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Abstract

Point-based methods have gained significant interest due to their simplicity. The lack of connectivity
touted as a plus, however, creates difficulties in generating global illumination effects. We are interested
in looking at inter-reflections in complex scenes consisting of several models, the data for which are
available as hard to segment aggregated point-based models.
In this report we use the Fast Multipole Method (FMM) which has a natural point based basis, and

the light transport kernel for inter-reflection to compute a description – illumination maps – of the diffuse
illumination. These illumination maps may be subsequently rendered using methods in the literature
such as the one in [38]. We present a hierarchical visibility determination module suitable for point based
models.

1



Chapter 1

Introduction

1.1 Introduction

The pixel indeed has assumed mystical proportions in a world where computer assisted
graphical techniques have made it nearly impossible to distinguish between the real and the
synthetic. Digital imagery now underlies almost every form of computer based entertainment
besides serving as an indispensable tool for fields as diverse as scientific visualization, archi-
tectural design, and as one of its initial killer applications, combat training. The most striking
effects of the progress in computer graphics can be found in the filmed and interactive enter-
tainment industries (Figure 1.1).

Figure 1.1. Impact of photorealistic computer graphics on fi lmed and interactive entertainment. Left: A still from

the animated motion picture ‘Final Fantasy : The Spirits Wit hin’. Right: A screenshot from the award-winning first

person shooter game ‘Doom III’

The process of visualizing a virtual three dimensional world is usually broken down into three
stages:

• Modeling. A geometrical specification of the scene to be visualized must be provided.
The surfaces in the scene are usually approximated by sets of simple surface primitives
such as triangles, cones, spheres, cylinders, NURBS surfaces, points etc.

• Lighting. This stage involves ascribing light scattering properties to the surfaces/surface-
samples composing the scene (e.g. the surface may be purely reflective like a mirror or
glossy like steel). Finally, a description of the light sources of the scene must be provided -
those surfaces that spontaneously emit light.
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• Rendering. The crux of the 3D modeling pipeline, the rendering stage accepts the three
dimensional scene specification from above and renders a two dimensional image of the
same as seen through a camera. The algorithm that handles the simulation of the light
transport process on the available data is called the rendering algorithm. The rendering
algorithm depends on the type of primitive to be rendered. For rendering points various
rendering algorithms like QSplat, Surfel Renderer etc are available.

Photorealistic computer graphics attempts to match as closely as possible the rendering of a vir-
tual scene with an actual photograph of the scene had it existed in the real world. Of the several
techniques that are used to achieve this goal,physically-based approaches (i.e. those that attempt
to simulate the actual physical process of illumination) provide the most striking results. The
emphasis of this report is on a very specific form of the problem known as global illumination
which happens to be a photorealistic, physically-based approach central to computer graph-
ics. This report is about capturing interreflection effects of a set of objects when the input is
available as point samples. We use the technique of the Fast Multipole Method which also
starts with points as primitives. Figure 1.2 shows some of the application domains where this
method can be applied.

Figure 1.2. Grottoes, such as the ones from China and India fo rm a treasure for mankind. If data from the ceiling

and the statues are available as point samples, can we captur e the interreflections?

1.1.1 Point Based Modelling and Rendering

Figure 1.3. Example of Point Models

In recent years, point-basedmethods have gained significant interest. In particular their sim-
plicity and total independence of topology and connectivity make them an immensely power-
ful and easy-to-use tool for both modelling and rendering. For example, points are a natural
representation for most data acquired via measuring devices such as range scanners [25], and
directly rendering themwithout the need for cleanup and tessellation makes for a huge advan-
tage.
Second, the independence of connectivity and topology allow for applying all kinds of op-
erations to the points without having to worry about preserving topology or connectivity
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[30, 27, 31]. In particular, filtering operations are much simpler to apply to point sets than
to triangular models. This allows for efficiently reducing aliasing through multi-resolution
techniques [31, 32, 39], which is particularly useful for the currently observable trend towards
more and more complex models: As soon as triangles get smaller than individual pixels, the
rationale behind using triangles vanishes, and points seem to be the more useful primitives.
Figure 1.3 shows some example point based models.

1.1.2 Global Illumination

Global illumination algorithms are those which, when determining the light falling on a surface, take
into account not only the light which has taken a path directly from a light source (direct illumination),
but also light which has undergone reflection from other surfaces in the world (indirect illumination).

Figure 1.4 gives you some examples images showing the effects of Global illumination. It is a
simulation of the physical process of light transport. It has been traditionally solved for models
with some surface representation. The lack of any sort of connectivity information in point-
based modeling (PBM) systems now hurt photo-realistic rendering. This becomes especially
true when it is not possible to correctly segment points obtained from an aggregation of objects
(see Figure 1.2) to stitch together a surface.
There have been efforts trying to solve this problem [38], [3, 34], [1, 27] , [32]. Our view is that
these methods would work even better if fast pre-computation of diffuse illumination could be
performed. Fast Multipole Method (FMM) provides an answer.

1.1.3 Fast computation with Fast Multipole Method

Computational science and engineering is replete with problems which require the evalua-
tion of pairwise interactions in a large collection of particles. Direct evaluation of such interac-
tions results in O(N2) complexity which places practical limits on the size of problems which
can be considered. Techniques that attempt to overcome this limitation are labeled N-body
methods. The N-body method is at the core of many computational problems, but simulations
of celestial mechanics and coulombic interactions have motivated much of the research into
these. Numerous efforts have aimed at reducing the computational complexity of the N-body
method, particle-in-cell, particle-particle/particle-mesh being notable among these. The first
numerically-defensible algorithm [10] that succeeded in reducing the N-body complexity to
O(N)was the Greengard-Rokhlin Fast Multipole Method (FMM) [17].
The algorithm derives its name from its original application. Initially developed for the fast
evaluation of potential fields generated by a large number of sources (e.g. the gravitational
and electrostatic potential fields governed by the Laplace equation), this method has been gen-
eralized for application to systems described by the Helmholtz and Maxwell equations, and to
name a few, currently finds acceptance in chemistry[5], fluid dynamics[16], image processing[12],
and fast summation of radial-basis functions [6]. For its wide applicability and impact on scien-
tific computing, the FMM has been listed as one of the top ten numerical algorithms invented
in the 20th century[10].
The FMM, in a broad sense, enables the product of restricted dense matrices with a vector to
be evaluated in O(N) or O(N log N) operations, when direct multiplication requires O(N2)
operations.

1.2 Overview of the Report

Having got a brief overview of the keyterms, let us review the approach in detail in the
subsequent chapters. The rest of the report is organized as follows. We present our idea in
Chapter 2 along with our contributions. We then discuss our ideas and directions of future
work in Chapter 3. We conclude the report with our concluding remarks in Chapter 4.

We have detailed our literature survey in the Appendix. In Appendix A, we present an
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Figure 1.4. Global Illumination. Top Left[23]: The ‘Cornel l Box‘ scene. This image shows local illumination. All

surfaces are illuminated solely by the square light source o n the ceiling. The ceiling itself does not receive any

illumination. Top Right [23]: The Cornell Box scene under a f ull global illumination solution. Notice that the ceiling

is now lit and the white walls have color bleeding on to them. B ottom Left: A global illumination solution with

reflections and shadows. Bottom Right: (from [9]) “a major go al of realistic image synthesis is to create an image

that is perceptually indistinguishable from an actual scen e”.

overview of techniques for simulating light transportwith an emphasis on the radiositymethod.
We also mention other techniques and previous work in this field. In Appendix B, we present
the theoretical foundations of the Fast Multipole Algorithm. We present the requirements sub-
ject to which the FMM can be applied to a particular domain and discuss the actual algorithm
and its complexity. Finally, in Appendix C, we present the mathematical apparatus required
to apply the FMM to radiosity. Five theorems with respect to the core radiosity equation are
proved in this context.
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Chapter 2

Work done

In this chapter, I will describe the details of the paper [13] we wrote.

