Global lllumination For Point Models

Third Progress Report

Submitted in partial fulfilment of the requirements
for the degree of

Ph.D.

by

Rhushabh Goradia
Roll No: 04405002

under the guidance of

Prof. Sharat Chandran

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai
August 14, 2007

Acknowledgments

I would like to thank Prof. Sharat Chandran for devoting higetand efforts to provide me with vital directions
to investigate and study the problem.

| would also like to specially thank Anil Kumar Kanankanti aveupported me all through my work, and
Prekshu Ajmera, Ankit Agrawal and all the members of ViGll their participation in discussions and valu-

able support.

Rhushabh Goradia

Contents

1

Introduction

11

1.2
13

Introduction e
1.1.1 Point Based Modellingand Rendering
1.1.2 Global lllumination e
1.1.3 Fast computation with Fast Multipole Method
1.1.4 Parallelcomputationson GPU
1.1.5 Visibility between PointPairs
Problem Definition e e

Overview of the Report e

Visibility Maps in Point Clouds for Global Illumination

2.1
2.2
2.3
2.4

2.5
2.6

Introduction e
FMM-based Global lllumination e
Visibility Maps e e
Previous Approach: Visibility in PointModels
2.4.1 Point—Point Visibility e
2.4.2 Hierarchical Visibility
Limitations
New Approach: Visibility Mapsin PointModels
2.6.1 Point—Pair Visibility Algorithm
2.6.2 Octree Depth Considerations i oo

©® © o ~N o W N e

2.6.3 Construction of Visibility Maps
2.7 Extending Visibility Maps to Adaptive Octrees
2.8 Experimental Results e
2.8.1 \Visibility Validation e
2.8.2 Quantitative Results e
2.8.3 DISCUSSION o e

Discussion: Parallel FMM on GPU

3.1 Introduction L e e
3.1.1 Fast computation with Fast Multipole Method
3.1.2 Parallel computationson GPU e e

3.2 Spatial Locality Based Parallel Domain Decomposition...
3.2.1 Space Filing Curves e e
3.2.2 Parallel Compressed Octrees e e

3.2.3 Spatial Domain Decomposition Methodson GPU

3.2.4 Parallel Compressed Octreeson GPU
3.3 Parallel FMM Algorithm e e
3.3.1 Constructing Parallel Compressed Octree
3.3.2 NearField Computations e
3.3.3 Building Interaction Lists e e
3.3.4 Computing Multipole Expansions e
3.3.5 Computing Multipole to Local Translations
3.3.6 Computing Local Expansions e
3.3.7 Parallel FMMonGPU

4 Discussion: Specular Inter-reflections and Caustics in Rot based Models

4.1 IntroduCtion e e
4.2 Photon Mapping e e
4.2.1 Photon Tracing (FirstPass)
4.2.2 Preparing the Photon Map for Rendering« oo
4.2.3 Rendering (Second Pass)
4.2.4 Radiance Estimate e
4.2.5 Limitations of Photon Mapping
4.3 OurApproach e

33
33
33
35
35
36
37
41
44
48
49
49
49
49
50
50
51

4.3.1 Splat-Based Ray Tracing o o0 e 60

432 RayTraCing o v i e e e e 62
4.3.3 Optimizing Photon Generation and Sampling 65
4.3.4 Optimized Photon Traversal and Intersectiontests 65
4.3.5 Fast Photon Retrieval using Optimized N Query Algorithm 66
5 Conclusion and Future Work 69

List of Figures

11

1.2

13

1.4

15
1.6

2.1

Impact of photorealistic computer graphics on filmediatetactive entertainment. Left: A still
from the animated motion picture ‘Final Fantasy : The Spiwifithin’. Right: A screenshot
from the award-winning first person shooter game ‘Doom I,
Example of PointModels e e
Global lllumination. Top LeftfKCO03]: The ‘Cornell Boxscene. This image shows local il-
lumination. All surfaces are illuminated solely by the seublght source on the ceiling. The
ceiling itself does not receive any illumination. Top Righ€03]: The Cornell Box scene un-
der a full global illumination solution. Notice that the lieg is now lit and the white walls
have color bleedingontothem.
Complex point models with global illumination [WS05]YDIO4] effects like soft shadows,
color bleeding, and reflections. Bottom Right: “a major gofatealistic image synthesis is to
create an image that is perceptually indistinguishablenfam actual scene”.
Specular (Regular) and Diffuse Reflections
Left: Colors transfer (or "bleed”) from one surface toodrer, an effect of diffuse inter-
reflection. Also notable is the caustic projected on the redl as light passes through the

glass sphere. Right: Reflections and refractions due topbeutar objects are clearly evident .

Grottoes, such as the ones from China and India form auredor mankind. If data from the

ceiling and the statues are available as point samples, earapture the interreflections? . . .

5

11

2.2

2.3
2.4

2.5

2.6

2.7

2.8
2.9

Views of the visibility map (with respect to the hatchestia in red) is shown. Every point in

the hatched node at the first level is completely visible ferary point in only one node (the
extreme one). At level 2, there are two such nodes. The Figarehe left shows that at the
lowest level, there are three visible leaves for the (exéehatched node; on the other hand

the Figure on the right shows that there are only two suctbldeaves, for the second son
(hatched node). The Figure also shows invisible nodes thatannected with dotted lines. For
example, at level 1, there is one (green) nédsuch that no point idx is visible to any point

in the hatched node. Finally the dashed lines shows “plyrtiégible” nodes which need to be
expanded. Partial and invisible nodes are not explicitbyest in the visibility map since they
canbededuced. 13
Leaf nodes (or cells, or voxels) are atlevel three. 14
Onlyz, andz4 will be considered as occluders. We rejegtas the intersection point of the
tangent plane lies outside the line segnfeqtxzs has earlier been rejected because it is more
than a distancé\ from the linesegmerfig. e 16
Onlyz, andx3 will be considered as occluders. We rejegtas the intersection point of the
tangent plane lies outside segmgnt x4 because it is more than a distanBeaway frompg,

andzs asitstangent planeisparallelg., 20
Point-Point visibility is obtained by performing a nuemlof tests. Now its extended to Leaf-
Leafvisibility e e e e 22
(a) The Buddha model and the cornell room both comaii®o0 points each. However, the
density of points on Buddha is very high as compared to demsitthe walls of the room.

