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Abstract

The need for mosaicing arises when we want to stitch two or more images together so as
to view them as a single continuous image. There are various ways to construct mosaics
of images, one of them being Spherical Mosaics. As the name suggests, it allows any
number of images to be merged into a single, seamless view, simulating the image that
would be acquired by a camera with a spherical field of view.

In this report we focus on an algorithm for constructing spherical mosaics from a
collection of images taken from a common optical center. Partially overlapping images,
an adjacency map relating the images, initial estimates of the rotations relating each
image to a specified base image, and approximate internal calibration information for the
camera form the inputs for the algorithm. The algorithm’s output is a rotation relating
each image to the base image and revised estimates of the camera’s internal parameters.
We also compare two different optimization techniques ( local and global ) and show why
global optimization technique is much more superior to the local one.

We study the details of this algorithm and also provide the details of our work in this
area which overcomes some limitations of the algorithm as described in [1].



Chapter 1

Introduction

1.1 What is Spherical Mosaicing ?

The need for mosaicing arises when we want to stitch two or more images together so as
to view them as a single continuous image. There are various ways to construct mosaics
of images, one of them being Spherical Mosaics [1]. As the name suggests, it allows
any number of images to be merged into a single seamless view, simulating the image
that would be acquired by a camera with a spherical field of view. Images shown here
describes a somewhat hemispherical point of view but it can be extended to full spherical
arrangements of images.

Figure 1.1: Two typical mosaics shown as sphere and cylinder



Figure 1.2: The roughly hemispherical tiling for a node of the dataset

1.2 A Brief Review of the Basic Concepts

Let us review some of the basic concepts useful in making us understand the spherical

mosaicing technique.

1.2.1 Image formation by perspective projection

S=[XY Z](world)

S=[xc yc zc] (camera)

X P=[Px Py PZ]

Figure 1.3: Overview of Perspective Projection

Above figure shows the process of image formation by perspective projection, illus-
trated for a point s = [z y 2| as viewed by a camera at world-space position p = [p, py, p].
The rotation from the global coordinate system XYZ to the camera coordinate system
X'Y'Z'" is specified by a 3 x 3 rotation matrix R.



Now,
se = R(s —p)

where s. = [z y z| are the coordinates of s in the camera’s coordinate system. Now
we scale the x and y co-ordinates by depth as

_Z — Y
Tr=0Yr=

After scaling it, we now apply the intrinsic camera parameters to complete the trans-
formation. The final values are:

o= forte ¥ =fute

Thus, the entire transformation can be represented in a matrix form using projective

geometry [2] as :
!

y' =2KM

Z,

R —R,

. (1.1)

z

where Kthe 3 x 3 (upper-triangular) internal camera parameter matrix:

[0 ¢
0 f ¢
00 1

and M is the 3 x 4 canonical perspective projection matrix:

o O =
o = O
_ o o
o O O

1.2.2 Introduction to Quaternions

Let us have a quick review of what quaternions are, why are they needed and their
advantages [9] and [5].

1.2.2.1 Why Quaternions ?

A common problem in computer vision is solving for rigid body motions or poses con-
sisting of a rotation and translation in 3D space. For example, given a set of points z;
and correspondences p;, it is often of interest to compute the 3 x 3 rotation matrix R and
3-vector translation ¢ such that



R.TZ'-Ft:pi

Although this system of equations is essentially linear, a number of problems arise when
formulating solutions that account for the non-linear constraints on the components of
R. The constraints arise from using nine values of rotation matrix R to represent three
independent variables of 3D rotation. The rotation matrix is constrained to be orthogonal
which is satisfied when RTR = I (i.e., the rows and columns are orthonormal). Also, the
rotation must not be a reflection; this is satisfied when the determinant is 1 (| R | = 1).

A number of techniques have been developed to deal with this added complexity. One
of the most convenient is the quaternions representation.