2.1 Introduction

This project is about capturing interreflection effects of a set of objects when the input is
available as point samples. We use the technique of the Fast Multipole Method which also
starts with points as primitives.
Global illumination – the simulation of the physical process of light transport – is a mem-
ory intensive and compute intensive operation. This problem has been considered for several
years with interesting methods like statistical photon tracing, directional radiance maps, and
wavelets based hierarchical radiosity. Traditionally all these methods assume a surface represen-
tation for the propagation of indirect lighting. Surfaces are either explicitly given as triangles,
or implicitly computable. The problem becomes more interesting when the input is in terms of
Point Models, which do not have any connectivity information.
Points as primitives have come to increasingly challenge polygons for complex models; as soon
as triangles get smaller than individual pixels, the raison d’etre of traditional rendering can be
questioned. Simultaneously, modern 3D digital photography and 3D scanning systems [25] ac-
quire both geometry and appearance of complex, real-world objects in terms of (humongous)
points. More important, however, is the considerable freedom points enjoy. The independence
of connectivity and topology enable filtering operations, for instance, without having to worry
about preserving topology or connectivity [30, 27, 31].
The lack of any sort of connectivity information in point-based modeling (PBM) systems now
hurt photo-realistic rendering. This becomes especially true when it is not possible to correctly
segment points obtained from an aggregation of objects (see Figure 1.2) to stitch together a sur-
face. Recent work [38] suggests one way to handle this problem — ray tracing. However, as
both rays and points are singular primitives, this requires one to trace thick rays [3, 34]. Alter-
natively, points are seen as covering a finite area by expanding them to ellipses [32], or filtering
them with an implicit function [1, 27].
Our view is that these methods would work even better if fast pre-computation of diffuse illu-
mination could be performed, much the way photon tracing is done for triangulated models
before rendering.
There are numerous problems which require the evaluation of pairwise interactions in a large
collection of particles. Direct evaluation of such interactions results inO(N2) complexity which
places practical limits on the size of problems which can be considered. The first numerically-
defensible algorithm [10] that succeeded in reducing the N-body complexity to O(N) was the
Greengard-Rokhlin Fast Multipole Method (FMM) [17].
Since Global Illumination for point models also requires the evaluation of pairwise interactions
in a large collection of particles, FMM naturally suits as a solution for a fast pre-computation
algorithm required for diffuse illumination.
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Visibility calculation between point pairs is essential as a point recieves energy from other point only
if it is visible to that point. But its easier said than done. Its complicated in our case as our
input data set is a point based model with no connectivity information. Thus, we do not have
knowledge of any intervening surfaces occluding a pair of points. Theoretically, it is therefore
impossible to determine exact visibility between a pair of points. We, thus, restrict ourselves to
approximate visibility with a value between 0 & 1.

2.1.1 Statement of the Problem

After getting a brief overview of the topics, let us now define the problem we pose in this
report.

Problem Statement: To compute illumination maps for inter-reflections in complex scenes
represented as point-models using Fast Multipole Method. The system must handle occlu-
sions present in the scene as well.

There are three major things to look out for:

• How FMM solves the radiosity equation to provide us with a fast way to get illumination
maps

• How we compute point-point visibility

• How we incorporate the visibility algorithm in the FMMway to solve radiosity

2.1.2 Contributions

Can the point-based framework of the FMM (albeit without visibility) be coupled with the
input point models to store the diffuse illumination? This report answers this question in the
affirmative. We store the precomputation in a data structure called Illumination Mapswhich are
conceptually like photon maps except that we do not employ statistical photon tracing. The
challenges we solve in the process are

• Earlier [24] presented the mathematical apparatus required to apply the linear-time adap-
tive FMM algorithm to diffuse objects given as triangles. Five mathematical results with
respect to the core interreflection kernel under full visibility are now available. We ex-
tend this to blend the point based nature of FMM with input available as PBMs instead
of triangles. For storing illumination maps, this is sufficient. For more complete render-
ing (purely based on the FMM technique) we require the BRDF to be available as a low
rank matrix. This coupled with a directional discretization of radiance [37] should be
employed for pure FMM-based rendering of non-diffuse objects.

• The visibility function is highly discontinuous and, like the BRDF, does not easily lend
itself to an analytical FMM formulation. Thus the nature of this computation is Ω(n2) for
n primitives, which depends on the geometry of the scene. We present a new visibility
algorithm (Section 2.2.4) for PBMs. The key features are twofold. First, we have a ba-
sic point-to-point approximate visibility function that might be useful in its own right.
Second, we have a hierarchical version of aggregated point clouds.

2.2 Our Approach

We will have an insight on each of the above contributions in subsequent sections. We start
with the basic background of FMM followed by our mathematical results for factorizing the
interreflection kernel. Subsection 2.2.2.3 provides the crucial extension neededwhen points are
given as input. Our visibility requires us to provide a stripped-down FMM algorithm which
we give in subsection 2.2.3. We follow this with our algorithm for ignoring occluded surfaces
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which consists of two parts. First, our basic “primitive” visibility algorithm for point to point
visibility is given in subsection 2.2.4.1. Next, we extend this primitive in the FMM context to
build a hierarchical visibility algorithm.

2.2.1 FMM for Global Illumination

The Fast Multipole Method [17] is concerned with evaluating the effect of a “set of sources” Y,
on a set of “evaluation points” X. More formally, given

X = {x1, x2, . . . , xM}, xi ∈ R
3, i = 1, . . . ,M, (2.1)

Y = {y1, y2, . . . , yN}, yj ∈ R
3, j = 1, . . . ,N (2.2)

we wish to evaluate the sum

f(xi) =

N
∑

j=1

φ(xi, yj), i = 1, . . . ,M (2.3)

The function φ which describes the interaction between two particles is called the “kernel” of
the system. The function f essentially sums up the contribution from each of the sources yj .
Assuming that the evaluation of the kernel φ can be done in constant time, evaluation of f at
each of the N evaluation points requires N operations. The total complexity of this operation
will therefore be O(NM). The FMM attempts to reduce this seemingly irreducible complexity
to O(N log N + M) or even O(N + M). The two main insights that make this possible are:

• Factorization of the kernel

• The observation that many application domains do not require that the function f be
calculated at very high accuracy.

2.2.2 Interreflection in the FMM context

Figure 2.1. Geometry and notations used in this paper.

Figure 2.1 shows how a point x receives irradiance from a small area around y. The nature of
this interaction is quadratic for all points as in Equation 2.3. Further, the kernel of the geometric
interaction (assuming full visibility) can be written as:

K(x) =

Z

Ay

[ ~ny.( ~rx − ~ry)][ ~nx.( ~ry − ~rx)]

π| ~ry − ~rx|4
dAy (2.4)

Notice that the interaction written in this form is coupled in nature. The theory of the FMM, in
general, requires factorization and translation theorems for the type of kernel under consider-
ation. Simply stating, these results are based on the position and orientation of the source and
receivers. These results are given in brief in Section 2.2.2.1 and the proofs appear in [24, 23].
The nature of light transport is even more complicated than this, but Equation 2.4 is sufficient
to capture the diffuse illumination maps.
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2.2.2.1 Multipole Expansion

As per [23], if we denote the spherical coordinates of ~rx by (rx, θx, φx), then it makes use of [20]
to write (for ry < rx),

1

| ~ry − ~rx|4
=

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πj
n

{

1

rn+4
x

Y m
n−2j(θx, φx)

}

{

rn
y Y m

n−2j(θy, φy)
}

(2.5)

where

ej
n = 4

(n − j + 1)!(j + 1/2)!

(n − j + 1/2)!j!

and Y m
n are the normalized spherical harmonics.

sources receiver

x

sources receiver

xO

Figure 2.2. By associating a constant number of coefficients at center O, we can calculate the irradiance received

by x from a number of differential emitters. The value of the coef ficients depends upon the location of these

emitters, and the recipient has to be sufficiently far.

Substituting (2.5) in (2.4) and rearranging terms, we get the multipole expansion in Equa-
tion 2.8 as

I(x) =
∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

ej
nRm

nj(x) ⊗ Mm
nj(Ay) (2.6)

Rm
nj(x) =

ρ(x)

rn+4
x

Y m
n−2j(θx, φx)RM(x) (2.7)

Mm
nj(Ay) =

∫

Ay

rn
y Y m

n−2j(θy, φy)SM(y)B(y)dAy (2.8)

Here, RM(x) and SM(y) stands for the receiver and the source matrices respectively. The
intuition for this step is shown in Figure 2.2. For practical implementation, the summation to
infinity is truncated to some p terms. We have theoretically and experimentally verified [24]
that the error incurred is very small.
Since the FMM algorithm is hierarchical, we need a way to collect irradiance, as shown in

Figure 2.3.

2.2.2.2 Local Expansion

Equation 2.6 may be viewed as an irradiance gather process “outside” the sources. We need a
similar expression on how irradiance collected at a center is distributed to receivers. For rx <
ry, we derive [23] the so-called local expansions in terms of the coefficients Lm

nj . Our intuition
behind this formulation is explained in Figure 2.4.
Similar to the multipole coefficients, the local coefficients Lm

nj are also additive, and can be
translated to a different coordinate system. We illustrate this in Figure 2.5.
Finally, a very important result is ilustrated in Figure 2.6.
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sources receiver

C1C2

C3

..

.

Ck

x
O

C1
C2

C3

....
Ck

Figure 2.3. Multipole coefficients are additive and can be tr anslated to a different coordinate system. This enables

a hierarchical approach by considering the effect of severa l clusters. For each cluster C1, C2, C3, . . . Ck , the

multipole coefficientsMm
nj(Ay) are first accumulated at the respective origins and then “tra nslated” to get the

cumulative effect of the entire set of clusters.

sources receivers

Oi

X1
X2

X3
...