(b) Bresenham Algorithm applied for computing visibilitgtveen two leaves in an adaptive
octree structure. Wrong step-length might miss oufgbiential occluding cell(cyan colored)

in between cellp and cell ¢ leading to wrong computation of visibility status between he
twocells. e 25
Ray-Sphere intersection algorithm to determine ppoitt visibility 26
Various visibility tests where purple color indicatestmons visible to the candidate eye (marked

cyan/brown). . .. L L e e e 29

2.10 Various visibility tests where purple color indicapestions visible to the candidate eye (marked

green/Cyan). e e e e e e e e 30

Vi

2.11 Various visibility tests where purple color indicapestions visible to the candidate eye (marked
cyan/brown). The left column shows the output of Bresenham'’s Line Algorithrapplied to
the scene when divided in an adaptive octree structure. thetartifacts which are clearly
visible due to errors introduced by the step-length citesf Bresenham’s Algorithm. The
step-length here was chosen to be 1 unit. Decrease in théesigih leads to drastic increase
of running timegin hours) The right column shows the output of the nSphere-Ray Intersec-
tion Algorithmapplied on similar models and similar input environmente Hotable artifacts
have reduced quite alot. 31

2.12 Use of V-Maps for Gl effects. The hierarchy was consédidill we had roughlyr5 points per
leaf. The images rendered using a custom point-based emd&uoft shadows, color bleeding
and parts of models indirectly visible to the light sourcéngdit can be observed. Five different
set of images, corresponding to different point modelsshmvn. Each set shows a front view,

a back view and a close up of the point model/s placed in theelooom. 32

3.1 (a) The z-curve fok =1 and 2. (b) A8 x 8 decomposition of two dimensional space containing

7 points. The points are labeled in the order in which thesgahtaining them are visited using

a Z-SFC. (c) Bit interleaving scheme for generating index oékhas perZ-SFC. 36
3.2 Aquadtree builtonasetof 10 pointsin2-D.. 38
3.3 A compressed quadtree corresponding to the quadtreég. 32 38
3.4 Bitinterleaving scheme for a hierarchy ofcells. 39

3.5 Cell locations stored as an indirection grid in texturenmory and the points as an 1-D array.

The RGBAvalue of the cell will index the location of the point (in texé memory) contained

NIt e 42
3.6 A simple parallel Bitonic Merge Sort of eight elementguiees six passes. Elements at the

head and tail of each arrow are compared, with larger elesnerving to the head of the

arrow. The nal sorted sequence is achieve@(iog, n) passes. 43
3.7 Computing the scan ofanarray of 8elements 45
3.8 Storage in texture memory. The indirection pool encdtedree. Indirection grids are drawn

with different colors. The grey cellscontaindata. 46
3.9 Ateach step the value stored within the current nodegention grid is retrieved. If this value

encodes an index, the lookup continues to the next deptter@ige, the value is returned. . . 48

Vii

4.1 Photon paths in a scene (a Cornell box with a chrome spirefeft and a glass sphere on

right): (a) two diffuse reflections followed by absorptiqb) a specular reflection followed by

two diffuse reflections, (c) two specular transmissionfofeéd by absorption. 55
4.2 Building (a) the caustics photon map and (b) the globatgghmap. 56
4.3 Example output of Photon Mapping Algorithm [Jen96] simgwreflection, refractions and

CAUSEICS . . . o o o e 59
4.4 (a) Generation of splat; starts with pointp, and grows the splat with radiug by iteratively

including neighborsy, of p, until the approximation errof. for the covered points exceeds

a predefined error bound. (b) Splat density criterion: Powmhose distance from the splats

centerc; when projected onto spléf; is smaller than a portioperc of the splats radius;

are not considered as starting points for splat generafmnGeneration of linear normal field

(green) over splab; from normals at points covered by the splat. Normal field isegated

using local parameter&:, v) € [1,1]X[1,1] over the splats plane spanned by vectorsind

v; orthogonal to normah; = n;. The normal of the normal field at center pogjtmay differ

fromn;. . . e e 61
4.5 (a) Octree generation: In the first phase, the octreerisrgéed while inserting splat$; into

the cells containing their centets (red cell). In the second phase, spfgtis inserted into all

additional cells it intersects (yellow cells). (b)(c) Thecend test checks whether the edges of

the bounding square of splé intersect the plane that bound the octree leaf cell. (5} is

inserted into the cell. (cJ¥; is not inserted into the cell. This second test is only pented if

the first test (bounding box test) was positive. o L. 64
4.6 Merging the results from multiple hash tables. (a) thergpoint retrieves different candidates

sets from different hash tables, (b) the union set of cate&after merging, and (c) the two

closest neighbors selected. e 68

viii

Abstract

Advances in scanning technologies and rapidly growing derify of geometric objects motivated the use of
point-based geometrgs an alternative surface representation, both for efficemdering and for flexible ge-
ometry processing of highly complex 3D-models. Traditiageometry based rendering methods use triangles
as primitives which make rendering complexity dependent@amplexity of the model to be rendered. But
point based models overcome that problem as points donitaiaiconnectivity information and just repre-
sents surface information. Based on their fundamentall&ityp points have motivated a variety of research on
topics such as shape modeling, object capturing, simgiidicarendering and hybrid point-polygon methods.

Global lllumination for point modelg an upcoming and an interesting problem to solve. The lacko-
nectivity touted as a plus, however, creates difficultiegenerating global illumination effects. This becomes
especially true when we have a complex scene consistingvefalenodels, the data for which is available as
hard to segment aggregated point-models. Inter-refleziimsuch complex scenes requires knowledge of vis-
ibility between point pairs. Computing visibility for pdisis all the more difficult (as compared to polygonal
models), since we do not have any surface/object informatio this report we present, a novel, hierarchical,
fast and memory efficient algorithm to compute a descriptibmutual visibility in the form of avisibility map
Ray shooting and visibility queries can be answered in swmt time using this data structure. We evaluate
our scheme analytically, qualitatively, and quantitdiivend conclude that these maps are desirable.

We use theFast Multipole Method (FMM)a robust technique for the evaluation of the combined effec
of pairwise interactions of data sources, as the light transport kernel for inter-réfias, in point models,
to compute a description Humination maps- of the diffuse illumination. Parallel computation of thMM™
is considered a challenging problem due to the dependentte @iomputation on the distribution of the data
sources, usually resulting in dynamic data decompositimh laad balancing problems. We present, in this
report, an algorithm [HASO02] for parallel implementatiohFMM, which does not require any dynamic data
decomposition and load balancing steps. We, further, alegige necessary hints to implement a similar
algorithm on aGraphics Processing Unit (GPWs a “GPGPU” application.

A complete global illumination solution for point modelsashd cover both diffuse and specular (reflec-
tions, refractions, and caustics) effects. Diffuse glolanination is handled by generatindumination maps
For specular effects, we use tplat-based Ray Tracingechnique for handling reflections and refractions
in the scene and generdaBaustic Mapsusing optimized Photon generation and tracing algorithiive. fur-
ther discuss a time-efficiet/V IV query solver required for fast retrieval of caustics phstarhile ray-traced

rendering.