Here are some of the advantages and mathematical niceties of the quaternion repre-
sentation of rotation.

e Quaternions can be composed/multiplied in a straightforward manner to accumulate
the effects of composed rotations.

e The inverse of a quaternion (specifying the inverse rotation) is obtained by simply
negating 3 components of the quaternion vector.

e The rotation between two rotations can be computed by multiplying one quaternion
with the inverse of the other.

e One can easily transform a quaternion into an axis-and-angle representation. Using
this and the previous item, one can compute a rotational distance metric between
two rotations — the angle of rotation between them.

e Quaternions can be easily transformed to a 3 x 3 rotation matrix for efficient com-
putation when rotating vectors.

e With the quaternion representation, the rotation can be solved for in closed form
when correspondences between three-dimensional point sets are available.

e Maintaining the constraints (orthogonal with unit determinant) of rotation is made
simple with quaternions by standard vector normalization.

e The unit quaternion representing the best rotation is the eigenvector associated
with the most positive eigenvalue of a symmetric 4 X 4 matrix. The elements of this
matrix are combinations of sums of products of corresponding coordinates of the
points.

e Suppose that we are given the coordinates of a number of points as measured in two
different Cartesian coordinate systems. The photogrammetric problem of recovering
the transformation between the two systems from these measurements is referred



to as that of absolute orientation. Let us call the two coordinate systems ”left”
and ”right.” A desirable property of a solution method is that, when applied to
the problem of finding the best transformation from the right to the left system, it
gives the exact inverse of the best transformation from the left to the right system.
Symmetry is guaranteed when one uses unit quaternions to represent rotation.

e It is much simpler to enforce the constraint that a quaternion have unit magnitude
than it is to ensure that a matrix is orthonormal.

1.2.2.2 What are Quaternions ?

The quaternion q is a four vector [g;, ¢y, ¢, qo]" which is often considered as a three-
vector u = [g, ¢y, ¢.)* and a scalar s = go. Also it has the property that go® + ¢,* +
¢,°> + ¢;> = 1. Quaternion q is generally referred to as [u, s|* for notational simplicity.

The dot product and vector norm for quaternions is defined as usual

Q1 Q2 = U1 - Uy + S1S2

_1
2

lq|=1(g-9)
Multiplication is defined over quaternions as
1q2 = [[s1u2 + Sour + ur X ug], 5189 — Uy - Ug]

The complex conjugate of a quaternion is defined by negating the vector component
and is denoted § = [—u, s]T. The complex conjugate of a unit quaternion, |q| = 1, is
the inverse of the quaternion with respect to multiplication, i.e., ¢q¢ = q;, where gq; =
[0,0,0,1]7. Also gq; = qrq = q which is why g; is referred as the identity quaternion.

1.2.2.3 Rotations as Quaternions

A unit quaternion q can be used to perform a rigid rotation of a vector x = [z, vy, z]T by
two quaternion multiplications

[S IS
|

0

where the scalar component of x is simply set to zero. Observe that quaternion
multiplication is not commutative; this is consistent with the fact that general three-
dimensional rotations do not commute; however, quaternion multiplication is associative
and distributive.



Working from this definition of quaternion rotation, one can derive a formula for the
corresponding orthogonal (Euclidean) 3 x 3 rotation matrix from a unit quaternion

(90* + ¢.° — ¢,° — ¢.%) 2(¢29y — 9042) 2(¢29: + 0y)
R,(q) = 2(qyqz + 902:) (9 — ¢.° + ¢° — ¢.°) 2(qyq: — 90qz)
2(¢:9z — Qogy) 2(¢:qy + Q04:) (@° — &2 — ¢° + ¢.)

The subscript » in R, is used to denote that this is the rotation matrix when given
a unit quaternion. Given an arbitrary quaternion, R, would no longer be unitary but
rather a scaled rotation matrix.

1.2.3 2-D Projective Transformations

Figure 1.4: Transforming pixels from image 1 to space of image 2

Figure illustrates the relationship between two images taken from a fixed optical center,
but with differing orientations. In such cases, pixels in one image can be mapped to the
other image by a 2-D projective transformation [4]. As stated in [4], Given a pair of
1mages taken by cameras with the same internal parameters from the same location, then
there is a projective transformation P taking one image from the other. Furthermore,
P is of the form P = KRK™' where R is a rotation matriz and K is the calibration
matriz. Unlike simpler 2-D transformations (translation, rotation, affine), the projective
transformation does not preserve parallel lines. This is evident in the above figure, where
the lines bounding image 1 intersect after transformation.