Xm

C

Figure 2.4. The irradiance stored at a virtual point O in the f orm of a constant number of coefficients can be

dissemenated to different receivers. This is valid only if t he receiver points are “close by.”

O O

Figure 2.5. Local coefficients are additive. On the left, we fi rst collect the cumulative local coefficient of several

clusters from the local coefficients of each cluster and accu mulate it in the center O. We then disseminate it to the

recipients.

2.2.2.3 Assigning Weights to Points

The equations in the previous section assume that we are in a position to integrate over a sur-
face area. In our earlier work, we had assumed triangles as input and we performed Gaussian
quadrature to calculate the integral exactly. For PBMs, we do not have any surface information;
we therefore approximate this integration. Weights are assigned to each point and signify the
contribution of the point to the reconstruction of the surface. This is a local property based on
the normal available at points. As the number of points increase, the integration is computed
more accurately.
In summary, we can define the multipole coefficients (and similarly local coefficients) for a

point y as
Mm

nj(y) = w(y)rn
y Y m

n−2j(θy, φy)SM(y) (2.9)

We thus replace the interaction between surfaces and points (in Equation 2.8) as between

10



O’O

Y1

Y2
.....

Yn

X1

X2
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..
Xm

Figure 2.6. A crucial part of FMM is the conversion of multipo le coefficients at a given center into local coefficients

at another center. The multipole to local translation conve rts the multipole coefficients of a set of N source points

into local coefficients for a set of M receiver points.

points only. This interaction is termed as a particle interaction.

2.2.3 The FMMAlgorithm

A brief version of the algorithm is given here for the sake of completeness.

1. Setup: We start with the given input point model. All points are arranged in an adaptive
octree such that no leaf node contains more than s = O(1) points. With each node, we
associate two set of disjoint nodes:

• near neighbors of a node b are nodes that share a common boundary point of the node.
Points in these nodes do not satisfy the distance constraint in (Equation 2.6).

• interaction list of a node b are the children of the near neighbors of the parent of b
— children who are not near neighbors of b itself. When occlusion is present in the
scene, the interaction list is modified as in Section 2.2.4.

2. Upward Pass: For each leaf node in the octree, we calculate the multipole coefficients of
all points contained in the node about its center. Then, for each level (starting from the
penultimate level) we calculate the multipole coefficients of each node at that level by
translating and accumulating the multipole coefficients of its children.

3. Downward Pass: For each level (starting from the second), the local coefficients at each
node b are calculated by converting the multipole coefficients of boxes in the interaction
list of b into local coefficients about b’s center using the multipole to local translation
algorithm (Figure 2.6). Additionally, the local expansion coefficients obtained from the
individual points contained in the local interaction list are aggregated.

4. Evaluation: For each leaf b in the octree, for each evaluation point x ∈ b, the local expan-
sion about the center of b is evaluated at x.

We iterate over these steps till sufficient convergence is reached. The evaluation points are the
same points that represent the input point model.

2.2.4 Visibility in Point Models

Visibility is not considered in the original FMMalgorithm. For our purposes it is complicated
in that occlusion is a point to point based phenomenon and not a node to node phenomenon

11



where the bulk of the computation occur. In this section we first give a point to point visibility
algorithm. Later we incorporate it in the FMM context.

2.2.4.1 Point–Point Visibility

Since our input data set is a point based model with no connectivity information, we do not
have knowledge of any intervening surfaces occluding a pair of points. Theoretically, it is
therefore impossible to determine exact visibility between a pair of points. Thus, we restrict
ourselves to approximate visibility with a value between 0 and 1. Consider two points p and q
(as in Figure 2.2.4.1 in the input scene on which we run a number of tests to efficiently produce
O(1) possible occluders.
First we apply the culling filter to straightway eliminate backfacing surfaces.

np � pq > 0 and nq � qp > 0

where np and nq are normals at point p and q respectively.
If the above condition is satisfied, we then determine the possible occluder set X (—X—=k).

This is a set of points in the point cloud which are close to pq and thus can possible affect the
visibility. These points lie in a cylinder around pq. In Figure 2.2.4.1, for example, x3 is dropped.
This set is further pruned by considering the tangent plane at each potential occluder. If the
tangent plane does not intersect pq the occluder is dropped (for example, x1 in Figure 2.2.4.1).
A final pruning happens by measuring the distance along the tangent to pq. We pick the smallest
O(1) occluders (equal to 3 in our implementation) using this distance metric. We compute a
visibility fraction based on this distance. This results in Algorithm point_visible.

p

qnq

np

x1

nx2nx1

x3n

3x > Delta

x4

x2

nx4

Figure 2.7. Only x2 and x4 will be considered as occluders. We reject x1 as the intersection point of the tangent

plane lies outside the line segment pq. x3 has earlier been rejected because it is more than a distance ∆ from the

line segment pq.
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Procedure point visible(Point p, Point q)
Define threshold t1, visiblep,q = 1
if FacingEachOther(p,q) then
Find k closest points in region ∆ around pq
Prune based on tangent plane
for i = 0 to 2 do

contributeV isi = visibility look up(distancei)
visiblep,q = visiblep,q ∗ contributeV isi

end for

if (visiblep,q) > t1 then
return(visible)

end if

end if

2.2.4.2 Hierarchical Visibility

In this section, we incorporate the visibility into the FMM algorithm (Section 2.2.3). Recall that
the object space composed of points was divided into an adaptive octree. Note that each point
receives energy from every other point either directly, or through the points in the interaction
list of the ancestor of the leaf it belongs to. The key idea is to modify the interaction list much
the way the adaptive version of the FMMworks.
If the points in a node c in the interaction list of node b are completely visible from every

point in b, then the visibility state of the pair (b,c) is said to be valid. If, on the other hand, no
point in c is visible from any point in b, the visibility state of the pair (b,c) is said to be invalid.
The node c is dropped from the interaction list since no exchange of energy is permissible.
Finally, when the visibility state is partial, we postpone the interaction. In the sequel, we ensure
that the postponed interaction happens at the lowest possible depth (the root is at depth 0) for
maximum efficiency. This is done by extending the notion of point–point visibility to the node
level as follows.

2.2.4.3 Point–Leaf Visibility

In this section, we determine the visibility between a leaf node C and a point p. We start by
making point to point visibility calculations between point p and every point pi ∈ C . This
results in Algorithm point_Leaf_visibility.

Procedure point Leaf visibility(Point p, Leaf L)
Declare threshold t2, Visi point L = 0
for each point pi ∈ L do
state = point visible(p, pi)
if equals(state,visible) then

V isi point L = V isi point L + 1
if V isi point L > threshold t2 then
return(visible)

end if
end if

end for

return(invisible)

2.2.4.4 Leaf–Leaf Visibility

Similarly we determine visibility between two leaf nodes C and L. For every point pi ∈ L,
we start by calculating Point–Leaf Visibility between point pi and C . This results in Algo-
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rithm Leaf_Leaf_visibility.

Procedure Leaf Leaf visibility(Leaf L, Leaf C)
Declare threshold t3, Visi point L = 0
for each point pi ∈ C do
state = point cell visible(pa, Leaf L)
if equals(state,visible) then
Visi point L = Visi point L + 1

end if

end for

if V isi point L > threshold t3 then
return(visible)

end if

return(invisible)

2.2.4.5 Node–Node Visibility

In this section, we determine the visibility between nodes A and B of the octree. We start by
computing visibility of all b ∈ Leafnodes(B) to all a ∈ Leafnodes(A). If all are visible, the
status is valid. If none are visible, the state is invalid. Otherwise, we have partial visibility. In
this scenario, we repeat the procedure Node–Node Visibility for all the child nodes of A and B.
Note that there is no case of partial visibility between leaf nodes. The algorithm is summarized
below.

Procedure Node Node visibility(Node A, Node B)
Declare vis cnt = 0
for each a ∈ leafcell(A) do
for each b ∈ leafcell(B) do
state = Leaf Leaf visible(a, b)
if equals(state,visible) then
vis cnt = vis cnt + 1

end if

end for

end for

if equals(vis cnt,LeafNode(A).size*LeafNode(B).size) then
return(valid)

else if equals(vis cnt,0) then
return(invalid)

else

return(partial)
end if

2.2.4.6 Computing Interaction Lists

Wenow are in a position to compute the interaction list as in Algorithm Octree_Visibility.
The complexity of this algorithm is around O(N2logN).

