term disappears then e ∈ B∗.
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3 Linear Matroid Intersection in quasi-NC

In this section, we show how to derandomize the algorithm from Theorem 2.6.

Theorem 3.1. Linear Matroid Intersection is in quasi-NC.

In the RNC-algorithm described in Section 2.4, random weights were used to isolate a base in the
intersection of two matroids. We will construct an isolating weight assignment deterministically.

We build the isolating weight assignment in rounds. In every round, we slightly modify the
current weight assignment to get a smaller set of minimum weight common bases. Our goal is to
reduce their number in every round significantly. We stop when we have a unique minimum weight
common base.

To get a picture of the set of minimum weight common bases with respect to a weight assignment
w, we view w as a function on the common base polytope. That is, we define an extension of weight
function w : E → Z to RE . For x ∈ RE ,

w(x) = w · x =
∑
e∈E

w(e)xe.

Note that w(xB) = w(B), for any B ⊆ E. Now, consider the points minimizing the function w(x)
in the common base polytope. As w(x) is linear, these points will form a face of the polytope.
There will be a one to one correspondence between the corners of this face and the minimum
weight common bases. Therefore we want to understand the properties of such faces. We start by
considering the faces of a base polytope for a single matroid in Section 3.1, and then consider the
intersection of two matroids in Section 3.2. The common base polytope and its faces will only be
a part of the argument and not of the actual weight construction algorithm.

3.1 Faces of the Matroid Polytope

Let (E, I) be a matroid with the family of base sets B and rank function r. From the description
of the polytope P (B) in Lemma 2.2, we know that any of its faces can be described by equations
of the type xe = 0 or x(S) = r(S). The collection of sets S for which the second equation holds
has some structure.

Lemma 3.2 ([Edm70]). For any point x ∈ P (B) and any sets S, T ⊆ E, if x(S) = r(S) and
x(T ) = r(T ) then

x(S ∩ T ) = r(S ∩ T ) and x(S ∪ T ) = r(S ∪ T ).

Proof. From the lemma hypothesis,

r(S) + r(T ) = x(S) + x(T ) = x(S ∪ T ) + x(S ∩ T )

≤ r(S ∪ T ) + r(S ∩ T )

≤ r(S) + r(T ).

The first inequality is true since x satisfies (2). The second inequality is true by submodularity
(Lemma 2.1). Thus, all the inequalities are in fact equalities. Hence, the claim follows.

Lemma 3.2 allows us to partition the ground set E into a family of disjoint sets S that serve as
a basis to write every set T that satisfies x(T ) = r(T ) as a union of sets from S.
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Lemma 3.3. Let (E, I) be a matroid with family of base sets B and rank function r. Let F be a
face of the matroid base polytope P (B). Then there exists a family of disjoint sets S that form a
partition of E, such that for any S ∈ S there exists a number nS ≥ 0 such that for any x ∈ F ,

x(S) = nS .

Moreover,

(i) if for some T ⊆ E, x(T ) = r(T ) for all x ∈ F , then T is a disjoint union of sets from S,

(ii) if for some e ∈ E, xe = 0 for all x ∈ F , then there is an S ∈ S such that S = {e} and nS = 0.

Proof. We consider the equations of type x(T ) = r(T ) in F ,

T = {T ⊆ E | x(T ) = r(T ) ∀x ∈ F }.

Let T = {T1, T2, . . . , Tp}. Consider the family of sets

S = {R1 ∩R2 ∩ · · · ∩Rp | Ri ∈ {Ti, T i} for i = 1, 2, . . . , p }.

Clearly, the sets in S form a partition of E. We will show that for any S ∈ S, there exists a
number nS such that x(S) = nS , for all x ∈ F .

W.l.o.g. let S = T1 ∩ · · · ∩ Tj ∩ T j+1 ∩ · · · ∩ T p. Let us denote S′ = T1 ∩ · · · ∩ Tj (for j = 0,
let S′ = E), and S′′ = Tj+1 ∪ · · · ∪ Tp (for j = p, let S′′ = ∅). Then we have S = S′− (S′ ∩ S′′). As
x(Ti) = r(Ti), for each 1 ≤ i ≤ p, we get from Lemma 3.2

x(S′) = r(S′) and x(S′′) = r(S′′).

Again by Lemma 3.2, we have x(S′ ∩ S′′) = r(S′ ∩ S′′). Now,

x(S) = x(S′)− x(S′ ∩ S′′) = r(S′)− r(S′ ∩ S′′).

Hence, for nS = r(S′)− r(S′ ∩ S′′), we have x(S) = nS .
Claim (i) follows directly from the definition of S. For claim (ii), consider an element e ∈ E

such that xe = 0 for all x ∈ F . For any x ∈ F , we have x(E − {e}) = x(E)− xe = n = r(E − {e}).
Thus, E − {e} ∈ T . We claim that {e} ∈ S. To see this, define Ri to be Ti or T i, whichever
contains e. Then clearly, R1 ∩R2 ∩ · · · ∩Rp = {e}.