As depth effects do not occur across two images taken from the same optical center
[4, 7], the general perspective projection (Equation 3.1) simplifies to:

6



1 z
Inverting Equation 4.1 yields:
x x
y | 2RIKTH| Y (1.3)
z 1

Above equation converts image co-ordinates to 3-D. Thus pixel coordinates in image
2 can be obtained by projecting back into image 2’s space using Equation 4.1:

T2 Z1
yo | L KRRT'K™' | oy (1.4)
1 1

Thus the 2-D projective transformation that maps pixel (z1,y;) of image 1 to pixel
(x2,y2) of image 2 is :

P = KRyR{'K™! (1.5)

As a consequence, only eight parameters are needed to describe the matrix P. Thus
2-D projective transformations are also known as 8-parameter warps.



1.3 Organization of Report

In chapter one, we had a brief overview of what does Spherical Mosaicing stand for. We
also reviewed some of the basic concepts like image formation via perspective projection,
use of quaternions as a form of representation for rotation along with some of its nice
properties[9] and [5], and 2-D projective transformations and methods to compute them,
which are required to understand the Spherical Mosaicing optimization algorithm. In
chapter two, we will describe in detail the Spherical Mosaicing algorithm along with a
couple of optimization techniques, viz. Local Optimization technique and Global Opti-
mization Technique. The former although being theoratically elegant, yields qualitatively
inaccurate results. We will see how the latter solves this problem by computing rotations
and internal parameters directly from the image-space correlation using Global Optimiza-
tion. In chapter three, we will have a look at the implementation details of the algorithm
along with some modifications in terms of getting the initial rotation estimates as well
as the optimization technique applied. In short, it tells us what our contributions and
results are. Chapter four gives a brief idea of the future work to be carried out.



Chapter 2

Spherical Mosaicing

2.1 Introduction

Spherical Mosaicing algorithm allows any number of images to be merged into a single
seamless view, simulating the image that would be acquired by a camera with a spherical
field of view. Partially overlapping images, an adjacency map relating the images, initial
estimates of the rotations relating each image to a specified base image, and approximate
internal calibration information for the camera form the inputs for the algorithm. The al-
gorithm’s output is a rotation relating each image to the base image and revised estimates
of the camera’s internal parameters, thereby computing a spherical mosaic, a composite
of all images corresponding to a single node.

[1] uses the camera instrument to annotate each acquired image with an estimate of
absolute 6-DOF pose (exterior orientation) — 3 DOF of position, and 3 DOF of orienta-
tion for the acquiring camera. Thus the acquisition system provides both an adjacency
map for images in the mosaic, and an initial estimate of the rotations relating each image
to its neighbors. But these estimates are not accurate and calls for some pose-refinement
algorithm. How to optimize and refine these estimates is described in the following sec-

tions.

2.2 Local Optimization Technique and its Demerits

2.2.1 The Technique

This section presents a novel idea to compute the warps [7]. The idea is to compute
a warp that (locally) minimizes image-space error by using nonlinear optimization after
having the initial estimates. The error function for this optimization simply measures the
difference in brightness between two images 1 and 2 (in the overlap region), after pixels
in image 1 are mapped to image 2’s space. The difference in brightness is measured by a



sum-of-squared difference (SSD) error metric using the luminances L1 and L2 of images
1 and 2, respectively:

Ep = Zm,yl (Ll(xlayl) - L2(P('T11 yl)))

The SSD form is well suited for numerical optimization, as only first order derivatives are
required to compute updated values for the iteration.
A single error term is defined as:

eil,yl = (Ll(xbyl) - L2($2ay2))2

The optimization consists of analytically determining derivatives of the above term

with respect to P. It use Levenberg-Marquardt (LM) non-linear optimization technique

Oexy,y
oP

derivatives w.r.t each entry of P.

for the same. The derivative is expressed as an 8-component vector consisting of

The following figures shows images in which the first image represents image after the
initial estimates of the warp.Note that incorrect transformations arising from inaccurate
estimates of camera pose result in mismatches between pixels, causing the blurring and
ghosting as seen. The second image is the image after optimization.