Chapter 1

Introduction

1.1 Introduction

The pixel indeed has assumed mystical proportions in a wehdre computer assisted graphical techniques
have made it nearly impossible to distinguish between thkamgd the synthetic. Digital imagery now underlies
almost every form of computer based entertainment besateig as an indispensable tool for fields as diverse
as scientific visualization, architectural design, and @& of its initial killer applications, combat training.
The most striking effects of the progress in computer grepltian be found in the filmed and interactive

entertainment industries (Figure 1.1).

Figure 1.1: Impact of photorealistic computer graphics tmdd and interactive entertainment. Left: A sti
from the animated motion picture ‘Final Fantasy : The Spiithin’. Right: A screenshot from the award
winning first person shooter game ‘Doom III’

The process of visualizing a virtual three dimensional @aslusually broken down into three stages:

e Modeling. A geometrical specification of the scene to be visualizedtrhagrovided. The surfaces in
the scene are usually approximated by sets of simple supfaodtives such as triangles, cones, spheres,

cylinders, NURBS surfaceppints etc.

e Lighting. This stage involves ascribirgyht scattering propertieso the surfaces/surface-samples com-
posing the scene (e.g. the surface may be purely refleckigealimirror or glossy like steel). Finally, a
description of thdight sourcesof the scene must be provided - those surfaces that sponisligesmit

light.

e Rendering. The crux of the 3D modeling pipeline, the rendering stagespicthe three dimensional
scene specification from above and renders a two dimensioree of the same as seen through a
camera. The algorithm that handles the simulation of th# figansport process on the available data is
called therendering algorithm The rendering algorithm depends on the type of primitiveeaendered.

For rendering points various rendering algorithms like @8Burfel Renderer etc are available.

Photorealisticcomputer graphics attempts to match as closely as poskibleendering of a virtual scene
with an actual photograph of the scene had it existed in talewerld. Of the several techniques that are used
to achieve this goaphysically-base@pproaches (i.e. those that attempt to simulate the adiyalgal process
of illumination) provide the most striking results. The emagis of this report is on a very specific form of the
problem known aglobal illuminationwhich happens to be a photorealistic, physically-basedoagh central
to computer graphics. This report is about capturing iefigction effects in a scene when the input is available
as point samples of hard to segment entities. Computing aahwusibility solution for point pairs is one major
and a necessary step for achieving good and correct gldbaifiation effects.

Before moving further, let us be familiar with the terms gaimodels and global illumination.

1.1.1 Point Based Modelling and Rendering

Figure 1.2: Example of Point Models

In recent years, point-based methods have gained sigrifit@nest. In particular their simplicity and total
independence of topology and connectivity make them an inselg powerful and easy-to-use tool for both
modelling and rendering. For example, points are a nategesentation for most data acquired via measur-
ing devices such as range scanners [[tB(], and directly rendering them without the need for clgaand

tessellation makes for a huge advantage.

Second, the independence of connectivity and topologyvaitw applying all kinds of operations to the
points without having to worry about preserving topologyconnectivity [PKKG03, OBA 03, PZvBGO00]. In
particular, filtering operations are much simpler to applypoint sets than to triangular models. This allows for
efficiently reducing aliasing through multi-resolutiorckamiques [PZvBGO00, RLOO, WSO03], which is particu-
larly useful for the currently observable trend towards enand more complex models: As soon as triangles
get smaller than individual pixels, the rationale behinshggriangles vanishes, and points seem to be the more

useful primitives. Figure 1.2 shows some example pointdbasedels.

1.1.2 Global lllumination

Figure 1.3: Global lllumination. Top LeftfKCO03]: The ‘Coefi Box’ scene. This image shows local illuming-
tion. All surfaces are illuminated solely by the square tigburce on the ceiling. The ceiling itself does npt
receive any illumination. Top Right[KCO03]: The Cornell Bsgene under a full global illumination solutior.
Notice that the ceiling is now lit and the white walls haveardleeding on to them.

Global illumination algorithms are those which, when detearing the light falling on a surface, take into

account not only the light which has taken a path directlyrfra light source (direct illumination), but also

light which has undergone reflection from other surfaceieworld (indirect illumination).

Figure 1.4: Complex point models with global illuminatioW§05] [DYNO4] effects like soft shadows, color
bleeding, and reflections. Bottom Right: “a major goal ofistie image synthesis is to create an image thal
perceptually indistinguishable from an actual scene”.

is

Figures 1.3 and 1.4 gives you some examples images showergffdcts ofGlobal illumination It is a
simulation of the physical process of light transport. Gloilumination effects are the results of two types of

light reflections and refractions, namely Diffuse and Sgeecu
1.1.2.1 Diffuse and Specular Inter-reflections

Diffuse reflectioris the reflection of light from an uneven or granular surfagehsthat an incident ray is seem-
ingly reflected at a number of angles. The reflected light euknly spread over the hemisphere surrounding
the surface (2 steradians).

Specular reflectionon the other hand, is the perfect, mirror-like reflectiodigiit from a surface, in which

light from a single incoming direction (a ray) is reflectedara single outgoing direction. Such behavior is

described by the law of reflection, which states that thectiwa of incoming light (the incident ray), and the

direction of outgoing light reflected (the reflected ray) make same angle with respect to the surface normal,

thus the angle of incidence equals the angle of reflectiagsigstcommonly stated & = 6,..

Regular Reflection Diffuse Reflection
Incident rays Reflected Rays Incident rays

" Reflected Rays

Eg. plane mirror or any other surface This is like any surface that we can
that produces a reflected image. see but does not reflect an image

Figure 1.5: Specular (Regular) and Diffuse Reflections

The most familiar example of the distinction between spacahd diffuse reflection would be matte and

glossy paints as used in home painting. Matte paints havgheehproportion of diffuse reflection, while gloss

paints have a greater part of specular reflection.