3.2 Faces of the Matroid Intersection Polytope

Let (E, I1) and (E, I2) be two matroids with family of base sets B1 and B2 and rank functions r1
and r2, respectively. By Theorem 2.3, the faces of polytope P (B1∩B2) can be described by replacing
some of the inequalities (4), (5), and (6) by equalities. This basically means that any face F of
P (B1 ∩ B2) can be written as F = F1 ∩ F2, for some faces F1, F2 of P (B1) and P (B2), respectively.
Using this fact, we get the following extension of Lemma 3.3 that will be crucial for our weight
assignment design.

Lemma 3.4. Let (E, I1) and (E, I2) be two matroids with families of base sets B1 and B2 and
rank functions r1 and r2, respectively. Let F be a face of the matroid intersection base polytope
P (B1 ∩ B2). Then there exist two families of disjoint sets S and T , each forming a partition of E,
such that for any S ∈ S and T ∈ T there exist numbers nS ,mT ≥ 0 such that for any x ∈ F ,

x(S) = nS and x(T ) = mT .

Moreover,
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(i) if for some R ⊆ E, x(R) = r1(R) for all x ∈ F or x(R) = r2(R) for all x ∈ F , then R is a
disjoint union of sets from S, respectively T ,

(ii) if for some e ∈ E, xe = 0 for all x ∈ F , then there is a S ∈ S and a T ∈ T such that
S = T = {e} and nS = mT = 0.

Proof. We define sets for each type of equality of face F ,

S0 = { e ∈ E | xe = 0 ∀x ∈ F },
T1 = {T ⊆ E | x(T ) = r1(T ) ∀x ∈ F },
T2 = {T ⊆ E | x(T ) = r2(T ) ∀x ∈ F }.

Now, define faces F1 and F2 of polytopes P (B1) and P (B2) respectively, as

F1 = {x ∈ P (B1) | x(S0) = 0 and x(T ) = r1(T ) ∀T ∈ T1 },
F2 = {x ∈ P (B2) | x(S0) = 0 and x(T ) = r2(T ) ∀T ∈ T2 }.

By Theorem 2.3, we have F = F1 ∩ F2. Applying Lemma 3.3 to F1 and F2 proves the lemma.

3.3 Cycles in Matroid Intersection

Let again B1 and B2 be the base sets of matroids (E, I1) and (E, I2), respectively. As mentioned
earlier, we will construct the weight assignment in rounds. In each round, we want the dimension
of the face of minimum weight common bases to become smaller. To measure this decrement, we
define a cycle with respect to a face.

Definition 3.5 (Cycle). Let F be a face of the polytope P (B1 ∩ B2) with the partitions S and T
as in Lemma 3.4. A sequence C = (e1, e2, . . . , e2r) of distinct elements of E is called a cycle with
respect to face F , if consecutive pairs are alternately in a set from S and a set from T . That is,
for i = 1, 2, . . . , r,

e2i−1, e2i ∈ Si, for some Si ∈ S,
e2i, e2i+1 ∈ Ti, for some Ti ∈ T ,

where e2r+1 = e1.

To motivate the definition, note that when we view bipartite matching as matroid intersection
then the cycles defined here are exactly the cycles in the corresponding graph.

Note that if every point in face F satisfies equation xe = 0 for some element e ∈ E, then e
cannot appear in any cycle defined with respect to F . This is because {e} appears as a singleton
set in both the partitions constructed for F .

First we show that cycles always exist as long as there are at least two bases in the face.

Lemma 3.6. Let B1, B2 be two bases in the face F of polytope P (B1 ∩ B2). Then B1 4B2 is a set
of disjoint cycles.

Proof. Let S and T be the two partitions of E as in Lemma 3.4. Then we have

|B1 ∩ S| = |B2 ∩ S| = nS , for every S ∈ S (8)

|B1 ∩ T | = |B2 ∩ T | = mT , for every T ∈ T . (9)

We construct the first cycle. Since B1 6= B2, there is an element e1 ∈ B1−B2. Let e1 ∈ S1∩T1,
for some S1 ∈ S and T1 ∈ T . As |B1 ∩S1| = |B2 ∩S1|, there must be another element e2 ∈ S1 such
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that e2 ∈ B2−B1. Now, let e2 ∈ T2. By a similar argument, there must be another element e3 ∈ T2
such that e3 ∈ B1 −B2. We keep finding such elements, alternatively from B1 −B2 and B2 −B1,
until we get back to an element already seen. These elements define the first cycle C.

For the next cycle, we iterate the above procedure, but switch to B′1 = B1 4C instead of B1.
Note that B′1 might not be a base anymore. But by the construction of C, equations (8) and (9)
still hold for B′1 and B2. This suffices for our purpose. The construction halts when B′1 = B2.

Note that there can be cycles which do not come from a symmetric difference of two bases. Let
CF denote the family of all cycles with respect to face F . By Lemma 3.6, we have CF 6= ∅, for any
face F of dimension ≥ 1.

Corollary 3.7. If CF = ∅, then F has dimension 0, i.e., F is just a point.