{b] (c)

Figure 2.1: Part(a) shows one image of a hemispherical tiling blended with its adjacent
images. Part(b) illustrates blurring due to incorrect pose estimates. Part(c) shows the
same view after optimization.

10



Figure 2.2: The projective warp between two images before and after optimization

2.2.2 Demerits of above discussed Technique

From empirical evidences it has been seen that this technique of estimating
rotations seems to be inaccurate. This can be observed in form of large gaps between

image borders although within the region of overlap, the two warps appear iden tical.

Figure 2.3: Image after local optimization

11



This problem is inherent in the warp solution itself. This calls for imposing
a rotational constraint during the op timization to obtain quantitatively correct results
and remove the gaps found in the image resulting from the above discusse d technique.
Also, more fundamentally, relying on local pairwise warps to compute global quantities
can lead to inconsistenc ies in the computed internal parameters and rotations, and more
gaps in the mosaiced images. Thus, we need to go for a globa 1 optimization procedure.

2.3 Global Optimization Technique

2.3.1 Introduction

The optimization described in this section produces the best possible rotations for each
image, given initial estimates. The advantage of this approach is that global consistency is
guaranteed by computing a unique rotation for each image. That is, the pairwise rotations
inferred from this representation have the property that the aggregate rotation along any
cycle in the image adjacency map is the identity. In this manner, this representation
avoids the possibility of gaps arising from inconsistent pairwise estimates. This method
is as described in [1].

The approach followed is to optimize a global correlation function defined for adjacent
images with respect to all orientations (represented as quaternions). As a by-product,
the algorithm computes a spherical mosaic, a composite of all images corresponding to a
single node.

2.3.2 Optimization of Rotational Parameters

The algorithm minimizes a Global Error Function:

E =3, Eij+ Ej

where E;; is the SSD error between luminance values of adjacent images ¢ and j.

Eij = 3,0 (Li(zi, yi) — Li(Py(zi,9:)))

and Pj; maps coordinates of image ¢ to those of image j. This correlation function is
computed only for pairs of adjacent images in the spherical tiling, and only for pixels
of image 7 that map to a valid pixel of image j. As in the pairwise warp estimation,
this function is minimized by computing derivatives w.r.t each orientation and using LM
Nonlinear Optimization starting from the initial orientations.

The various steps of computation are:

12



e The single error term for images ¢ and j is given by:

62 _ (Lz(x,y) . Lj(x”,y”))Q Wlth xn — % y _ y_

Ty

and

x x
v | =v=P|y | =KRR'K'|y
1 1

e The derivatives for the above error term are calculated as follows:
o' _ r(OR~!
i KR'( 9 Jv

where

x
v=K1]|y
1

e Then, the derivative of the term e;, w.r.t the quaternion q is given by:

6.’)&', ” 82, 6:11, " 62’
x> _ 9q ' g Oy’ _ ¢ Y ¢
g z oqg Z

e and finally we have ...

Oezy  OLjpy” OL; oy”
oqg  0x” 0Oq oy’ dq

. oL, AL, . . ) .
e These derivatives 53 and ay° are approximated using the following convolution

matrices applied at (z”,y”)

-1 0 1 1 2 1
-2 0 2 0O 0 0
-1 0 1 -1 -2 -1

13



The Gradient term corresponding to the quaternion g¢; is computed over all terms
that depend on g¢;:

Oeg. y.
R Y4
Gl T leayl el‘layl 8(]1

It is computed in the coordinates of image ¢, w.r.t the quaternion g;.Similarly, the
Hessian term corresponding to two adjacent images ¢ and j is:

0ex: v ;0€x: u:

Now, in an unconstrained optimization, the increments would be computed as —H'G.
Applying these increments directly to the ¢;, however, would produce Non-Unit Quater-
nions which do not correspond to pure rotations !!

To constrain the updated quaternions to be unit vectors, we enforce the following
additional constraints on the increments

5qi:‘v’z’:q¢-5qi:0

Using Lagrange multipliers ); to enforce these constraints, the equation for com-
puting the increments becomes:

[H Qllae]_ |
Q" 0 A 0
where
¢ 0 0 oqr M
o=1" 2 Y ag= | A= ]
0 0 n (5% An

The optimization solves the above equation for AQ and A. Convergence is detected
when the value of the objective function changes by less than some threshold.