14



Procedure Octree Visibility(Node A)
for each node B ∈ interactionlist(A) do
if notLeaf(A) then
state=Node Node Visibility(A,B)

else if Leaf(A) then
state=Leaf Leaf Visibility(A,B)

end if

if equals(state,valid) then
Retain B in interactionlist(A)

else if equals(state,partial) then
for each a ∈ children(A) do
for each b ∈ children(B) do
interactionlist(a).add(b)

end for

end for
else if equals(state,invalid) then
interactionlist(A).remove(B)

end if

end for

for each R ∈ child(A) do
Octree Visibility(R)

end for

2.2.4.7 Visibility Cone Optimization

The algorithm in the previous subsection works well when there are unoccluded environments
where every node is visible to every other node. This is because no postponementwill happen.
In highly occluded environments, there is a possibility of duplication of the leaf-leaf visibility.
One way of avoiding duplication is to construct conservative visibility cones [18] which have
the property that any object in the visibility cone is invisible (the converse is not true).
We adapt this idea to build a visibility cone for every leaf, and recursively build visibility cones
for all nodes.
Once such cones are available, we modify Algorithm Octree_Visibility. The for loop in
the first step of the algorithm receives a pruned set of nodes. Specifically, suppose we have a
node B in the interaction list of A. We first check whether B lies within the visibility cone of A
by a cheap visibility cone intersection test. If yes, we immediately know that the state is invalid.
On the other hand, if B lies partially inside, or completely outside the visibility cone of A, we
cannot say what the state is. When pruning happens at low depths, substantial savings result
since the visibility cone test is cheap.

2.3 Sample Results

In this section, we first provide evidence of the correctness of our visibility algorithm, show-
ing the relevant results. Later we show howmuch closer are we to the desired radiosity output.

2.3.1 Correctness of visibility

Figure 2.8 and Figure 2.9 shows results which ascertain the correctness of the visibility algo-
rithm implemented. The yellow cells in the figure indicate the cells visible to the point colored
in cyan. Correct visibility ensures that the energy transfer correctly takes place between nodes
in FMM.

The rendering was done taking OpenGl points as primitives. Note that rendering is not im-
portant here. The emphasis here is to prove the correctness of the visibility algorithm used and
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Figure 2.8. Figure showing correctness of the visibility al gorithm

Figure 2.9. Figure showing correctness of the visibility al gorithm

not the rendering.

Another thing to note here are the color bleeding effects (on the back white wall) and the
soft shadows (of the box) we get, which also gives us the feel ofGlobal Illumination taking place.

Rendering was done on a 2.4 GHz Pentium IV machine with 1GB RAM, without any GPU
in place.

2.3.2 Surfel Rendered output

Figure 2.10 shows results of our FMM algorithm against a output generated with radiosity
rendering equation. We see certain artifacts appearing on the walls in the output we have gen-
erated, which we are trying to resolve.
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Figure 2.10. Figure showing FMM generated output againest a output generated with directly solving the

radiosity equation

One of the major challenge of Point Based Rendering (PBR) algorithms is to achieve a continu-
ous interpolation between discrete point samples that are irregularly distributed on a surface.
A couple of PBR algorithms are available in the literature like QSplat, Surface splatting etc.
We used surface splatting renderer as a final module in our system. We needed to make some
change so that our outputs are compatible with the input format required by the renderer. Also,
we had to eliminate the lightening calculations made by the renderer so that we can insert our
calculated illumination maps into it.

Rendering was done on a 2.4 GHz Pentium IV machine with 1GB RAM, without any GPU
in place.

2.3.3 Computational Advantage

The graph [23] above shows the computational advantage we get over the brute force algo-
rithm. The break even point for the fast multipole method vs. the brute force method is very
high (about N = 10000). However, for problem sizes much higher (which normally is the case
for point models where the size go to billions of points) , the FMM exhibits a linear increase in
time taken whereas the brute force time will blow up.

2.4 Final remarks

In summary, i will list out the important points we have gone through this report.
Problem Statement: To compute illumination maps for inter-reflections in complex scenes
represented as point-models using Fast Multipole Method. The system must handle occlu-
sions present in the scene as well

• Our algorithm is designed to work for point models

• We use FMM to solve the radiosity rendering equation for Global Illumination

• FMM provides us with a linear time approach to solve the rendering equation in almost
linear time

• We have algorithms defined to handle Point-Point Visibility

• We have extended the visibility algorithm to fit into the FMM context

• We have modified the Point-based Renderer to suit our requirement

17



N s FMM Time(s) Brute Force Time(s)

110528 900 30.568 130.412

36600 300 15.975 51.201

12632 200 7.302 9.261

1658 100 1.112 0.575

Figure 2.11. Results for a single iteration with different v alues of N and a chosen value of s for the cornell box

scene.
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Chapter 3

Future Work

In this chapter, I brief, in order of interest, some of the ideas that I visualize as interesting
problems to venture in my dissertation.

3.1 Ideas

1. The immediate goal is to take measures to remove the artifacts from the rendered image.
I have debugged this problem to its source, which lies in the basic mathematics on which
this whole systemwas built. I look forward to have a deep insight into the math involved
and solve it so as to get visually pleasing results.

2. I also intend to come up with a good Hybrid Rendering System, which can work even if
both point as well as triangle models are given as inputs. There has to be a trade off as to
when to render triangles and when to render points.

3. I also plan to optimizing the visibility code in terms of speed, retaining/improving the
quality at same time. Right now, I almost have a O(N2logN) algorithm. We need to
improve the timing keeping in mind that the quality of the rendered image is not affected.

4. I also plan to extend the visibility algorithm to fit onto a parallel architechture framework.
Our visibility algorithm is amazingly parallel in nature and we can hope to get better
timings once this is implemented.

5. I would also like to parallelize FMM so as to get the best of the FMM’s fast rendering
speed

6. I would also like to take up some related problems to point based modelling like Point
Model Segmentation, which I feel will be much beneficial in helping out solve other prob-
lems in point based modelling. The aim here is to segment the input scene consisting of
various point based models into different objects in the 3D space. Once done, we can:

• construct surfaces on individual objects.

• run all the algorithms available for triangulated models on it.

• improve visibility in terms of timing and quality (it won’t be approximate any more.

• Helps out in developing the Hybrid Renderer

• Helps in collision detection, deformable models. etc.

7. Collision Detection, Deformable Point Models, Level of Detail control in point models are
also very interesting problems I would like to give some thought to.
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Chapter 4

Conclusion

We have discussed the basic concepts of Global Illumination and Point Models in Chapter 1. In
Chapter 2, we state the problem definition (Section 2.1.1) followed by our contributions in Sec-
tion 2.1.2. In Section 2.2 and Section 2.2, we provide the details of our approach. In Section 2.3,
we provide our results. Finally in Chapter 3, we discuss some of the directions/problems I
plan to work for my dissertation.

In Appendix A, I present an overview of techniques for simulating light transport with an
emphasis on the radiosity method. In Appendix B, I present the theoretical foundations of the
Fast Multipole Algorithm. Finally, in Appendix C, we present the mathematical apparatus re-
quired to apply the FMM to radiosity.

We saw that the FMMmethod is elegant because it trades off error with quality in a disciplined
quantitative way. We have made the kernel of the energy balance in the rendering equation
conformant to the FMM by deriving the near and far field expansions. The illumination prob-
lem over surfaces is reduced to a solution over points enabling point based rendering. We have
also given a new visibility algorithm for point based models. Both these steps can be viewed as
a ‘preprocessing’ step for photo-realistic global illumination of complex point-based models.
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Appendix A

Light and Global Illumination

A.1 Introduction

What exactly is Light? The struggle of the intellect to decipher Nature’s secrets has resulted
in a plethora of theories. Around 500 BC, Empedocles, the greek philosopher, came to the
conclusion that Aphrodite made the human eye out of the four elements (fire, air, earth and
water) and that “she lit the fire in the eye which shone out from the eye making sight possible”.
Newton, Maxwell, Einstein et al contributed to the acceptance of the dual nature of light -
as electromagnetic radiation or photons propagating through space. Superstring theorists now
hold that light is nothing but a vibration of the fifth dimension in a ten dimensional hyperspace.
Our interest in light is not to exactly describe its behavior but rather to accurately simulate
visual phenomenon created by the interplay of light and reflecting surfaces. For our purposes,
an extremely simplified form of the theory of light as an electromagnetic radiation suffices. To
this extent, we present some important physical quantities and the light transfer equation on
which much of computer graphics has developed. This chapter also presents an overview of
previous work in the field of global illumination.

Figure A.1. Progress in the field of global illumination. Fro m Left: The original simulated cornell box by the finite

element method[14], cornell box with shadows, cornell box w ith non diffuse elements[21]

A.2 Radiometry and Photometry

Radiometry is the science of measuring radiant energy transfers. These transfers can be char-
acterized by a set of physical quantities described below. The radiometric quantities presented
here are considered to be independent of time, polarization, and wavelength. Photometry uses
elements from perceptual psychology to predict subjective impressions caused by the physical
process of illumination.
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A.2.1 Radiance

The most fundamental quantity to describe radiant energy transfer is radiance. Radiance
L(x, ~ω) is defined as the amount of energy traveling at some point x in a specified direction
~ω, per unit area perpendicular to the direction of travel, per unit solid angle. Since radiance
is defined “per unit solid angle”, it does not attenuate with distance. Most light receivers,
including the human eye and photographic cameras, are directly sensitive to radiance and
therefore the knowledge of radiances leaving all surfaces in a scene is sufficient to render a
picture.