Consider a face F ′ ⊆ F . All equations that hold for F also hold for F ′. Therefore the partitions
of E that we get from F ′ will be refinements of those from F . Hence, when we go to a sub-face,
cycles are only destroyed; no new cycles are created.

Lemma 3.8. Let F, F ′ be two faces of P (B1 ∩ B2) such that F ′ ⊆ F . Then CF ′ ⊆ CF .

Thus, the strategy is to successively eliminate cycles to reach smaller and smaller faces, until
we reach a face F where CF = ∅. For this purpose, we define the circulation of a cycle.

Definition 3.9. For a weight assignment w : E → Z, the circulation cw(C) of a cycle C =
(e1, e2, . . . , ek) is defined as the alternating sum

cw(C) = |w(e1)− w(e2) + w(e3)− · · · − w(ek)|.

Let B1, B2 be two common bases with w(B1) = w(B2) such that C = B1 4B2 is a cycle. Then
we have cw(C) = |w(B1)− w(B2)| = 0. Our next lemma generalizes this observation to all cycles
in a minimum weight face F .

Lemma 3.10. Let F be a face of the polytope P (B1 ∩ B2). Let w : E → Z be a weight function
such that w · x is constant on F . Then cw(C) = 0, for any C ∈ CF .

Proof. Let C = (e1, e2, . . . , e2r) ∈ CF . We split C into two sets, C1 = {e1, e3, . . . , e2r−1} and
C2 = {e2, e4, . . . , e2r}. Now, define the circulation vector δC ∈ RE for cycle C as

δC = xC1 − xC2 .

Vector δC has alternating entries +1 and −1 on the cycle elements, and zeros elsewhere. Note that
cw(C) = |w · δC |. We will show that w · δC = 0.

Let {a1, a2, . . . , ap} be the set of corners of F . Consider their average a = (a1 +a2 + · · ·+ap)/p.
Clearly, a ∈ F . Now we move from point a along the vector δC and go to a new point b = a+ ε δC ,
for some ε ∈ R. We claim that b ∈ F , for small enough ε > 0. If this is true then w · a = w · b. By
the definition of b, we get

w · a = w · (a+ ε δC).

We conclude that w · δC = 0, which proves the lemma.
It remains to argue that b ∈ F . Consider an inequality which is not tight for F . Then, it will

not be tight for a too, because a is the centroid of F . One can choose ε > 0 to be small enough
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so that the inequality remains non-tight for b. So, we only need to care about the tight equalities
for F ,

S0 = { e ∈ E | xe = 0 ∀x ∈ F },
T1 = {T ⊆ E | x(T ) = r1(T ) ∀x ∈ F },
T2 = {T ⊆ E | x(T ) = r2(T ) ∀x ∈ F }.

We will show that b satisfies all these constraints. Consider an element e ∈ S0. By definition
of a, we have ae = 0. We already remarked above, that e cannot be a part of a cycle. Therefore,
we have be = ae, and hence be = 0.

Let S and T be the two partitions of E as in Lemma 3.4. From the definition of a cycle we
know that |C1 ∩ S| = |C2 ∩ S|, for any S ∈ S. Thus,

δC(S) = 0, for all S ∈ S.

Let R ∈ T1. By Lemma 3.4, R is the disjoint union of sets from S, Hence, we conclude that
δC(R) = 0. Therefore

b(R) = a(R) + ε δC(R) = a(R) = r1(R).

This shows the second constraint. Similarly, one can show the third constraint.

Let C be a cycle, say in P (B1∩B2), and let w be a weight function such that cw(C) 6= 0. Let F
be the face we get by minimizing w over P (B1 ∩ B2). It follows from Lemma 3.10 that C 6∈ CF .
This means that if w ensures nonzero circulation for all cycles in P (B1∩B2), then all cycles will be
eliminated, i.e., CF = ∅ and F will be a corner. Thus, w would be isolating. However, we cannot
achieve nonzero circulation for all cycles at once, as there are exponentially many possible cycles.

We get around this problem by constructing the weight function in rounds. In each round, we
double the length of the eliminated cycles and reach a face of smaller dimension. Thus, in logm
rounds, we eliminate all cycles and reach a corner. The following lemma shows that the number
of cycles we handle in each round remains small. A similar lemma for the number of cycles in a
graph was proved by Fenner et al. [FGT16].

Lemma 3.11. Let F be a face of P (B1 ∩ B2). If CF has no cycles of length ≤ r, for some even
number r ≥ 2, then CF has ≤ m4 cycles of length ≤ 2r.

Proof. Let S and T be the two partitions of E as in Lemma 3.4. Let C = (e0, e1, . . . , es−1) be a
cycle of length s ≤ 2r. We choose four elements from the cycle C which divide it into four almost
equal parts: Let (a, b, c, d) = (0, ds/4e, d2s/4e, d3s/4e). We associate the tuple (ea, eb, ec, ed) with
cycle C. Since we could choose cycle C with any of its element as a starting point, the ordered tuple
associated with C is not uniquely defined. However, we claim that the tuple uniquely describes C.

Claim 1. Cycle C is the only cycle in CF of length ≤ 2r that is associated with (ea, eb, ec, ed).