Figure 1.6: Left: Colors transfer (or "bleed”) from one sagé to another, an effect of diffuse inter-reflectio
Also notable is the caustic projected on the red wall as lgtsises through the glass sphere. Right: Reflecti
and refractions due to the specular objects are clearlyeatid

ons

Due to various specular and diffuse inter-reflections in aogne, various types of global illumination
effects may be produced. Some of these effects are vergstieg like color bleeding, soft shadows, specular
highlights and caustic€olor bleedings the phenomenon in which objects or surfaces are coloreeflaction
of colored light from nearby surfaces. It is an effect of dgé inter-reflectionSpecular highlightefers to the
glossy spot which is formed on specular surfaces due to fgre@ilections. Acausticis the envelope of light
rays reflected or refracted by a curved surface or objecth@mptojection of that envelope of rays on another
surface. Light coming from the light source, being spedylaaflected one or more times before being diffusely
reflected in the direction of the eye, is the path traveleddiyt lWwhen creating caustics. Figure 1.6 shows color
bleeding and specular inter-reflections including caastic

Interesting methods like statistical photon tracing [Bjn@irectional radiance maps [Wal05], and wavelets
based hierarchical radiosity [GSCH93] have been inventeccdmputing a global illumination solution. A
good global illumination algorithm should cover both dg&iand specular inter-reflections and refractions,
Photon Mappindeing one such algorithm. Traditionally, all these methasisume a surfaaepresentation for
the propagation of indirect lighting. Surfaces are eithgalieitly given as triangles, or implicitly computable.
The lack of any sort of connectivity information in pointdeal modeling (PBM) systems ndwirts photo-
realistic rendering. This becomes especially true whes iitat possible to correctly segment points obtained
from an aggregation of objects (see Figure 2.1) to stitckttugy a surface.

There have been efforts trying to solve this problem [WSD&has4, SJ00], [AA03, OBA 03], [RLOQ]. Our
view is that these methods would wogken betteiif fast pre-computation of diffuse illumination could be

performed.Fast Multipole MethodFMM) provides an answer.

1.1.3 Fast computation with Fast Multipole Method

Computational science and engineering is replete withlpm® which require the evaluation of pairwise in-
teractions in a large collection of particles. Direct ewadion of such interactions results (i N?) complexity
which places practical limits on the size of problems whiem e considered. Techniques that attempt to
overcome this limitation are labeled N-body methods. Theddy method is at the core of many computa-
tional problems, but simulations of celestial mechanicd epulombic interactions have motivated much of
the research into these. Numerous efforts have aimed atiregithe computational complexity of the N-
body method, particle-in-cell, particle-particle/palé-mesh being notable among these. The first numerically-
defensible algorithm [DS00] that succeeded in reducing\tH®dy complexity toO(N) was the Greengard-
Rokhlin Fast Multipole Method (FMM) [GR87].

The algorithm derives its name from its original applicatidnitially developed for the fast evaluation of

potential fields generated by a large number of sources (geggravitational and electrostatic potential fields
governed by the Laplace equation), this method has beenalized for application to systems described by
the Helmholtz and Maxwell equations, and to name a few, otlyrdinds acceptance in chemistry[BCB2],
fluid dynamics|[GKM96], image processing[EDDO03], and faghsnation of radial-basis functions [CBO1].

For its wide applicability and impact on scientific compgtirthe FMM has been listed as one of the top ten
numerical algorithms invented in the 20th century[DSOle FMM, in a broad sense, enables the product of
restricted dense matrices with a vector to be evaluatéd(iN) or O(N log N') operations, when direct multi-

plication requiresD(N?) operations.

Besides being very efficient)(V) algorithm) and applicable to a wide range of problem domaine
FMM is also highly parallel in structure. Thus implementibhgn a parallel, high performance multi-processor
cluster will further speedup the computation of diffusentiination for our input point sampled scene. Our
interest lies in a design of a parallel FMM algorithm thatasetic decomposition, does not require any explicit
dynamic load balancing and is rigorously analyzable. Thyorithm must be capable of being efficiently

implemented on any model of parallel computation.

1.1.4 Parallel computations on GPU

The graphics processor (GPU) on today’s video cards haseyahto an extremely powerful and flexible pro-
cessor. The latest GPUs have undergoing a major transftimm, supporting a few fixed algorithms to being
fully programmable. High level languages have emerged faplgics hardware, making this computational
power accessible. Architecturally, GPUs are highly patatreaming processors optimized for vector opera-
tions, with both MIMD (vertex) and SIMD (pixel) pipelines. ith' the rapid improvements in the performance
and programmability of GPUs, the idea of harnessing the peiv&PUs for general-purpose computing has
emerged. Problems, requiring heavy computations, likedl®aling with huge arrays, can be transformed and
mapped onto a GPU to get fast and efficient solutions. Thid fietesearch, termed &eneral-purpose GPU
(GPGPU) computinghas found its way into fields as diverse as databases and daitagjrscientific image
processing, signal processing etc.

Many specific algorithms like bitonic sorting, parallel fixesum, matrix multiplication and transpose, par-
allel Mersenne Twister (random number generation) etce lien efficiently implemented using the GPGPU
framework. Onesuchalgorithm which can harness the capabilities of the GPsiallel adaptive fast multi-

pole method

1.1.5 Visibility between Point Pairs

Even a good and efficient global illumination algorithm waeulot give us correct results if we do not have
information about mutual visibility between points. An iorant aspect of capturing the radiance (be it a finite-
element based strategy or otherwise) is an object spgaseindependerknowledge of visibility between point
pairsVisibility calculation between point pairs &ssential as a point receives energy from other point only if it
is visible to that point.But its easier said than done. Its complicated in our caseliasput data set is a point
based model witmo connectivityinformation. Thus, we do not have knowledge of any intemgrsurfaces
occluding a pair of points. Theoretically, it is thereforegossible to determine exact visibility between a pair

of points. We, thus, restrict ourselvesapproximate visibility .

1.2 Problem Definition

After getting a brief overview of the topics, let us now defthe problem we pose in this report.

Problem Definition: Capturing interreflection effects in a scene when the inpuavailable as point sam-
ples of hard to segment entities.

There are four things to look out for:

e Computing a mutual visibility solution for point pairs is ®@major and a necessary step for achieving

good and correct global illumination effects.
o Inter-reflection effects include both diffuse and specefécts like reflections, refractions, and caustics.
e We compute diffuse inter-reflections using fhast Multipole Method (FMM).

e We desire parallel implementation of visibility and FMM aliihms on Graphics Processing Units(GPUSs)

S0 as to achieve speedups for generating the global iliutrnmaolution.

1.3 Overview of the Report

Having got a brief overview of the keyterms, let us review #pproach in detail in the subsequent chapters.
The rest of the report is organized as follows. We presentvelndierarchical, fast, and memory efficient
algorithm to compute a description of mutual visibility, the form of avisibility map (V-Map), for point
models, especially for the global illumination problem,@mapter 2. We evaluate our scheme analytically,
qualitatively, and quantitatively by providing results tbhe same. As discussed above, we use FMM for solution
to diffuse global illumination in point sampled scenes. Aliceent algorithmic design for fast, parallel FMM

(yet to be implemented) is detailed in Chapter 3 along wittessary hints to implement a similar algorithm

8

on GPU. Also, an overview of parallel GPU implementation leheentary operations like parallel perfix sum,
bitonic sort and construction of simple, parallel octregtuees is given which are eventually required for
implementing parallel FMM on GPU. Further, Chapter 4 disessefficient algorithms required for computing
specular effects (reflections, refractions, caustics)pfmint models, so as to give a complete and fast global

illumination package for point models. We conclude our répath our concluding remarks in Chapter 5.