14



2.3.3 Optimization of Internal Camera Parameters

In addition to estimating orientations, the algorithm also performs an optimization on
the internal camera parameters [1]. The overall optimization alternates between a step
that updates all rotations, and a step that updates internal parameters of the camera.
The new parameters are computed using derivatives of v’ w.r.t the camera focal length f
and image principal point (c,, ¢,) as shown:

o’ Lo 171 r o1 _# 112_1:2
W:( 01 0|RR'K'+KRR 0 —7 #[)]w
000 0 0 0 1
B [0 0 1] (00 4] [+]
acw:( 00 0|RR'K'+KRR'| 00 0])|y
(00 0 o0 0] [1]
o [0 0 0] (00 0] [a]
%:( 00 1|RR'K'+KRR'|00 —5 )|y
Y | 00 0 00 0] [ 1]

And here is the optimized image. ..

Figure 2.4: Projective warp between two images after direct optimization

We see that the large gaps between image borders, which were initially present, have
reduced considerably.

15



2.4 Relative Importance of Camera Parameters

Are all the internal parameters equally important for this optimization? A
simplified analysis shown below tells us that determining the focal length accurately is
more important than determining the coordinates of the image principal point [1] and [8].

Image2

Imagel

Figure 2.5: Rotation and camera parameters in 2-D

Figure shows two 1-D images rotated by an angle #.Here the transformation between
pixel z (with offset angle « from the center) in image 2 to pixel 2’ in image 1 is given by:

7' =c, + ftan(f + o) = ¢, + fandttana

1—tanftan «

Now tanftan o < 1 for small angles. Thus
' xc,+ ftanf+tana=c, + ftanf+x —c, = ftanf +z 2’ = ftanf +

Thus we see, to 15 order, the mapping is insensitive to the principal point (c;, ¢,)
and more sensitive to the focal length f. Thus the image center can be used as an
initial value for optimization !!!

So we have seen how a global optimization function and representing rotations as
quaternions helps in reducing the gaps between images and gives a very much acceptable
composite image as its output.

16



2.5 Summary of Above Discussion

This chapter described two methods to recover relative rotations and internal camera
parameters for the set of images acquired from a common optical center.

The first method is a closed-form solution using eigen-vectors of 8-parameter warps.
This method is theoretically elegant, but yields quantitatively inaccurate results as it
just performs local optimization. The second method solves this problem by computing
rotations and internal parameters directly from image-space correlation using a global
optimization technique.We saw that this method gives better and accurate results than
the former one.

Overall, spherical mosaicing allows the resulting mosaic to be treated as a rigid, com-
posite image and provides a huge field of view. If proper optimization of the estimates is
performed, better results are delivered.

17



Chapter 3

Our Approach

3.1 Contributions and Results

Partially overlapping images, an adjacency map relating the images, initial estimates of
the rotations relating each image to a specified base image, and approximate internal
calibration information for the camera form the inputs for the algorithm described in
[1]. It uses the camera instrument to annotate each acquired image with an estimate of
absolute 6-DOF pose (exterior orientation) — 3 DOF of position, and 3 DOF of orientation
for the acquiring camera. Thus the acquisition system provides both an adjacency map
for images in the mosaic, and an initial estimate of the rotations relating each image to
its neighbors.

In our algorithm implementation, we use the camera instrument only to provide the
partially overlapping images. The adjacency map relating the images is given as a manual
input while the initial estimates of rotation and internal camera parameters are automat-
ically calculated from input images.

3.1.1 Calculation of initial estimates for rotation relating the
input images

Instead of having the initial estimates for rotation relating the images provided by the
camera instrument, we calculated it from the partially overlapping images taken as input.

It is a 4 step procedure as described below:

1. A corner detector is applied to each image to extract the high curvature points,
defined as ‘Corners’, as described in [3].

2. A classical corelation technique is then used to establish matching candidates be-
tween the two adjacent images, as described in [10].

18



3. We then compute the initial warp matrix using the 4 point correspondence method

[7].
4. Finally we recover the initial rotation estimates from the computed warp [1].

Let us see each of these steps in more detail.