A.2.2 Radiosity

We are primarily interested in the simulation of diffuse illumination, i.e. surfaces that reflect
light equally in all directions. In this case, the direction of radiation has no importance and
the physical quantity of radiosity proves more useful. Radiosity B(x) at a surface point x is
defined as the total power radiated from that point over all directions. Radiosity is a useful
quantity since it characterizes the total radiation leaving a surface locally around a given point.
A corresponding quantity irradiance represents the total incident radiation at a given point.

A.2.3 Color

Both radiance and radiosity are measures with respect to a specific wavelength, and are thus
independent of the human visual system. The physical basis of color is the variation of light in-
tensity with wavelength. The color of a given radiation is completely described by its spectrum,
i.e., the relative intensity of the radiation at all visible wavelengths. However, to character-
ize the color perceived by a human observer, it is not necessary to specify the spectrum at all
wavelengths. Research in human vision shows that color can be represented in a three dimen-
sional space due to the presence of three different types of color-sensitive receptor cells on the
retina. The majority of applications in computer graphics utilize relative strengths at the red,
green, and blue wavelengths to characterize color. This technique is not perceptually accurate
and more complex schemes do exist[35], however, all these techniques work by calculating the
intensity at a few particular wavelengths, independent of all other wavelengths.

A.3 The Rendering Equation

Ignoring participating media (such as smoke), and concentrating solely on the interaction
of light with scene surfaces, the global illumination problem can be captured in the following
rendering equation[22].

L(x, ~ω) = Le(x, ~ω) +

∫

Ω
ρ(x, ~ω → ~ωi)Li(x, ~ωi) cos θxdωi (A.1)

• L(x, ~ω) is the total radiance leaving x in the direction ~ω

• Le(x, ~ω) is the radiance directly emitted from x in the direction ~ω

• ρ(x, ~ω → ~ωi) is the fraction of radiance incident from direction ~ωi that is reradiated in
direction ~ω

• Li(x, ~ωi) is the radiance incident on x from the direction ~ωi

• θx is the angle between the surface normal at x and ~ωi

• Ω is the hemisphere lying above the tangent place of the surface at x

Stated plainly, the equation states that the radiance emitted from a surface point x in the di-
rection ~ω is equal to the radiance the surface emits in that direction by itself in addition to the
integral over the hemisphere of the incoming radiance that is reflected in the same direction ~ω.
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Figure A.2. The rendering equation models the energy balanc e at point x by expressing the outgoing radiance in

terms of the various sources of incoming radiant energy - emi tted and reflected. In the diagram, wi varies over the

hemisphere of directions above point x.

The rendering equation is actually a Fredholm equation of the second kindwhich has the general
form

f(x) = g(x) +

∫ b

a
K(x, y)f(y)dy (A.2)

where f(x) is the unknown function, g(x) is a known function, and K(x, y) is called the kernel
of the integral operator. Except for the most trivial of cases, it cannot be solved analytically.

A.3.1 The Diffuse Assumption

If we assume that all surfaces reflect light diffusely, i.e., incoming radiation is dissipated
equally in all directions, then the radiance at a point loses its directional dependence, i.e.
L(x, ~ω) ≡ L(x) and we have

L(x) = Le(x) + ρ(x)

∫

Ω
Li(x, ~ωi) cos θxdωi (A.3)

Using dω = ((cos θ)/r2)dA, and B(x) = πL(x), we can rewrite (A.3) as the radiosity equation:

B(x) = E(x) + ρ(x)

∫

y∈S
K(x, y)V (x, y)B(y)dy (A.4)

where

K(x, y) =
cos θx cos θy

π|x − y|2
(A.5)

and

• B(x) is the total radiosity at point x

• E(x) is the emittance at point x

• ρ(x) is the reflectance at point x

• V (x, y) is the visibility between points x and y

• K(x, y) is the kernel of the integral operator between points x and y
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A.3.2 Discrete Formulation

Suppose the surfaces of the environment are subdivided into a collection ofN disjoint patches
Pj j = {1 . . . N} with surface areas Aj j = {1 . . . N}. The integral over all surfaces in (A.4) is
simply broken into N pieces, each corresponding to a discrete patch:

B(x) = E(x) + ρ(x)
N

∑

j=1

∫

y∈Pj

K(x, y)V (x, y)B(y)dy (A.6)

Due to the assumption of constant radiosity over a patch, at each point y in Pj , B(y) = Bj , and
the radiosity can be moved outside the integral:

B(x) = E(x) + ρ(x)

N
∑

j=1

Bj

∫

y∈Pj

K(x, y)V (x, y)dy (A.7)

The incoming radiosity and outgoing emittance of a patch are averaged over the surface:

Bi =
1

Ai

∫

x∈Pi

B(x)dx Ei =
1

Ai

∫

x∈Pi

E(x)dx (A.8)

Since reflectance is also assumed constant over a patch, we denote ρ(x) = ρi and we obtain

Bi = Ei + ρi

N
∑

j=1

Bj
1

Ai

∫

x∈Pi

∫

y∈Pj

K(x, y)V (x, y)dydx (A.9)

More concisely,

Bi = Ei + ρi

N
∑

j=1

FijBj (A.10)

where

Fij =
1

Ai

∫

x∈Pi

∫

y∈Pj

cos θx cos θy

πr2
V (y, x)dydx (A.11)

is called the form factor between patches Pi and Pj .

A.3.3 Solution to the Radiosity Equation

Since the radiosity equation (A.10) is written for a single patch, there exists a system of N
linear equations with N unknowns (the radiosities of each of the N patches). Assuming all the
coefficients of these equations are known, any linear equation solver can be used to extract the
radiosity values from the system.

The N instances of (A.10), obtained by considering all possible values for i, can be grouped
to form the following matrix equation:
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or equivalently
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Obtaining an exact solution to the matrix equation is equivalent to inverting the form factor
matrix. Inversion of thematrix has complexityO(N3). Iterative methods such as Jacobi, Gauss-
Seidel or Southwell relaxation can be used to bring down the complexity to O(kN2)where k is
a constant.
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Appendix B

The Fast Multipole Method

B.1 The Fast Multipole Method

The Fast Multipole Method [15, 17, 4] is concerned with evaluating the effect of a “set of
sources” X, on a set of “evaluation points” Y. More formally, given

X = {x1, x2, . . . , xN}, xi ∈ R
3, i = 1, . . . ,N, (B.1)

Y = {y1, y2, . . . , xM}, yj ∈ R
3, j = 1, . . . ,M (B.2)

we wish to evaluate the sum

f(yj) =

N
∑

i=1

φ(xi, yj), j = 1, . . . ,M (B.3)

The function φ which describes the interaction between two particles is called the “kernel” of
the system (e.g. for electrostatic potential, kernel φ(x, y) = |x−y|−1). The function f essentially
sums up the contribution from each of the sources xi.

Assuming that the evaluation of the kernel φ can be done in constant time, evaluation of f at
each of theM evaluation points requires N operations. The total complexity of this operation
will therefore be O(NM). The FMM attempts to reduce this seemingly irreducible complex-
ity to O(N + M) or even O(N log N + M) by making a key observation that most application
domains do not require that the function f be calculated at high accuracy. In other words, a
specified acceptable accuracy of computation ǫ is available to us. This observation, although
simple, is absolutely crucial for our purposes as once it is admitted that the result of a calcula-
tion is needed only to a certain accuracy, approximations can be used.

B.2 Kernel Properties

The Fast Multipole Method cannot be applied to an arbitrary kernel. The kernel must have
the following properties:

• Multipole Expansion. The kernel must be “degenerate”, i.e. can be evaluated as a series
expansion about an arbitrary spatial point xc 6= x. The expansion is expected to be valid
outside a sphere centered at xc with radius |x − xc|:

φ(x, y) = M(x, xc) ◦ S(y, xc), |y − xc| ≥ |x − xc| (B.4)

M and S are tensor objects in p-dimensional space representing the series coefficients and
basis functions respectively. The ◦ denotes a contraction operation between these objects,
distributive with addition (e.g. dot product of vectors of length p):

(ui1Mi1 + ui2Mi2) ◦ S = ui1Mi1 ◦ S + ui2Mi2 ◦ S (B.5)
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• Local Expansion. The kernelmust have a complementary expansion valid inside a sphere
centered at yc with radius |x − yc|:

φ(x, y) = L(y, yc) ◦R(x, yc), |y − yc| ≤ |x − yc| (B.6)

As before, M and R are tensor objects in p-dimensional space representing the series
coefficients and basis functions respectively. Figure 1 depicts the domain of validity for
these expansion pictorially

Figure B.1. Constraints on the kernel for application of FMM . Left: Multipole Expansion, Right: Local Expansion.