Chapter 2

Visibility Maps in Point Clouds for Global
lllumination

Overview and Contribution: Point-sampled geometry has gained significant interestaltieeir simplicity.
The lack of connectivity touted as a plus, however, creafésulties in generating global illumination effects.
This becomes especially true when we have a complex scemsestng of several models, the data for which
is available as hard to segment aggregated point models.

Inter-reflections in such scenes requires knowledge obiitsi between point pairs. Computing visibility for
points is all the more difficult (as compared to polygonal elell since we do not have any surface or object
information. The visibility function is highly discontimus and, like the BRDF, does not easily lend itself to an
analytical FMM formulation. Thus the nature of this comgiata is 6(n?) for n primitives, which depends on
the geometry of the scene. We, in this chapter, present a isévility algorithm (Section 2.6.1) for Point Based
Models. We further extend this algorithm to an efficient arehical algorithm (implemented using Octrees)
to compute mutual visibility between points, representethe form of avisibility magV-Map). Thus the key
features are twofold. First, we have a basic point-to-pweisibility function that might be useful in its own
right. Second, we have a hierarchical version of aggregpatéat clouds. Ray shooting and visibility queries
can be answered in sub-linear time using WiMapdata structure. The scheme is then evaluated analytically,

qualitatively, and quantitatively and it concludes witle ttesirability ofvisibility maps

2.1 Introduction

In this section, | will describe the details of the papers weter[RGed].

Points as primitives have come to increasingly challendggoms for complex models; as soon as triangles
get smaller than individual pixels, the raison d’etre ofiitimnal rendering can be questioned. Simultaneously,
modern 3D digital photography and 3D scanning systems [Lt®0 acquire both geometry and appearance

of complex, real-world objects in terms of (humongous) pgirMore important, however, is the considerable

10

Figure 2.1: Grottoes, such as the ones from China and Inda &treasure for mankind. If data from the
ceiling and the statues are available as point samples, earapture the interreflections?

freedom points enjoy. The independence of connectivitytapdlogy enable filtering operations, for instance,
without having to worry about preserving topology or cortivity [PKKG03, OBAT03, PZvBG00]. Further,
points are a natural representation for most data acquiyedrme scanners [LP®0], and directly rendering
them without the need for cleanup and tessellation makes lfmige advantage.

Such three-dimensional scanned point models of culturdage structures are useful for a variety of reasons
— be it preservation, renovation, or simply viewing in a museunder various lighting conditions. We wish
to see the effects of Global lllumination (GI) — the simwatiof the physical process of light transport that
captures inter-reflections — on point clouds of not justtagtimodels, but an environment that consists of such
hard to segment (see Figure 2.1) entities.

Interesting methods like statistical photon tracing, dimnal radiance maps, and wavelets based hierarchical
radiosity have been invented for this purpose. Traditiigrall these methodassume a surfaceepresentation
for the propagation of indirect lighting. Surfaces are eitexplicitly given as triangles, or implicitly com-
putable.The absence of connectivity between points imbeénepoint based models notwrts computation,
especially in such hard to segment models.

Moreover, an important aspect of capturing the radianceit(bdinite-element based strategy or otherwise)
is an object space view-independent knowledge of visjbbietween point pairs. A view-independent vis-
ibility solution cannot (in general) use the popular hardwhased z-buffering technique. Since points are
zero-dimensional, only approximate invisibility betweasints can be inferred.

This chapter presents a atomic point-pair visibility algon. The visibility problem, in general, hasweorst-
caseO(n?) time complexity forn primitives. Given the fact that point models are complexjs#eand consists
of millions of points, visibility algorithms are highly timconsuming. In real scenes, we might hpeetitions
that are completely unoccluded, or hopelessly obscureerakthical visibility is often used to discover unoc-
cluding portions, and prune uninteresting parts of the rltisibility problem. We define theisibility map

for this purpose. With this mapisibility queries are answered quicklyhether we have lots of unoccluded

11

space (such as the Cornell room without any boxes) or demselypied space (the same room packed with
boxes). Although the atomic algorithm is modelled from [DJW}, there are several performance enhance-
ments. Further, the explicit use of hierarchy in the new psgal method is to be noted.

Many global visibility (both view-dependent and view-imeandent) solutions fggolygonalmodels have previ-
ously been designed [DDP97]. [Bit02] provides a visibilityap for an input scene given in terms of polygons.
However, the V-Map structure presented here is differeshfthe visibility map of [Bit02], which specifies the
Potential Visible Sefrom a given view (unlikeview-independerin our case) and uses it specifically for occlu-
sion culling. Visibility has been considered by [WSO05] fadiosity on point models, but their primary focus
was on computing radiance than visibility. The algorithregamted, on the other hand, focuses on computing
mutual visibility in the context of point clouds.

In summary, the chapter presents a hierarchical, approxéntast, and memory efficient visibility determina-

tion algorithm suitable for point based models, especifdhthe global illumination problem.

Before introducing the core algorithm for constructing \&pt, we first give a brief introduction of the Fast
Multipole Method (FMM), the algorithm used to compute dgéuglobal illumination solution for input point
cloud in Section 2.2 followed by an overview of what a V-Magaisd what all queries can it entertain in Sec-
tion 2.3. We then review our previous approaches for comguinutual visibility between point pairs and
constructing V-Maps in Section 2.4, as described in [Gar®@§ first describe our basic “primitive” visibility
algorithm for point to point visibility in subsection 2.4.Next, we extend this primitive in the FMM context

to build a hierarchical visibility algorithm for V-Maps inugsection 2.4.2. We follow it up highlighting the
problems (Section 2.5) the above algorithms had and desthi necessary changes we made to produce an
efficient (both in memory and time) and optimized core alponi for constructing V-Maps in Section 2.6 and

Section 2.7. We evaluate our scheme by providing resultthsame in Section 2.8.

2.2 FMM-based Global Illlumination

The FMM [GR87], in a broad sense, enables the product oficestr dense matrices with a vector to be
evaluated irO(N) or O(N log N) operations, when direct multiplication requir@$N?) operations. A global

illumination version of FMM (albeit for polygonal models)as given in [KGCO04]. However, the inherent
notion of points in FMM blends very well with hierarchical ipb models as input. We therefore devised a
point-based version which serve as a test bed for the pro@upfconcept of V-maps. For every node in
an octree, FMM defines an “interaction” list consisting dff@ssible nodes which can contribute energy to

this node. The V-map data structure is therefore neededetatifgi the visible nodes in the interaction list.