Proof. Suppose C ′ = (f0, f1, . . . , ft−1) is another such cycle of length t ≤ 2r. We will show that
there exists a cycle of length ≤ r, which will be a contradiction.

Let (a′, b′, c′, d′) = (0, dt/4e, d2t/4e, d3t/4e). From the assumption, e0 = f0, eb = fb′ , ec = fc′

and ed = fd′ . Without loss of generality, let C and C ′ differ in their first segment. Let 0 < p < b, b′

be the first index such that ep 6= fp. Let p < q ≤ b be the first index such that eq = fh for some
p < h ≤ b′. As ep−1 = fp−1, ep and fp both belong to some common S ∈ S or T ∈ T .

We consider two cases:
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(i) q and h have the same parity: because eq = fh, eq−1 and fh−1 belong to some common S
or T . Hence,
(ep, ep+1, . . . , eq−1, fh−1, fh−2 . . . , fp) forms a valid cycle.

(ii) q and h have a different parity: then the sequence
(ep, ep+1, . . . , eq−1, fh, fh−1 . . . , fp) forms a valid cycle as eq−1 and fh both belong to some
common S or T .

The cycles we get in both cases have length ≤ q − p+ h− p+ 1 ≤ b− 1 + b′ ≤ r.

There are at most m4 ways to choose the tuple (ea, eb, ec, ed). By Claim 1, this gives a bound
on the number of cycles of length ≤ 2r.

There are standard techniques to give nonzero weights to a small number of sets (see, for
example [FKS84]).

Lemma 3.12. For any number s, one can construct a set of O(m2s) integer weight functions on
the set [m] with weights bounded by O(m2s) in NC such that for any set of s cycles, one of the
weight functions will give nonzero circulation to each of the s cycles.

For a proof see [FGT16, Lemma 2.3]. We apply Lemma 3.12 to a set of s = m4 cycles. Then,
in each round, we get a set of O(m6) weight functions, each bounded by O(m6).

3.4 Isolating Weight Construction

Now, we are ready to describe the construction of the isolating weight assignment. Let the two
given matroids be (E, I1) and (E, I2) with family of base sets B1 and B2, respectively. Let m = |E|
and t = dlogme. We will define a sequence of weight functions and faces of P (B1 ∩ B2). Let
F0 = P (B1 ∩ B2). For i = 0, 1, . . . , t− 1, define

wi: a weight assignment such that cwi(C) 6= 0, for any cycle C ∈ CFi of length ≤ 2i+1,

Fi+1: the set of points in Fi minimizing the weight function wi.

We combine the weight functions w0, w1, . . . , wt−1 with decreasing precedence. Let N be a
number that is larger than the weight of any point in P (B1 ∩ B2) with respect to any of these
weight functions. We will see later that choosing N = O(m7) suffices. For i = 0, 1, . . . , t− 1, define

Wi = w0N
i + w1N

i−1 + · · ·+ wiN
0.

Our final weight assignment will be Wt−1.

Claim 2. Fi+1 is the set of minimum points in P (B1∩B2) with respect to Wi, for i = 0, 1, . . . t−1.

Proof. We prove this by induction. The claim is clearly true for i = 0. Now, assume that Fi is the
set of points in P (B1 ∩ B2) that minimizes Wi−1. Then Fi is also the set of points that minimizes
N Wi−1. As N Wi−1 always dominates wi, the set of points that minimizes Wi = N Wi−1 +wi will
be a subset of Fi. This subset is exactly those points in Fi where wi is minimized, that is Fi+1.

Claim 3. CFi has no cycles of length ≤ 2i, for i = 1, 2, . . . t.
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Proof. By the definition of wi−1, cwi−1(C) 6= 0 for any cycle C ∈ CFi−1 of length ≤ 2i. As wi−1 is
constant over the face Fi, we have cwi−1(C) = 0, for all cycles C ∈ CFi , by Lemma 3.10. Recall
Lemma 3.8 that CFi ⊆ CFi−1 . Thus, CFi has no cycles of length 2i.

Lemma 3.13. Weight function Wt−1 is isolating.

Proof. By Claim 2, the face minimized by Wt−1 is Ft. By Claim 3, CFt has no cycles of length
≤ 2t = m. That is, CFt = ∅. By Corollary 3.7, Ft has only one corner, i.e., Wt−1 is isolating.

Since CFi has no cycles of length ≤ 2i (Claim 3), the number of cycles in CFi of length ≤ 2i+1

is at most m4 (Lemma 3.11). Thus, wi needs to give nonzero circulations to at most m4 cycles.
By Lemma 3.12, each wi has weights bounded by O(m6). Hence, it is sufficient to choose N to be
O(m7). It follows that Wt−1 will have weights bounded by O(m7 logm). By Lemma 3.12, we get
O(m6) possible weight functions for each wi, and therefore O(m6 logm) combinations for Wt−1. We
need to try all of them in parallel.

Lemma 3.14. For a given number m, we can construct O(m6 logm) weight functions on [m] with
weights bounded by O(m7 logm) such that for any matroid intersection on the ground set [m], one
of the weight functions isolates a common base.