D indicates the domain of validity of the corresponding expan sions

The usefulness of the multipole expansion can be seen by substituting (B.4) in (B.3):

f(yj) =

( N
∑

i=1

M(xi, xc)

)

◦ S(yj, xc), j = 1, . . . ,M (B.7)

Observe that the quantity in the brackets remains constant for each of theM evaluations of f .
This quantity can be calculated once for allM points. Assuming that the contraction operator
takes constant time, the O(NM) complexity is reduced to O(N + M). However, note that the
use of (B.4) places constraints on the location of the source and evaluation points.

B.3 Properties of the expansion coefficients

Consider the multipole expansion. For the same source particle, we can have separate basis
functions for multipole expansions about different centers. However, in their common domain
of validity, they will evaluate to the same value. The conversion of coefficients of an expansion
about a particular center to the coefficients of expansion about another center is called a trans-
lation. The following translations must be supported by the basis functions derived above.

• Multipole-Multipole. Consider themultipole expansion (B.4) about the point xc valid for
evaluation at y ∈ |y − xc| ≥ |x − xc|. The multipole expansion about xc can be translated
to a multipole expansion about another point x′

c by the multipole translation operator
(S|S):

M(x, x′

c) = (S|S)(x′

c, xc)[M(x, xc)] (B.8)
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• Multipole-Local. Consider the multipole expansion (B.4) about the point xc valid for
evaluation at y ∈ |y − xc| ≥ |x − xc|. The multipole expansion about xc can be translated
to a local expansion (B.6) about another point yc valid for evaluation at y ∈ |y − xc| ≥
|x − xc| ∪ |y − yc| ≤ |yc − xc| by the multipole translation operator (S|R):

L(y, yc) = (S|R)(yc, xc)[M(x, xc)] (B.9)

• Local-Local. Consider the local expansion (B.6) about the point yc valid for evaluation at
y ∈ |y − yc| ≤ |x− yc|. The local expansion about yc can be translated to a local expansion
about another point y′c ∈ |y − yc| ≤ |x − yc| by the local translation operator (R|R):

L(y, y′c) = (R|R)(y′c, yc)[L(y, yc)] (B.10)

B.4 Hierarchical Spatial Domains

The data structure on which the fast multipole method is based is the three dimensional
octree (extensions to arbitrary dimensions also exist[19]). To simplify matters, we make the
following removable restrictions:

• the set of sources X is the same as the set of evaluation points Y and

• these points are distributed uniformly in space.

To construct the octree, we start with the bounding box of the system - the cube that encloses all
the particles. This box is assigned to level 0. The level 0 box can be divided into eight smaller
boxes of equal size by dividing each side in half. All boxes of this size are assigned to level 1.
This procedure is repeated to produce a sequence of boxes at level 2, level 3, and so on. At level
l of an octree, we have 8l boxes. The procedure is terminated when there are no more than a
constant number of particles s in each box. Let this condition be reached at level lmax. Then
8lmaxs > N or 8lmax = O(N). All boxes at level lmax are called the leaves of the tree.
With each box b throughout the hierarchy, we associate the following operations:

• P (b) denotes the parent of the box b.

• C(b) denotes the boxes obtained by subdivision of b. Note that |C(b)| = 8.

• N(b) denotes the near neighbors of the box b. Near neighbors of a box are boxes at the
same level that share a common boundary point. Note that b ∈ N(b). Additionally, the
maximum number of near neighbors a box can have in an octree is max(|N(b)|) = 27.

• F (b) denotes boxes at the same level as b which are not in N(b)

• I(b) denotes the interaction list of b and is defined as C(N(P (b)))\N(b), i.e., children of
the near neighbors of the parent which are not near neighbors of b itself. Note that the
maximum size of the interaction list ismax(|N(b)|).|C(b)| − max(|N(b)|) = 189.

Additionally, we use the notation bc to refer to the center of the box b.

Theorem B.4.1 For a given box b, if a particle x ∈ X then

x ∈ N(b) + I(b) + I(P (b)) + I(P (P (b))) + . . .

Proof: We perform induction over the number of levels. The statement can be easily verified
for l = 1 since at this level, the near neighbors of any box constitute the bounding box of the
system. Suppose this statement is also true for a box b at level l ,i.e.,

x ∈ X ⇒ x ∈ N(b) + I(b) + I(P (b)) + I(P (P (b))) + . . . (B.11)

29



Consider the box c at level l + 1which is a child of b. Thus, b = P (c). Substituting this in (B.11),
we get

x ∈ X ⇒ x ∈ N(P (c)) + I(P (c)) + I(P (P (c))) + I(P (P (P (c)))) + . . . (B.12)

By definition, we have that x ∈ b ⇒ x ∈ C(b). Therefore,

x ∈ N(P (c)) ⇒ x ∈ C(N(P (c))) (B.13)

Furthermore, by definition of I(b),

x ∈ C(N(P (c))) ⇒ x ∈ N(c) + I(c) (B.14)

From (B.12),(B.13), and (B.14), we have

x ∈ X ⇒ x ∈ N(c) + I(c) + I(P (c)) + I(P (P (c))) + I(P (P (P (c)))) + . . . (B.15)

Hence proved.

Lemma B.4.1 Suppose b is a box with center bc containing particles xi i = {1 . . . n}. Consider a
point y such that |y − bc| > |xi − bc| i = 1 . . . n. Then from (B.4)

∑

i=1...n

φ(x, y) =

(

∑

i=1...n

M(xi, bc)

)

◦ S(y, xc) = M(b) ◦ S(y, xc) (B.16)

M(b) denotes the multipole expansion coefficients of all particles in b about its center.

Lemma B.4.2 Suppose b is a box in the hierarchy at level l.

M(b) =
∑

d∈C(b)

(S|S)(bc, dc)M(d) (B.17)

Theorem B.4.2 Suppose b is a leaf box containing a particle y. Let the center of the box P i(b) (where
P i denotes i applications of the function P ) be denoted by ci. Then,

∑

x∈X

φ(x, y) =
∑

x∈N(b)

φ(x, y) +

lmax−2
∏

i=0

Di0 (B.18)

Where the operator

Di =

(

∑

d∈I(P i(b))

(S|R)(ci, dc)M(d)

)

+ (R|R)(ci, ci + 1) (B.19)

Proof: By the previous theorem, we have

∑

x∈X

φ(x, y) =
∑

x∈N(b)

φ(x, y) +

lmax−2
∑

i=0

∑

d∈I(P i(b))

∑

x∈d

φ(x, y) (B.20)

Now, by definitions of multipole and local expansion,
∑

d∈I(P i(b))

∑

x∈d

φ(x, y) =
∑

d∈I(P i(b))

M(d) ◦ S(y, dc)

=

(

∑

d∈I(P i(b))

(S|R)(ci, dc)M(d)

)

◦ R(y, dc)

=

[( i
∏

j=0

(R|R)(cj , cj + 1)

)(

∑

d∈I(P i(b))

(S|R)(ci, dc)M(d)

)]

◦R(y, c0)

(B.21)

30



Substituting (B.21) in (B.20) and performing certain algebraic manipulations, we get (B.18).
We now present the non-adaptive version of the fast multipole method which is essentially a
restatement of the theorem above.

B.5 The Non-Adaptive FMM

• Step 1. For each leaf b in the octree, calculate the multipole expansion coefficientsM(b)
of all particles contained in the box about the center of the box using Lemma(B.4.1). Since
we essentially evaluate the multipole coefficients of all the N particles about different
centers, this step costs O(N).

• Step 2. For each level l = lmax −1, ...2 , for each box b at that level, calculate the multipole
expansion coefficientsM(b) due to all particles in that box by translating and aggregating
the multipole expansion coefficients of all its children using Lemma(B.4.2). At each level,
there are 8l boxes. For each box, we make 8 translations. Total cost is therefore

lmax
∑

l=2

8l.8 = O(8lmax) = O(N)

• Step 3. For each level l = 2...lmax, for each box b at that level, for each box c ∈ I(b),
convert and aggregate the multipole expansion coefficients M(c) of that box into local
expansion coefficients about bc. Also translate and add the local expansion coefficients
of P (b). This procedure is simply the downward operatorDi of Theorem B.4.2. For each
of the 8l boxes at level l, we make a maximum of max(|I(b)|) = 189 multipole to local
translations and an additional local to local translation. Total cost of this step is therefore

lmax
∑

l=2

8l.(189 + 1) = O(8lmax) = O(N)

• Step 4. For each leaf b in the octree, for each particle y in the box, evaluate the local
expansion at the center of the box at that particle. Account for near neighbor interactions
(x ∈ N(b) directly by evaluations of φ. For each of the N particles at the last level, there
is one local evaluation and max(|N(b)|)s = 27s near neighbor evaluations giving a total
cost of

N + 27s = O(N)

Each step in this algorithm is completed in O(N) (given that all translations and evaluations
are done in O(1)).