12

LEVEL 0
(ROOT)

LEVEL 1

— LEVEL 2

— LEVEL3
(LEAF)

With respect to @ at any level,
‘ —— COMPLETELY INVISIBLE

‘ —— COMPLETELY VISIBLE

‘ —— PARTIALLY VISIBLE

Figure 2.2: Views of the visibility map (with respect to thatthed node in red) is shown. Every point in the
hatched node at the first level is completely visible fromrgymoint in only one node (the extreme one). At
level 2, there are two such nodes. The Figure on the left shioatsat the lowest level, there are three visible
leaves for the (extreme) hatched node; on the other handigiueeFon the right shows that there are only two
such visible leaves, for the second son (hatched node). iglesFalso shows invisible nodes that are connected
with dotted lines. For example, at level 1, there is one (gre@deG such that no point iidx is visible to any
point in the hatched node. Finally the dashed lines showsigtig visible” nodes which need to be expande
Partial and invisible nodes are not explicitly stored in tihility map since they can be deduced.

o

Details on the theoretical foundations of FMM, requirensestibject to which the FMM can be applied to
a particular domain and discussion on the actual algorithoh its complexity as well as the mathematical
apparatus required to apply the FMM to radiosity are avélab [Gor06] and [KCO03]. Five theorems with
respect to the core radiosity equation are also proved sncibimtext.

Note that usage of the V-map is not restricted to FMM based &Ichn also be incorporated in existing

hierarchical Gl algorithms for point models.

2.3 Visibility Maps

The construction of the visibility map starts assuming adrehy is given. For the purpose of illustration of our
method, we use the standarjular octree-based subdivision of space. Figure 2.3 shows a twerdiional

version to illustrate the terminology.

13

Thevisibility mapfor a tree is a collection of visibility links for every node the tree. Thevisibility link
for any nodep is a list L of nodes; every point in any node inis guaranteed to be visible from every point in
p. Figure 2.2 provides different views of tiwsibility map (The illustration shows directed links for clarity; in

fact, the links are bidirectional.)

Figure 2.3: Leaf nodes (or cells, or voxels) are at levelghre

Visibility maps entertain efficient answers to the follogiqueries.

1. Is pointz visible to pointy? The answer may well be, “Yes, and, by the way, there are aenthaich of

other points neay that are also visible.” This leads to the next query.

2. What is the visibility status af points aroundr with respect tav points around;? An immediate way
of answer this question is to repeat a “primitive” point4miovisibility query uv times. With a visibility

map, based on the scene, the answer is obtained more efficigtt O(1) point-point visibility queries.
3. Given a point: and a rayR, determine the first object of intersection.
4. Is pointz in the shadow (umbra) of a light source?

All the above queries are done with a simple traversal of teee. For example for the third query, we traverse
the root to leafO(log n) nodes on whichr lies. For any such node, we check ifR intersects any nodg; in

the visibility link of p. A success here enables easy answer to the desired query.

14

2.4 Previous Approach: Visibility in Point Models

Visibility is not considered in the original FMM algorithnkor our purposes it is complicated in that occlusion
is a point to point based phenomenon and not a node to nodemieson where the bulk of the computation
occur. In this section we first give a point to point visilyililgorithm. Later we incorporate it in the FMM

context by constructing the V-Maps.

2.4.1 Point-Point Visibility

Since our input data set is a point based model wiiltonnectivity informatignwe do not have knowledge of
any intervening surfaces occluding a pair of points. Thieca#ly, it is therefore impossible to determine exact
visibility between a pair of points. Thus, we restrict ouves toapproximate visibilitywith a value between 0
and 1. Consider two poinfgandq (as in Figure 2.4) in the input scene on which we run a numbézesif to
efficiently produceD(1) possible occluders.

First we apply the culling filter to straightway eliminatedsfacing surfaces.
n,.pqg >0 and ng.qp >0

wheren,, andn, are normals at poirp andq respectively.

Algorithm 1 Visibility between Point ’p’ and Point 'q’
procedure PointtoPointVisibility(p,q)

1: Define threshold, visible, ; = 1

2: if FacingeachOthep(q) then

3. Find k closest points in regiofk aroundpg

4: Prune based on tangent plane

5. for i=0tok do

6: contributeVis; = visibility look_up(distance;)
7 visibley, 4 = visibley, 4 * contributeVis;

8: end for

9: if wvisibley) > thresholdt; then

10: return(visible)

11: endif

12: end if

If the above condition is satisfied, we then determine thaiptesoccluder seX (| X |= k). This is a set
of points in the point cloud which are closefig and thus can possible affect the visibility. These poirgsri
a cylinder aroundyq. In Figure 2.4, for examplezs is dropped. This set is further pruned by considering the
tangent plane at each potential occluder. If the tangemiepiimes not intersedy the occluder is dropped (for
example,z; in Figure 2.4). A final pruning happens by measuring distance along the tangemd pg. We
pick the smallesO(1) occluders (equal to 3 in our implementation) using thisatise metric. We compute a

visibility fraction based on this distance. This resultg\igorithm 2.4.1.

15

X3% > Delta

N o

4

Figure 2.4: Onlyx, andzx4 will be considered as occluders. We rejegtas the intersection point of the tangent
plane lies outside the line segmém. =3 has earlier been rejected because it is more than a distaricam
the line segmerpq.

2.4.2 Hierarchical Visibility

In this section, we now incorporate visibility into the FMNparithm by constructing the visibility links to
form a V-Map for the point modelled scene. The object spaoepmsed of points was was initially divided into
annon-adaptive octreeNote that each point receives energy from every other mother directly, or through
the points in the interaction list of the ancestor of the leb&longs to. The key idea is to modify the interaction
list

If the points in a node in the interaction list of nodé are completely visible froneverypoint in b, then
the visibility stateof the pair (b,c) is said to bealid. If, on the other hand, no point inis visible from any
point in b, the visibility state of the pair (b,c) is said to bw/alid. The nodec is dropped from the interaction
list since no exchange of energy is permissible. Finallyemvthe visibility state ispartial, we postponethe
interaction. In the sequel, we ensure that the postponedaiction happens at the lowest possible depth (the
root is at depth 0) for maximum efficiency. This is done by agiag the notion of point—point visibility to the

node level as follows.

16

2.4.2.1 Point-Leaf Visibility

In this section, we determine the visibility between a leadl@ and a pointp. We start by making point to

point visibility calculations between poiptand every poinp; € L. This results in Algorithm 2.4.2.1.