As mentioned in Section 2, by plugging-in a isolating weight assignment in the determinant poly-
nomial we can decide whether there exists a common base. As our weights are quasi-polynomially
bounded, the determinant entries will have quasi-polynomial bits. Thus, the determinant can be
computed in quasi-NC2 [Ber84, BCP84]. This proves Theorem 3.1.

4 Applications

We already mentioned the connection of our isolating weight construction to Polynomial Identity
Testing in Section 2.4. In this section, we extend the class of polynomials even further where our
technique applies. Then we show that this extended class of polynomials can be used to solve the
matroid union problem in quasi-NC.

4.1 Polynomial Identity Testing (PIT)

The weight assignment constructed in Lemma 3.14 yields a quasi-polynomial time blackbox identity
test, i.e., a hitting set, for polynomials of the form D = UZV T, where U, V are n ×m matrices
over some field F, and Z is a m×m diagonal matrix with Zi,i = zi, for i = 1, 2, . . . ,m. To see this,
recall from Section 2.4 that if w is isolating for the common bases of U and V , then the univariate
polynomial det(D)(z), obtained after substituting ze = zw(e), for each e ∈ [m], is nonzero. Since w
has weights bounded by mO(logm), the degree of the polynomial det(D)(z) is bounded by mO(logm).
Thus, any set of mO(logm) field elements constitutes a hitting set for det(D)(z).

Let ui and vi be the i-th columns of U and V , respectively. Then we can rewrite D as D =∑m
i=1 ziuiv

T
i . Note that any rank-1 matrix is of the form uvT for some u, v ∈ Fn. Thus we get the

following corollary.

Corollary 4.1. In quasi-polynomial time, one can compute a hitting set for polynomials of the form
det(

∑m
i=1 ziAi), where Ai is an n×n matrix of rank at most 1 over some field F, for i = 1, 2, . . . ,m.

We can further generalize the class of polynomials we can handle and add an arbitrary constant
matrix A0, i.e., with no rank restriction.
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Theorem 4.2. There is an (m + n)O(log(m+n))-size hitting set for polynomials of form det(A0 +∑m
i=1 ziAi), where Ai is an n× n matrix over some field F, for i ≥ 0, and is of rank at most 1, for

i ≥ 1.

Let U and V be the matrices from above such that

A0 +
m∑
i=1

ziAi = A0 + UZV T.

Observe that the entries of this matrix are linear forms in the variables z1, z2, . . . , zm. The following
lemma constructs a matrix M such that det(A0+UZV T) = det(M) and the entries of M are either
constant or a single variable zi. Moreover, every variable zi occurs only once in M . This rank-one
to read-once reduction is due to Matthew Anderson, Amir Shpilka and Ben Lee Volk [ASV16].

Lemma 4.3 ([ASV16]).

det(A0 + UZV T) = det

 I Z 0
0 I V T

U 0 A0

 . (10)

Proof. Let A,B,C,D be matrices where A and D are square matrices and A is invertible. Then
we have (

A B
C D

)
=

(
A 0
C I

)(
I A−1B
0 D − CA−1B

)
and hence,

det

(
A B
C D

)
= det(A) det(D − CA−1B). (11)

We split the matrix on the right hand side of (10) into

A =

(
I Z
0 I

)
, B =

(
0
V T

)
, C =

(
U 0

)
, D = A0

and apply Equation (11). We have det(A) = 1. Note that A−1 =

(
I −Z
0 I

)
, and therefore we get

D − CA−1B = A0 + UZV T. This proves the lemma.

Murota [Mur93] has shown that PIT for read-once matrices reduces to the matroid intersection
problem. We present the reduction in a way that is suitable for blackbox identity testing. Let
Q(z) = det

(
A0 + UZV T

)
. By Lemma 4.3, polynomial Q(z) is multilinear.

The first step is to homogenize Q(z). Consider the polynomial

Q′(z1, z2, . . . , z2m)

= zm+1zm+2 · · · z2m ·Q(z1/zm+1, z2/zm+2, . . . , zm/z2m),

where zm+1, zm+2, . . . , z2m are new variables. Observe that Q′ is homogeneous, every mono-
mial in Q′ has degree m. Note also that Q′ 6= 0 if and only if Q 6= 0. Moreover, if Q′ is
nonzero at a point (α1, α2, . . . , α2m), where αm+1, . . . , α2m 6= 0, then Q is nonzero at the point
(α1/αm+1, α2/αm+2, . . . , αm/α2m). Thus, it suffices to find a hitting set for Q′.

Let Z ′ be the m×m diagonal matrix with Z ′i,i = zm+i. Then we can write

Q′(z) = det

Z ′ Z 0
0 I V T

U 0 A0

 ,
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Compared with the representation of Q in (10), the matrix here has Z ′ in the left upper corner
instead of I. That is, there are only variable entries in the first m rows, and zeros, but no other
constants. We will take advantage of this representation.

Define matrices

Y =

(
0 I V T

U 0 A0

)
and L =

(
Z ′ Z 0

Y

)
.