3.1.1.1 Corner Point Detection

This section gives you a brief overview of how to extract the corners from the input image.

1. Compute the image gradient over the entire image I
2. For each image point p:

(a) form the matrix C, where,

Y B Y E.E,
Y EE, Y E

over a (2N + 1) x (2N + 1) neighborhood @ of p.

C =

(b) compute Ag, the smaller eigenvalue of C.

(c) if Ay > Y, where T is the threshold on Ay, save the coordinates of p into a list,
L

3. Sort L in decreasing order of \.

4. Scanning the sorted list top to bottom: for each current point, p, delete all points
appearing further on in the list which belong to the neighborhood of p.

The output is a list of feature points for which Ay > T and whose neighborhoods do
not overlap.

Thus we saw, the algorithm has two main parameters: the threshold T, and the size
of the neighborhood, (2N + 1). The threshold can be estimated from the histogram of
A2, as the latter has an obvious valley near zero. A sample histogram is as shown,

19
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Figure 3.1: Histogram of )\, values across a sample image
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Unfortunately, there is no simple criterion for the estimation of the optimal size of the

neighborhood. In our implementation we have chosen N = 10. A sample output of our

implemented code is shown below:

3

Figure 3.2: Input sample image

20




Figure 3.3: Output of application of the Corner-Detector algorithm

3.1.1.2 Point Correspondence using Correlation-Relaxation

e Matching Through Correlation

o search window
correlation window

0 / ul u2

: 1
e !
| o
! V2 | -l || M2
vip___ [ ml I
vl
Imagel Image?

Figure 3.4: Correlation technique

Given a high curvature point m1 in imagel, it uses a correlation window of size
(2n+1) x (2m+ 1) centered at this point. It then selects a rectangular search area

21



of size (2d, + 1) x (2d, + 1) around this point in the second image, and performs a
correlation operation on a given window between point m1 in the first image and
all high curvature points m2 lying within the search area in the second image. The
search window reflects some a priori knowledge about the disparities between the
matched points. This is equivalent to reducing the search area for a corresponding
point from the whole image to a given window. The correlation score is defined as

i e D (a0 45) =T (w1 ,01) | X [T (ua +i,02+5) — I (ua,v0)]
(2n4+1)(2m+1)+ /02 (1) x02(13)

Score(m1l, m2) =

where

TN e e I (utiutg)
Ii(u,v) = [(2n+1)(2nl;+1)]

is the average at point (u, v) of Iy(k = 1,2), and o(I) is the standard deviation of
the image I in the neighbourhood (2n+ 1) x (2m + 1) of (u, v), which is given by:

)= Vi -

(2n+1)(2m+1)

The score ranges from -1, for two correlation windows which are not similar at all,
to 1, for two correlation windows which are identical.

A constraint on the correlation score is then applied in order to select the most
consistent matches: For a given couple of points to be considered as a candidate
match, the correlation score must be higher than a given threhold. If the above
constraint is fulfilled, we say that the pair of points considered is self-consistent and
forms a candidate match.

In our implementation, n=m=7 for the correlation window, and a threshold of 0.8
on the correlation score is used. For the search window, d,, and d,, are set to a quater
of the image width and height, respectively.

Disambiguating Matches Through Relaxation

Using the correlation technique described above, a point in the first image may be
paired to several points in the second image (which are called candidate matches).
The technique used here for resolving the matching ambiguities falls into a class
of relazation techniques. The idea is to allow the candidate matches to reorganize
themselves by propagating some constraints, such as continuity and uniqueness,
through the neighbourhood.
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We use the term Measure of Support for a Candidate Match for removing
the ambiguity. Consider a candidate match (my;, moj) where my; is a point in the
first image and my; is a point in the second image. Let N(mq;) and N(mg;) be,
respectively, the neighbors of my; and mo; within a disc radius R. If (mq;, my;) is a
good match, we will expect to see many matches (nix, no), where nyy € N(my;) and
ng € N(mg;), such that the position of ny relative to my; is similar to that of ngy
relative to me;. On the other hand, if (m4;, my;) is a bad match, we will expect to
see only few matches, or even not any at all, in their neighborhood.