Algorithm 2 Visibility between Point 'p’ and Leaf 'L
procedure PointtoL eafVisibility(p,L)

1. Define threshold,, Visi_point. L =0

2. for each poinp; € L do

3: state =PointtoPointVisibility(p, p;)

4. if equals(state,visiblejhen

5: Visi_point_L = Visi_point_L + 1
6: if Visi_point_L > thresholdt, then
7 return(visible)

8: end if

9. endif

10: end for

11: return(invisible)

2.4.2.2 Leaf-Leaf Visibility

Similarly we determine visibility between two leaf nodésand L. For every pointp; € C, we start by

calculatingPoint—Leaf Visibilitypbetween poinp; and L. This results in Algorithm 2.4.2.2.

Algorithm 3 Visibility between Leaf 'L’ and Leaf 'C’
procedure LeaftoL eafVisibility(L,C)

. Define thresholds, Visi_point L =0

2: for each poinp; € C' do

3: state =PointtoLeafVisibility(p;, Leaf L)

4. if equals(state,visiblejhen

5: Visi_point.L = Visi_pointL + 1
6

7

8

9

=

end if
: end for
- if Visi_point_L > thresholdts then
. return(visible)
10: end if
11: return(invisible)

2.4.2.3 Node—Node Visibility

In this section, we determine the visibility between nodesnd B of the octree. We start by computing
visibility of all b € Leafnodes(B) to all a € Leafnodes(A). If all are visible, the status is valid. If none

are visible, the state is invalid. Otherwise, we have plavigbility. In this scenario, we repeat the procedure

17

Node—Node Visibilityor all the child nodes oA and B. Note that there is no case of partial visibility between

leaf nodes. The algorithm 2.4.2.3 is summarized below.

Algorithm 4 Visibility between Node A’ and Node 'B’
procedure NodetoNodeVisihility(A,B)

1: Declare viscnt =0
for each ac leafcell(A) do
for each be leafcell(B) do
state =L eaftoL eafVisibility(a, b)
if equals(state,visiblejhen
vis.ent=viscnt + 1
end if
end for
end for
if equals(viscnt,LeafNode(A).size*LeafNode(B).siz&#)en
return(valid)
. else if equals(viscnt,0) then
return(invalid)
. else
return(partial)
end if

el e N < =
Qg R W NR o

2.4.2.4 Constructing Visibility Map

We now are in a position to compute the interaction list antstwict the Visibility Map as in Algorithm 2.4.2.4.
We start by initializing an interaction list of every nodehlie its seven siblings. This default list ensures that
every point is presumed to interact with every other poinhe M-Map is then constructed by calling Algo-
rithm 2.4.2.4 initially for theroot node. It then recursively sets up the relevant visibiliks in the interaction

list. The complexity of this algorithm is arour@(N?logN), assuming point-point visibility taked(1) time.

2.5 Limitations

Having looked at the previous approach to the constuctidghei/isibility Maps, we now look at some of the

limitations the above described algorithms possess.

e We use three different thresholds in the whole process o$toaction of V-Maps. Getting a proper
combination of all the three threshold values so as to predocect results is a difficult task. Further,
these threshold values are somewhat dependent on the icgn# somplexity and hence finding the

correct thresholds for the given scene calls for lots of & error tests.

18

Algorithm 5 Construct Visibility Map

procedure OctreeVisibility(Node A)

1:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

3
4
5:
6:
7
8
9

for each node B: interactionlist(A) do
if notLeaf(A) then
state?NodetoNodeVisihility(A,B)
else if Leaf(A) then
state+ eaftoL eafVisibility(A,B)
end if
if equals(state,validyhen
Retain B in interactionlist(A)
else if equals(state,partialjhen
for each ac children(A) do
for each be children(B) do
interactionlist(a).add(b)
end for
end for
interactionlist(A).remove(B)
else if equals(state,invalidthen
interactionlist(A).remove(B)
end if
end for
for each Re child(A) do
OctreeVisibility(R)
end for

e The process of finding the nearest occluders, out of millions of input points, for det®ing mutual
visibility between points is a time consuming task and a mibgitleneck in terms of speedups desired.
We should have an efficient algorithm for finding the potdraiecluders for a fast point—pair visibility

algorithm.

¢ In the point—pair visibility algorithm, we dont use any cai@hs which helps us to exit instantaneously
as soon as an invisibility case is detected. We, thus, parfomecessary time-consuming calculations

reducing the speed further.

o If noted carefully, Algorithm 2.4.2.4 dodggh amountof extra computations in case a partial visibility
case is detected at a particular level. To elaborate, we atawisibility between two nodes by computing
visibility between all leaf—pairs of both the nodes. If atirvisibility case is detected, we postpone the
computations to the next level, i.e. between the childretheftwo nodes. We theagain compute (re-
compute) the visibility between the same leaf—pairs whewisi¢ the children of those nodes in future.
This extra computation introduces a factor of at leastog(V), assuming the leaf—pair visibility takes
O(1) time (which is not generally the case. Leaf—Pair visibiliggnerally takes lot morethenO(1)).

Hence, if we can reduce these extra computations, high spggedan be achieved.

19

e The algorithms described above has been implemented oradgeyptive octrees constructed on input
point model. But many a times, non-adaptive division is natfgrable, especially when the data in
the scene is of non-uniform density. Thus we would desirecédesthis algorithm to suit the adaptive

sub-division structure of the octree.

2.6 New Approach: Visibility Maps in Point Models

We now present a modified, hierarchical, fast and memoryieffficvisibility determination algorithm suitable
for point based models, which overcomes all the limitatidescribed in Section 2.5. We first explain the
modified point—pair visibility algorithmin subsection 2.6.1 and follow it up by extending it to counstrthe

V-Maps in themost efficientmanner in subsection 2.6.3.
2.6.1 Point—Pair Visibility Algorithm

Since our input data set is a point model with connectivity informationwe don’t have knowledge of any
intervening surfaces occluding a pair of points. Theoedljc it is therefore impossible to determine exact
visibility but only approximate visibility. Albeit, for pactical purposes we restrict ourself to boolean visibility

(0 or 1) based on results of the following visibility tests. Thigaidithm is motivated by work done in [DTGOQ].

Figure 2.5: Onlyz, andx3 will be considered as occluders. We reje¢tas the intersection point of the tange
plane lies outside segmemy, =4 because it is more than a distan@away frompg, andzs as its tangent plang
is parallel topg.

Consider two pointp andqg with normalsn, & n, as in Figure 2.5. We run the following tests to efficiently

produceO(1) possible occluders.