Hence Q′(z) = det(L). Let Yi be the i-th column of Y , for 1 ≤ i ≤ 2m + n. Since variables zi
and zm+i are in the same row of L, exactly one of them will appear in any monomial of Q′(z),
for each 1 ≤ i ≤ m. For any such monomial

∏
i∈S zi with S ⊆ [2m], its coefficient is nonzero if

and only if the columns {Yi}i∈[2m+n]−S are linearly independent. With these observations, we can
show that the monomials of Q′(z) exactly correspond to the common bases of two matroids: Let
E = [2m+ n].

• The first matroid M1 = (E, I1) is defined by the m× (2m+n) matrix
(
I I 0

)
. The matrix

has two ones in every row, at position i and i+m. Therefore any base set of matroid M1 has
exactly one of the two elements i,m+ i, for each 1 ≤ i ≤ m, and no elements > 2m. Let the
collection of all its base sets be B1.

• Let matroid M2 = (E, I2) be defined by the (m + n) × (2m + n) matrix Y . Our second
matroid is its dual matroid M∗2 = (E, I∗2 ). Let the collection of all base sets of M∗2 be B∗2.

Now the monomials in Q′(z) exactly correspond to the sets in B1 ∩B∗2. Thus, we can construct an
isolating weight assignment for the monomials of Q′(z), which gives us a hitting set. As we have
to try quasi-polynomially many weight assignments, our hitting set size is quasi-polynomial. This
proves Theorem 4.2.

4.2 Maximum Rank Matrix Completion

In the maximum rank matrix completion problem, we are given a partially filled matrix and the
goal is to complete the matrix so as to get the maximum possible rank. The problem reduces to
PIT as follows. Consider the matrix A obtained by filling in a distinct variable zi for each blank
entry in the given matrix. Note that A can be written in the form A0 +

∑m
i=1 ziAi, where A0 is the

matrix with the already filled in entries, and 0 at all the blank positions. Here m = n2, that is, for
1 ≤ i ≤ n2, each Ai represents an entry of the matrix A. If Ai corresponds to a blank position then
it has one entry 1 at the blank position and 0 at all other entries. Otherwise Ai is the zero matrix.
Note that A1, A2, . . . , Am have rank at most 1. We need to find a substitution for the variables
which maximizes the rank of A.

Let z = (z1, z2, . . . , zm) and z = α = (α1, α2, . . . , αm) ∈ Fr be a substitution that achieves
the maximum rank, say r. Then there is an r × r sub-matrix B of A such that det(B(z = α)) is
nonzero. Thus, the polynomial det(B(z)) must be nonzero as well. Note that the matrix B has
the same form as A, that is, B = B0 +

∑m
i=1 ziBi, where B1, B2, . . . , Bm are rank≤ 1 matrices.

Therefore, our hitting set constructed in Theorem 4.2 works for det(B). That is, when the
variables z are substituted with points α from our hitting set, det(B(z = α)) will be nonzero for
at least one of the points α. For such a point α, matrix A(α) has the maximum rank.

Note however that we do not know which point in the hitting set will achieve the maximum
rank. It turns out that we can combine all the points in the hitting set to construct one fixed
substitution which achieves the maximum rank for all possible choices of the already filled in
entries, i.e., A0. For this purpose, one can use the well-known technique of Lagrange interpolation
(see, for example [For14, Lemma 3.2.22]).
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Lemma 4.4 (Lagrange Interpolation). Let H ⊂ Fr be a hitting set for a family of polynomials
P ⊆ F[z1, z2, . . . , zr]. Let {αh}h∈H be distinct field elements and t be a variable. Then each
polynomial p in P has a nonzero evaluation over the field F(t) at

L(t) =
∑
h∈H

h

∏
h′∈H−{h}(t− αh′)∏

h′∈H−{h}(αh − αh′)
.

Proof. Let p ∈ P. Since H is a hitting set, there exists an h ∈ H such that p(h) 6= 0. Note that
L(αh) = h. Thus, p(L(αh)) 6= 0 and hence p(L(t)) 6= 0.

We apply Lemma 4.4 with r = m. After substituting z = L(t) in A, the entries in the resulting
matrix A(t) are univariate polynomials in t of quasi-polynomial degree, since our hitting set has
quasi-polynomial size. The polynomial det(B(z = L(t))) will be nonzero as a univariate polynomial.

If our field are real or rational numbers, we can choose t to be larger than the absolute values
of the coefficients of the poynomials in L(t). Then the univariate polynomial det(B(z = L(t)))
remains nonzero. The size of these coefficients are bounded by poly(n), if the matrix A and its
entries have sizes bounded by n. Thus, t can be replaced with a number of size poly(n). After this
replacement, the entries of A have size nO(logn), since the entries of A(t) are univariates of degree
nO(logn).

Theorem 4.5. Given a partially filled matrix of size n×n and with entries having bit-size n, there
is a quasi-NC algorithm to find a fixed substitution (of size nO(logn)) for the blank entries which
maximizes the rank of the matrix, irrespective of where and what the given entries in the matrix
are.