More formally, we define a measure of support for a match, which we call the strength
of the match (SM for abbreviation), as

. ) = . Ckl(s(mli,mzj;nlk;nZl)
Su (mll, mz‘]) — G ankeN(m”)[maxnmeN(mzj) 1+di5t(m1z‘,m2j;n1k,n2l)}

where ¢;; and ¢y are the goodness of the candidate matches (my;, mo;) and (ny, ny),
which can be the correlation scores given in the last subsection, dist(m;, maj; ng, no)
is the average distance of the two pairings, i.e.,

[d(mainik)+d(maj,no)]

dist(mai, maj; Nk, nay) =

2
with d(m,n) =|| m — n ||, the Euclidean distance between m and n, and
d(mai, moj; Nk, nay) = e~"/er if (n1g,ny) is a candidate match and r < €,

= 0, otherwise

where r is a relative distance difference given by

_ d(magnir)—d(maj,na)|
r = -
dist(ma;,Ma;;N1k,Nar)

and €, is a threshold on the relative distance difference.

Several remarks can be made regarding the measure of matching support.

— Firstly, the SM actually counts the number of candidate matches found in the
neighborhoods, but only those whose positions relative to the considered match
are similar are counted.

— Secondly, the test of similarity in relative positions is based on the relative
distance (the value of 7). Indeed, the similarity in relative positions is justified
by the hypothesis that an affine transformation can approximate the change
between the neighborhoods of the candidate match beign considered. This
assumption is reasonable only for a small neighborhood. Thus we should allow
larger tolerance in distance differences for distat points, and this is exactly
what the criterion specified here does.
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— Thirdly, the contribution of a candidate match (n1x, ny) to the SM (my;, ms;) is
the exponential of the negative relative error r, which is strictly monotonically
decreasing function of . When r is very big, then exp(—r/e,) — 0, and the
candidate match can be ignored. When r — 0, i.e., the difference is very small,
then exp(—r/e,) — 1, and the candidate will largely contribute to the match
(M, m2j)-

— Fourthly, if a point in the left image has several candidate matches in the right
image, only the one which has smallest distance difference is accounted for,
which is done by the “max” operator.

— Lastly, the contribution of each candidate match in the neighborhood is weighted
by its distance to the match. The addition of ‘1’ is only to prevent the over
weight for very close points. In other words, a close candidate match gives
more support to the match being considered than a distant one.

e Relaxation Process

If we define the energy function as the sum of the strengths of all candidate matches,

ie.,

T= Zmu‘,mzj SM(mlia m2j)

then the problem of disambiguating matches is equivalent to minimizing the energy
function 7. The relaxation scheme is one approach to it. It is an iterative procedure,
and can be formulated as follows:

iterate {

— compute the matching strength for each candidat match

— update the matches by minimizing the total energy

} until the convergance of the energy

After the correlation procedure, for each point is the first image, we have a set of
candidate matches from the second image(the set is possibly nil). There are several
strategies for updating the matching in order to minimixe the total energy. The
strategy used here is winner-take-all. In brief, the method works as follows:

At each iteration, any matches which have the highest matching strengths
for both of the two images points that formed them are immediately cho-
sen as “correct”. This method proceeds as a steepest-descent approach,
and is thus fast.
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3.1.1.3 Estimating initial warp solution using four point correspondence

After having establishing the matching candidates between 2 adjacent images, we now
find the initial warp matrix using the 4-point correspondence method. Let us see how we
find the warp matrix from the matching points of two images.

Say, we have a 3D point P[X, Y, Z]. We now take a snapshot of the scene containing
point P. Let us call the snapshot as imagel. We now rotate the camera by some angle
and take another snapshot of the scene containing P. Let it be called image2. The above
procedure is understood more clearly in the following diagram:

P P
X X X P X o p X P
i /N imagel S\ _imagel  Primagel
image 1 !
Camera image 2 p
Camera image 2

Figure 3.5: Computing warp matrix using 4 point correspondence

Let p[z, y], in imagel, be the corresponding 2D point of 3D point P. Let p'[z’,y'], in
1mage2, be the corresponding 2D point of 3D point P.