B.6 The Adaptive FMM

Wehad assumed at the beginning that the set of particles were distributed uniformly in space
and therefore, all boxes at a given level contain the same number of particles. In many practical
cases however, this is simply not true and heavily non-uniform distributions of particles may
cause a lot of unnecessary computation. To efficiently account for non-uniform particle distri-
butions, the fast multipole method was modified to the adaptive fast multipole method[7, 8].

The adaptive fast multipole method proceeds by subdividing only those boxes which have
greater than s particles. With each box, four lists are associated:

• Near neighbors. This is same as before except for the fact that in the adaptive case, near
neighbors may not be at the same level. Near neighbors at the same level are called
colleagues.
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• Interaction list. This is exactly as before: children of colleagues of the parent which are
not colleagues of the box itself.

• Local interaction list. Leaves in the descendants of the near neighbors of the box which
are not near neighbors of the box itself make up the local interaction list. These are boxes
which are too close to interact via a multipole-local translation but the local expansion
coefficients due to individual particles in these leaves can be evaluated and summed at
the box.

• Multipole interaction list(with leaves only). This is the inverse of the local interactions
list. These boxes are close enough to prevent their multipole expansion to being con-
verted into a local expansion. However, there multipole expansion can be evaluated at
each particle in the box.

The modifications to the algorithm are in

• Step 3 In addition to converting the multipole expansion coefficients of all boxes in the
interaction list into local expansion coefficients at the box center, the local expansion co-
efficients obtained from the individual particles contained in the local interaction list are
aggregated.

• Step 4 In addition to evaluating the near neighbors and local expansion coefficients at
each particle, also evaluate the multipole expansion coefficients of all boxes in the multi-
pole interaction list.

The efficiency of the adaptive FMM is hard to analyze and is a topic of ongoing research [19].
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Appendix C

Properties of the Radiosity Kernel

The math appearing here has been solved by [23]. The application of the FMM to radiosity re-
quires the radiosity kernel to hold certain properties. As seen in the previous chapter, the kernel
must have a far-field and local expansion. In addition, the coefficients of expansion must have
certain translation properties. In this chapter, we present the mathematical apparatus required
for the successful application of FMM to radiosity.

C.1 Multipole Expansion

Consider the interaction of two surface points x and y. As we saw in Chapter 2, the radiosity
at syrface point x due to surface point y is given by

B(x) − E(x) = ρ(x)
cos θx cos θy

πr2
B(y) (C.1)

Rewriting in vector form,

B(x) − E(x) = ρ(x)
[~ny.(~rx − ~ry)][~nx.(~ry − ~rx)]

π|~ry − ~rx|4
B(y) (C.2)

For a surface point x, ~rx and ~nx denote the three dimensional coordinate and normal respec-
tively.

Figure C.1. The radiosity kernel between two surface points

Representing vectors as 3x1 matrices,

~r = (x, y, z) ≡





x
y
z



 = r (C.3)
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~r1.~r2 = rt
1r2 = rt

2r1 (C.4)

we can expand the expression in the numerator as follows:

[~ny.(~rx − ~ry)][~nx.(~ry − ~rx)] = [~rx.~ny − ~ry.~ny][~ry.~nx − ~rx.~nx]

= [rt
xny − rt

yny][r
t
ynx − rt

xnx]

= rt
xnyr

t
ynx − rt

xnxr
t
xny − rt

ynyr
t
ynx + rt

ynyr
t
xnx

For the sake of notational convenience, we define the receiver matrices RM , the source matrices
SM , and an operator⊗ as:

SM(y) =









nyr
t
y

ny

rt
ynyr

t
y

rt
yny







 RM(x) =













rt
x

nx

rt
xnxr

t
x

rt
xnx

nxr
t
x













RM(x) ⊗ SM(y) = rt
x(nyr

t
y)nx − rt

xnxr
t
x(ny) − (rt

ynyr
t
y)nx + (rt

yny)r
t
xnx (C.5)

Notice that,

yk
∑

y=y1

RM(x) ⊗ SM(y) = RM(x) ⊗

yk
∑

y=y1

SM(y) (C.6)

For ry < rx, from Hausner [20]

1

|~ry − ~rx|4
=

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πej
n

{

1

rn+4
x

Y m
n−2j(θx, φx)

}

{

rn
y Y m

n−2j(θy, φy)
}

(C.7)

where Y m
n are the sphericalharmonics and

ej
n = 4

(n − j + 1)!(j + 1/2)!

(n − j + 1/2)!j!

Substituting (C.5), (C.6), and (C.7) in (C.2) and rearranging terms, we get

B(x) − E(x) =

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

ej
nRm

nj(x) ⊗ Mm
nj(O) (C.8)

Rm
nj(x) =

ρ(x)

rn+4
x

Y m
n−2j(θx, φx)RM(x) (C.9)

Mm
nj(O) = B(y)rn

y Y m
n−2j(θy, φy)SM(y) (C.10)

C.2 Local Expansion

Analogous to the multipole expansion is the local expansion. For ry > rx, from (C.7)

1

|~ry − ~rx|4
=

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πej
n

{

1

rn+4
y

Y m
n−2j(θy, φy)

}

{

rn
xY m

n−2j(θx, φx)
}

(C.11)
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Subsequently, we get

B(x) − E(x) =

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

ej
nEm

nj(x) ⊗ Lm
nj(O) (C.12)

Em
nj(x) = ρ(x)rn

xY m
n−2j(θx, φx)RM(x) (C.13)

Lm
nj(O) = B(y)

1

rn+4
y

Y m
n−2j(θy, φy)SM(y) (C.14)

C.3 Translation of Multipole Expansion

From Sack [33], if (r, θ, φ) = (r2, θ2, φ2) + (r1, θ1, φ1)where r1 < r2, then

rNY M
L (θ, φ) =

∞
∑

l1=0

l1
∑

m1=−l1

lmax
∑

l2=lmin

∞
∑

s=0

J(l1,m1, l2, s,N,M,L)rl1+2s
1 Y m1

l1
(θ1, φ1)r

N−l1−2s
2 Y M−m1

l2
(θ2, φ2)

(C.15)
where,

J(l1,m1, l2, s,N,M,L) = 2π(−1)λ(LM |l1m1|l2(M − m1))
(−n

2 )λ(n+3
2 )L(λ − n

2 )s(−
n+1

2 − λ1)s

(1
2 )l1+1(

n+3
2 )λ1

(l1 + 3
2)ss!

n = N − L

λ =
−L + l1 + l2

2

λ1 =
L − l1 + l2

2

(LM |l1m1|l2m2) = (−1)M
√

(2L + 1)(2l1 + 1)(2l2 + 1)

4π

(

L l1 l2
−M m1 m2

)(

L l1 l2
0 0 0

)

(α)n is the pocchammer symbol defined as

(α)n =
Γ(α + n)

Γ(n)

(

j1 j2 j3

m1 m2 m3

)

are theWigner 3j symbols defined as

[

(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!

]1/2

[(j1 + m1)!(j1 − m1)!(j2 + m2)!(j2 − m2)!(j3 + m3)!(j3 − m3)!]
1/2

∑

i

(−1)i+j1−j2−m3

i!(j1 + j2 − j3 − i)!(j1 − m1 − i)!(j2 + m2 − i)!(j3 − j2 + m1 + i)!(j3 − j1 − m2 + i)!

and the limits of l2 are such that they satisfy

|l1 − l2| ≤ L ≤ l1 + l2

L − l1 − l2 : even

If we substitute l1 + 2s = k in (C.15) and collect powers of rk
1 , we get

rNY M
L (θ, φ) =

∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(k−2s,m1, l2, s,N,M,L)rk
1Y m1

k−2s(θ1, φ1)r
N−k
2 Y M−m1

l2
(θ2, φ2)

(C.16)
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where the summation over l2 proceeds in steps of two and,

lmax = L + k − 2s

l′min = max(|L − k + 2s|, |M − m1|)

lmin =

{

l′min L − k + 2s − l′min even
l′min + 1 L − k + 2s − l′min odd

Now consider points r1, r2, O and O′ where

|O′r1| < |O′r2|

|Or1| < |Or2| and

|OO′| < |O′r2|

From (C.7), we have

1

|~r1 − ~r2|4
=

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πej
n

{

|O′r2|
−n−4Y m

n−2j(O
′r2)

}

{

|O′r1|
nY m

n−2j(O
′r1)

}

(C.17)

=

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πej
n

{

|Or2|
−n−4Y m

n−2j(Or2)
}

{

|Or1|
nY m

n−2j(Or1)
}

(C.18)

Since Or2 = O′r2 + OO′, substituting Or2 in (C.18),

=
∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

πej
n

{

|Or1|
nY m

n−2j(Or1)
}

×







∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(k − 2s,m1, l2, s,−n − 4,m, n − 2j) ×

|OO′|kY m1

k−2s(OO′)|O′r2|
−n−4−kY m−m1

l2
(O′r2)