4.3 Matroid Union

For matroids M1 = (E1, I1),M2 = (E2, I2), . . . ,Mk = (Ek, Ik), their union M = M1∨M2∨· · ·∨Mk

is defined as (E, I), where E =
⋃k

i=1Ei and

I = {
k⋃

i=1

Ii | Ii ∈ Ii, for 1 ≤ i ≤ k }.

It is known that M is again a matroid, and M is linear when M1,M2, . . . ,Mk are linear, see [Sch03].
The matroid union problem is to compute a base of the matroid union M i.e., to compute

independent sets Ii ∈ Ii for 1 ≤ i ≤ k which maximize |I1 ∪ I2 ∪ · · · ∪ Ik|. The simple greedy
algorithm for matroids does not work, because it is not immediately clear how to test if a set is
independent in M . The problem thereby is that the groundsets Ei may overlap each other. In case
that the sets Ei are pairwise disjoint, one can simply put the matrices Ai representing Mi as blocks
in a block-diagonal matrix A. Then A is a linear representation of M and we can easily solve the
matroid union problem.

In general, the groundsets Ei overlap each other. Inspired by the disjoint case, the idea now is
to work with a disjoint union of the ground sets as one matroid and then define a second matroid
that allows to take only one copy of an element in the disjoint union. The intersection of the two
matroids describes M . In more detail, the reduction from union to intersection is as follows. We
define two matroids M ′ and M ′′.

1. Matroid M ′ = (E′, I ′) is defined by the disjoint union of M1,M2, . . . ,Mk. That is,

E′ = E1 t E2 t · · · t Ek = { (e, i) | e ∈ Ei }.
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A set I ′ is independent in M ′ if I ′ = I1 t I2 t · · · t Ik, for k independent sets I1, I2, . . . , Ik of
M1,M2, . . . ,Mk, respectively.

2. Matroid M ′′ = (E′, I ′′) is a partition matroid on the same ground set E′. The sets that
partition E′ are the copies of e in E′. That is, for e ∈ E, define Be = { (e, i) | e ∈ Ei } ⊆ E′.
A set I ′′ is independent in M ′′ if |I ′′ ∩Be| ≤ 1, for all e ∈ E.

Now observe that for a common independent set Î of M ′ and M ′′, the projection

I = { e ∈ E | (e, i) ∈ Î for some i ∈ [k] }

is independent in I. Conversely, every independent set I of M corresponds to a common indepen-
dent set Î of M ′ and M ′′. Note that |I| = |Î| in both directions. Note also that M ′ and M ′′ are
linear when M1,M2, . . . ,Mk are linear.

Hence, the matroid union problem reduces to matroid intersection, and thus has a polynomial-
time algorithm [Edm68, Sch03]. Also, our quasi-NC algorithm for matroid intersection implies a
quasi-NC algorithm for matroid union.

Theorem 4.6. Linear Matroid Union is in quasi-NC.

In case of linear matroids, another interesting question is to compute a linear representation
for the matroid union. Narayanan, Saran, and Vazirani [NSV94] gave a randomized NC-algorithm
for computing such a linear representation. It turns out that we can derandomize their algorithm
with our PIT result.

The construction of the linear representation is as follows. Suppose the matroidsM1,M2, . . . ,Mk

are given by matrices U1, U2, . . . , Uk, respectively. Without loss of generality, one can assume that
all the matroids have the same ground set, i.e., each Ui and Uj have a one-to-one correspondence
between their columns. If not, then one can add extra zero columns to the matrices. We want to
find a representation of M = M1 ∨M2 ∨ · · · ∨Mk.

Let the dimensions of Ui be ni×m, for 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, define U ′i to be an ni×m
matrix such that its j-th column is the j-th column of Ui, multiplied by a variable zi,j . Define the
(n1 + n2 + · · ·+ nk)×m matrix V by stacking the matrices U ′1, U

′
2, . . . , U

′
k one below another,

V =


U ′1
U ′2
...
U ′k


Then a set I is independent in M if and only if the corresponding columns VI in V are linearly
independent (over the field F(zi,j)i,j) [NSV94, Lemma 3.1]. To get a matrix over the base field,
one can plug-in random values for the variables zi,j . This works because a random substitution
preserves the nonzeroness of minors with high probability [DL78, Sch80, Zip79].

Note that in the matrix V , any variable zi,j appears only in the j-th column. Thus, any minor
of V will be a polynomial of the form det(

∑
i,j Ai,jzi,j), where matrix Ai,j has rank 1, for 1 ≤ i ≤ k

and 1 ≤ j ≤ m. This is precisely the form for which we have given a hitting set in Theorem 4.2.
Thus, any nonzero minor of V will have a nonzero evaluation at least at one point of the hitting
set.

However, this does not yet solve our problem because we need to find one substitution which
works simultaneously for all nonzero minors. For this, one can again use the technique of Lagrange
interpolation, as in the previous subsection (Lemma 4.4).
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We apply Lemma 4.4 (with r = km) to combine the hitting-set into one substitution. After
substituting the variables (zi,j)i,j in V by L(t) (from Lemma 4.4), the entries in the resulting
matrix V (t) are univariate polynomials in t of quasi-polynomial degree, since our hitting set has
quasi-polynomial size. As argued in the previous subsection, t can be replaced with a field value of
size poly(m) while preserving the nonzeroness of each minor, where the matrices M1,M2, . . . ,Mk

have their entry sizes bounded by poly(m). Finally, after substituting t with such a large enough
value, the entries in V have quasi-polynomial size since the univariate polynomials in V (t) have
quasi-polynomial degree.