We now have the relation,

Mp=MP and Np =M P (3.1)

where, M and M’ are 3 x 4 camera parameter matrix of the form A[R|T| where A is a
3 x 3 internal camera parameter matrix and [R|T] is a 3 x 4 external camera parameter
matrix. Now,

P =AM*p+sN (3.2)

where,

o Mj 5 is aleft inverse of M i.e. MM* =1

e N,y lies in null-space of M i.e. MN =0
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Also, P lies on a plane. Therefore,

cTpP=0

Therefore, using Equation 3.2 and Equation 3.3 we have,

CTP =)\C"M*p+ sCTN
Therefore,

_/\CTM*p
CTN

S =

Put values of Equation 3.4 in Equation 3.2. Therefore,

P = Mp — MCMp

CTN
Therefore,
P=X\[I - §f5 M p
Thus,
P=XM'p
where,

M'=[I - ¥ M

Now, put P =X M p in Equation A'p' = M P. Therefore,

)\,pl — )\M, Mllp

Thus, finally we have,

pp =Hp

where, H= M M"
The final equation defining the relationship is:

p =Hp
where
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e H is the homography matrix (warp matrix) relating both the images. It is a 3 x 3
matrix and is valid only upto a linear scaling of p'. Hence it has 8 parameters
to be determined and hence 8 linear equations. Thus, we need atleast 4 point
correspondences between 2 images.

The figure below shows as to how the output may look like after stiching together
images with their initial estimates. The output here shows one composite image formed
by stiching together five partially overlapped images.

Figure 3.6: Composite image formed of mosaicing five partially overlapping images

3.1.1.4 Recovering initial rotation estimates from the computed warp

We can now get the initial rotation estimates from the computed warp using Equation
1.5 if the camera calibration is known accurately. If not, a closed-form solution can be
used to derive camera calibration from the warp itself, which is explained in the following
subsection.
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3.1.2 Calculations for initial estimates of the internal camera
parameters from the warp

We have the following equation with us:
P=KRR['K™!
Let R = RyR;". Therefore the equation becomes
R=K'PK

if we solve for R. Since R = R™T (the orthonormality condition for rotations), we
have,

K'PK = K"PTK™"

Let C = KK?T. Therefore we get,

PC =CPT
were
7+ CoCy Cy
C= ey fPHC g
Cy cy 1

But how do we obtain matrix C ?

Now, the solution for C can be expressed in terms of eigen-vectors of the projective
matrix P. The eigen-values of P are the same as that of R, since they are related by a
similarity transform. We know the eigen-values of the rotation R are 1, ¥, and e,
where 6 is the angel of rotation. Let ey, e; and e; be the eigen-vectors of P corresponding
to these three eigen-values, respectively. Therefore the most general symmetric solution

to C is

C = coepe} + ci(er€3 + ege])

The coefficients ¢y and ¢, are solved by enforcing the constraints that the C33 = 1 and
C(12 = C'136’23-

After having known C, we can now easily estimate internal camera parameter matrix

K using Cholesky Decomposition of C.
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3.1.3 Optimization Technique

After having got the initial estimates, we can now go for the Global Optimization tech-
nique, as discussed in section 2.3, to get optimized rotation and internal camera matrix.
This technique uses a gradient based approach for optimization and may get stuck with
the problem of local minima. Other optimization techniques like Simulated Annealing

might just provide better results.

3.2 Final Remarks

We thus saw, in our algorithm implementation, we use the camera instrument only to
provide partially overlapping images. The adjacency map relating the images is given
as a manual input while the initial estimates of rotation and internal camera parameters
are automatically calculated from input images. Global Optimization technique may get
stuck with the problem of local minima and hence we may go for other optimization
techniques like Simulated Annealing.
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Chapter 4

Future Work

For the past one year, other than my courses, I have been increasing my awareness in
the area of computer graphics and animation. I have started some literature survey on
Computer Graphics and Animation. But as of now, I am yet to decide upon the problem
I would like to solve for my Ph.D.dissertation. So I have intentions to increase my level
of awareness in the general area of computer graphics and animation, and go ahead for
an extensive and exhaustive literature survey to know the “state-of-the-art”. Then I plan
to venture beyond by taking up a problem that warrants more explanation and holds
promise for being an exciting and worthy Ph.D. research topic.
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