}

now, if we set

l2 = n′ − 2j′

n′ = n + k

m′ = m − m1

and eliminate n,m and l2, we get

=

∞
∑

n′=0

[n′/2]
∑

j′=0

n′
−2j′
∑

m′=−n′+2j′

π|O′r2|
−n′

−4Y m′

n′−2j′(O
′r2) ×

n′

∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

jmax
∑

j=jmin

ej
n′−kJ(k − 2s,m1, n

′ − 2j′, s,−n′ + k − 4,m′ + m1, n
′ − k − 2j) ×

|OO′|kY m1

k−2s(OO′)|Or1|
n′
−kY m1+m′

n′−k−2j(Or1) (C.19)

where,

jmin = max(−k + s + j′, 0)

jmax = min(j′ − s, n′ − k + s − j′)
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Finally, comparing (C.17) and (C.19), for any three points O,O′ and r1,

|O′r1|
nY m

n−2j(O
′r1) =

n
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

jmax
∑

j′=jmin

ej
n−k

ej
n

J(. . .)|OO′|kY m1

k−2s(OO′)|Or1|
n−kY m1+m

n−k−2j′(Or1)

(C.20)

From (C.10),

Mm
nj(O

′) =

yk
∑

y=y1

B(y)|O′y|nY m
n−2j(O

′y)SM(O′y)

where

SM(O′y) =









ny(O
′y)t

ny

(O′y)tny(O
′y)t

(O′y)tny









Since (O′y)t = (Oy)t − (OO′)

SM(O′y) =









ny(Oy)t − ny(OO′)t

ny

(Oy)tny(Oy)t − (Oy)tny(OO′)t − (OO′tny(Oy)t + nt
y(OO′)(OO′t

(Oy)tny − (OO′)tny









Define translation matrices TM and denote

TM(OO′) =

[

(OO′)
(OO′)(OO′)t

]

SM(O′y) = TM(OO′) ⊗ SM(Oy) (C.21)

Notice that,

yk
∑

y=y1

TM(OO′) ⊗ SM(Oy) = TM(OO′) ⊗

yk
∑

y=y1

SM(Oy) (C.22)

From (C.10),(C.20), (C.21), and (C.22), we have

Mm
nj(O

′) =

yk
∑

y=y1

B(y)

n
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

jmax
∑

j′=jmin

ej
n−k

ej
n

J(. . .) ×

|OO′|kY m1

k−2s(OO′)|Oy|n−kY m1+m
n−k−2j′(Oy)TM(OO′) ⊗ SM(Oy)

=

n
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

jmax
∑

j′=jmin

ej
n−k

ej
n

J(. . .) ×

|OO′|kY m1

k−2s(OO′)TM(OO′) ⊗
{

yk
∑

y=y1

B(y)|Oy|n−kY m1+m
n−k−2j′(Oy)SM(Oy)

}

=
n

∑

ksm1j′

ej
n−k

ej
n

J(. . .)|OO′|kY m1

k−2s(OO′)TM(OO′) ⊗ Mm1+m
n−k,j′ (O) (C.23)
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C.4 Multipole to Local Translation

Consider (C.9),
Rm

nj(Ox) = ρ(x)|Ox|−n−4Y m
n−2j(Ox)RM(Ox)

RM(Ox) =













(Ox)t

nx

(Ox)tnx(Ox)t

(Ox)tnx

nx(Ox)t













Since (Ox) = (xox) + (Oxo)

RM(Ox) =













(xox)t + (Oxo)t

nx

(xox)tnx(xox)t + (xox)tnx(Oxo)t + (Oxo)tnx(xox)t + nx(Oxo)(Oxo)t

(xox)tnx + (Oxo)tnx

nx(xox)t + nx(Oxo)t













Denote using translation matrices TM,

RM(Ox) = RM(x0x) ⊗ TM(Ox0) (C.24)

From (C.15),

|Ox|−n−4Y m
n−2j(Ox) =

∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(k − 2s,m1, l2, s,−n − 4,m, n − 2j) ×

|x0x|
kY m1

k−2s(x0x)|Ox0|
−n−4−kY m−m1

l2
(Ox0) (C.25)

Substituting (C.24) and (C.25) into (C.9),

Rm
nj(Ox) = ρ(x)

∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(. . .)|x0x|
kY m1

k−2s(x0x) ×

|Ox0|
−n−4−kY m−m1

l2
(Ox0)RM(x0x) ⊗ TM(Ox0)

=
∞

∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(. . .)Eksm1
(x0x) ⊗ Fnjm

ksm1l2
(Ox0) (C.26)

Eksm1
(x0x) = ρ(x)|x0x|

kY m1

k−2s(x0x)RM(x0x) (C.27)

Fnjm
ksm1l2

(Ox0) = |Ox0|
−n−4−kY m−m1

l2
(Ox0)TM(Ox0) (C.28)

Substituting (C.26) in (C.8),

B(x) − E(x) =

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

ej
nRm

nj( ~Ox) ⊗ Mm
nj(O)

=
∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

ej
n

{ ∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

lmax
∑

l2=lmin

J(. . .)Eksm1
(x0x) ⊗ Fnjm

ksm1l2
(Ox0)

}

⊗Mm
nj(O)

=
∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

Eksm1
(x0x) ⊗ Lksm1

(Ox0) (C.29)

Lksm1
(Ox0) =

∞
∑

n=0

[n/2]
∑

j=0

n−2j
∑

m=−n+2j

lmax
∑

l2=lmin

ej
nJ(. . .)Fnjm

ksm1l2
(Ox0) ⊗ Mm

nj(O) (C.30)
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C.5 Local Translation

Using the following properties of spherical harmonics,

Y m
n = (−1)mY −m

n

Y m
n (−~r) = (−1)nY m

m (~r)

From (C.20), given x0x = x0x1 + x1x ,

|x0x|
kY m1

k−2s(x0x) =

k
∑

k′=0

k′/2
∑

s′=0

k′
−2s′
∑

m′

1
=−k′+2s′

jmax
∑

j′=jmin

(−1)k+m1
ej′

k−k′

es
k

×

J(k′ − 2s′,m′

1, k − 2s, s′,−k + k′ − 4,−m1 + m′

1, k − k′ − 2j′)

|x1x|
k′

Y
m′

1

k′−2s′(x1x)|x1x0|
k−k′

Y
−m′

1
+m1

k−k′−2j′ (x1x0) (C.31)

From (C.24),
RM(x0x) = RM(x1x) ⊗ TM(x0x1) (C.32)

Substituting (C.31) and (C.32) in (C.27),

Eksm1
(x0x) = ρ(x)

k
∑

k′=0

k′/2
∑

s′=0

k′
−2s′
∑

m′

1
=−k′+2s′

jmax
∑

j′=jmin

(−1)k+m1

ej′

k−k′

es
k

×

J(k′ − 2s′,m′

1, k − 2s, s′,−k + k′ − 4,−m1 + m′

1, k − k′ − 2j′)

|x1x|
k′

Y
m′

1

k′−2s′(x1x)|x1x0|
k−k′

Y
−m′

1
+m1

k−k′−2j′ (x1x0)

RM(x1x) ⊗ TM(x0x1)

=

k
∑

k′=0

k′/2
∑

s′=0

k′
−2s′
∑

m′

1
=−k′+2s′

jmax
∑

j′=jmin

(−1)k+m1

ej′

k−k′

es
k

J(. . .)

Ek′s′m′

1
(x1x) ⊗ |x1x0|

k−k′

Y
−m′

1
+m1

k−k′−2j′ (x1x0)TM(x0x1) (C.33)

Substituting (C.33) in (C.8),

B(x) − E(x) =

∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

Eksm1
(x0x) ⊗ Lksm1

(Ox0)

=
∞
∑

k=0

k/2
∑

s=0

k−2s
∑

m1=−k+2s

{ k
∑

k′=0

k′/2
∑

s′=0

k′
−2s′
∑

m′

1
=−k′+2s′

jmax
∑

j′=jmin

(−1)k+m1

ej′

k−k′

es
k

J(. . .)

Ek′s′m′

1
(x1x) ⊗ |x1x0|

k−k′

Y
−m′

1
+m1

k−k′−2j′ (x1x0)TM(x0x1)

}

⊗ Lksm1
(Ox0)

=

∞
∑

k′=0

k′/2
∑

s′=0

k′
−2s′
∑

m′

1
=−k′+2s′

Ek′s′m′

1
(x1x) ⊗ Lk′s′m′

1
(x0x1)

Lk′s′m′

1
(x0x1) =

∞
∑

k=k′

k/2
∑

s=0

k−2s
∑

m1=−k+2s

jmax
∑

j′=jmin

(−1)k+m1

ej′

k−k′

es
k

J(. . .)|x1x0|
k−k′

Y
−m′

1
+m1

k−k′−2j′ (x1x0)

TM(x0x1) ⊗ Lksm1
(Ox0) (C.34)
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