Theorem 4.7. Given linear matroids M1,M2, . . . ,Mk each with ground set size m, there is a
quasi-NC algorithm to compute a linear representation V of M = M1 ∨M2 ∨ · · · ∨Mk, where the
entries of matrix V are of size 2O(log2(mk)).

4.4 Some More Combinatorial Problems

To illustrate the wide range of matroid intersection, we give a few more examples of combinatorial
problems which are known to reduce to linear matroid intersection (see [Sch03]).

Two edge-disjoint spanning trees in a graph. This problem can be reduced to the inter-
section of a graphic matroid and a cographic matroid. Recall that for an undirected connected
graph G = (V,E), the graphic matroid has ground set E and any forest in G is an independent
set. Thus, any spanning tree in G is a base set. In the cographic matroid of G, a set of edges is
independent if its removal keeps the graph connected. Both the matroids are known to be linear
(see, e.g. [Oxl06]). Now, to find two edge-disjoint spanning trees in G, we find the maximum edge
set which is independent in both, the graphic and the cographic matroid. This will be a spanning
tree whose removal keeps the graph connected. Thus, after removing this tree, we can find another
spanning tree in the resulting graph.

Rainbow spanning tree in an edge-colored graph. Given a graph with colored edges, the
problem asks if there is a spanning tree with all its edges having distinct colors. To capture this by
matroid intersection, define the first matroid to be the graphic matroid of G. The second matroid
is a partition matroid, where each set of the partition consists of the edges of one color. A set is
independent if it contains at most one edge of a color.

Arborescence in a directed graph. An arborescence is a directed acyclic graph, that has a
vertex r, called the root, such that for any vertex v, there is exactly one path from r to v. In the
r-arborescence problem we have given a directed graph G and a vertex r. The task is to find an
arborescence in G with root r.

Note that an r-arborescence is any set of edges which form a spanning tree in the underlying
undirected graph and for each vertex v other than the root, it has exactly one edge incoming to v.
Hence, we can express the problem as the intersection of two matroids: The first matroid is the
graphic matroid of the underlying undirected graph. The second matroid is a partition matroid
with the partition ∪vEv, where Ev is the sets of edges incoming to the vertex v. (We may assume
that there are no edges incoming to the root r).

Shortest R-S biconnector and a longest R-S biforest of a graph. For a graph G = (V,E)
and a partition of V into R and S, an R-S biconnector is a set F ⊆ E, such that each component
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of (V, F ) intersects both R and S [Sch03, Chapter 54]. If F has minimum size, it is a shortest
biconnector.

A spanning set in a matroid is a set which contains a base set. In case of graphic matroids, a
spanning set is any subset of edges which forms a connected graph. The shortest R-S biconnector
problem reduces to the shortest common spanning set of two matroids.

The reduction goes as follows. Define graph GR from G by contracting the set R to one vertex.
The edges within R are kept as self-loops. Define graph GS similarly for S. Let MR and MS be
the graphic matroid for GR and GS , respectively. Now observe that a set is a R-S biconnector if
and only if it is a spanning set in MR and MS .

To reduce the problem of shortest common spanning set to maximum common independent set,
recall that the complement of a spanning set is an independent set of the dual matroid. Thus, the
problem reduces to maximum common independent set of the two dual matroids.

An R-S biforest is a forest F such that each component of (V, F ) has at most one edge in the
cut δ(R). The reduction to linear matroid intersection is similar as above. Let u be a vertex in R
and v be a vertex in S. Define the graph Gu from G as follows: for any edge e which has one
endpoint in R and the other in S, change the endpoint in R to u. Define graph Gv similarly with
respect to S and v. Then a common independent set of the two graphic matroids corresponding
to Gu and Gv is precisely an R-S biforest.

5 Discussion

One of the main open questions is to do isolation with polynomially bounded weights, or to come
up with a different NC-algorithm for linear matroid intersection. It would be interesting to find out
for what polytopes our isolation technique works. For general matroids, the parallel complexity of
matroid intersection is not clear. Can we find an NC algorithm (randomized or deterministic) for
the general case.

A generalization of matroids are polymatroids. These are polytopes similar to the matroid poly-
tope, where instead of the rank function one can use any submodular function that is nonnegative
and nondecreasing. The key argument in our construction is the structure of the faces of the ma-
troid intersection polytope, which basically comes from Lemma 3.2. Note that for the proof of this
lemma, the only property used was submodularity of the rank function. Thus, one can verify that
the whole argument generalizes to polymatroid intersection. That is, our weight function isolates
a corner in a polymatroid intersection polytope.

Another generalization of matroid intersection is matroid matching, which also captures perfect
matchings in general graphs (not necessarily bipartite).
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