20

1. Cull backfacing surfacesot satisfying the constraint, - pg > 0 and n, - gp > 0

2. Determine the possible occluder ¥gbf points close t@q which can possibly affect their visibility. As
an example, in Figure 2.5, points,(=2, x3, x4, z5) € X. An efficient way to obtainX is to start with the
output of a 3D Bresenham line segment algorithm [E.62] betweandqg. Bresenhams algorithm will
output a set” of points which are co-linear with and betwepmandqg. Using the hierarchical structure,

add to.X, all points from the leaves containing any point fraém

3. PruneX further by applying a variety of tangent plane intersectiests as shown in Figure 2.5.

Any point from X which fails any of the tangent tests is considered an occltadgg. If we find K such
occludersy is considered invisible tp.
Elimination of thresholds as compared to previous pointyigibility approach simplifies the tasks for the
user and also helps in achieving better results. Also, tasdmham’s algorithm used, gives us an efficient way

to find the potential occluders between given point—paatehy providing us with necessary speedups.

2.6.2 Octree Depth Considerations

In a hierarchical setting, and for sake of efficiency, we n&yninate the hierarchy to some level with several
points in a leaf. A simple extension of our point—pair vitialgorithm to aleaf—pair would be to compute
visibility between their centroidgy(@andq, Figure 2.5). SeX now comprises of centroids, each corresponding

to a intersecting leaf (ILF). Our occlusion criteria is then
e If the ILF contains no point, it is dropped.

e Likewise, if the tangent plane of the centroid of ILF is p&hto pg(x5), intersects outside segment
pq(x1), or intersects outside distanég(distance between centroid to ferthestpoint in the leaf)(x3),

we drop the leaf (See Figure 2.6).

Any ILF which fails any of the above tests is deemed to be artudec for point-pairp — g. We consider
p — q as invisible, if there existat leastone occluding ILF. Although this algorithm involves appiroation,
the high density of point models results in no significanifacts. (See Section 2.8.1).
Extending point—pair visibility determination algorithto the leaf level (although is an approximation) makes
it much more faster. The strict condition of concluding afair asinvisible in a presence of just single
occluder balances the approximation done. Further, fingisica single occluder makes us exit instantaneously
(as soon as an invisibility case is detected) and therebisvoaking unnecessary computations, making it

much more time efficient.

21

A
A
ST /
(-L-s f '&
! 1=] 2
. I N 7
C1 cl cl c1 €1
(a) A potential occluding set of voxels (b) ¢Z3 is rejected because the tangent (c) ¢Z, is rejected because the line
are generated given centroids and plane is parallel t@; c2. Similarly, we segment; ce doesn't intersect the tan-
c2. The dotted voxel contains no point rejectcZ, as the intersection point of gent plane within a circle of radius de-
and is dropped. the tangent plane lies outside the line termined by the farthest point from the
segment. centroid. OnlycZ; is considered as a

potential occluder.

Figure 2.6: Point-Point visibility is obtained by performmgi a number of tests. Now its extended to Leaf-Lgaf
visibility

2.6.3 Construction of Visibility Maps

We now extend the leaf—pair algorithm (subsection 2.6.2)l¢termine visibility between nodes (non-leaf)
in the hierarchy. In addition, the new algorithm presentethe most efficient and optimized algorithm for
constructing the V-Maps for the given point modilo extra computations between node and leaf pairs are are
performed thereby reducing much of the time complexity as compareddmriginal algorithm(Section 2.4.2).
We also give a brief overview of how the constructed V-Map barapplied to compute a global illumination
solution.
In constructing a visibility map, we are given a hierarchyl aoptionally for each node, a list of interacting
nodes termed o-IL (a mnemonic for Old Interaction List). Heto-IL is not given, we initialize the o-IL of
every node to be its seven siblings. This default o-IL listwees that every point is presumed to interact with
every other point. The V-Map is then constructed by callingokithm 2.6.3 initially for theroot node, which
sets up the relevant visibility links in New Interaction i(isIL). This algorithm invokes Algorithm 2.6.3 which
constructs the visibility links for all descendants4fv.r.t all descendants db (and vice-versa) at the best (i.e.
highest) possible level. This ensures an optimal strudturkierarchical radiosity as well as reduces redundant
computations.

Computational Complexity: The visibility problem provides an answer ¥ = ©(n?) pair-wise queries,
n being the number of points in input model. As a result, we mesathe efficiency w.r.ftV especially since
the V-Map purports to answemy of theseN queries. We shall see later tidddet oNodeVi si bi I ity()
is linear w.r.tN. OctreeVi si bi lity() then has the recurrence relati@tih) = 87'(h — 1) + N (for a
Node A at heighth) resulting in an overall linear time algorithm (w.ril), which is as far the best possible for

anyalgorithm that builds the V-Map.

22

Algorithm 6 Construct Visibility Map

procedure OctreeVisibility(Node A)

1. for each node B in old interaction list (o-IL) of Ao
2. if NodetoNodeVisibility(A,B) == VISIBLEthen
3 add B in new interaction list (n-IL) of A

4 add A in new interaction list (n-IL) of B

5 endif

6: remove A from old interaction list (o-IL) of B
7. end for

8: for each C in children(Alo

9: OctreeVisibility(C)

10: end for

Algorithm 7 Node to Node Visibility Algorithm

procedure NodetoNodeVisibility(Node A, Node B)

if A andB are leafthen

2: return the status of leaf—pair visibility algorithm fer & B (subsection 2.6.2)
3: end if

4. Declare s1=children(A).size

5. Declare s2=children(B).size

6: Declare @aemporary booleamatrix M of size(s1 * s2)

7

8

9

: Declare count=0
: for each ac children(A) do
. for each be children(B) do
10: statesNodetoNodeVisibility(a,b)

11: if equals(state,visiblejhen

12: Storetrue at corresponding location i .
13: count = count + 1

14: end if

15: end for

16: end for

17: if count ==s1 x s2 then

18: free M and return VISIBLE
19: else ifcount == Othen

20: free M and return INVISIBLE
21: else

22: for each a children(A) do
23: for each be children(B) do

24: Update n-IL ofa w.r.t everyvisible child b (simplelook up in M) & vice-versa, freeM
25: end for

26: end for

27 return PARTIAL.

28: end if

23

The complexity forNodet oNodeVi si bi i ty(A, B) is determined by the calls to point-pair visibility
algorithm. Assuming the latter to (1), the recurrence relation for the formerigh) = 647'(h— 1)+ O(1)

(for a nodeA at heighth). The resulting equation is linear iN.
The overall algorithm consumes a small amount of memory gforing M) during runtime. The con-

structed V-Map is also a memory efficient data structure pardrom the basic octree structure) it requires to
store only the link structure for every node.

Visibility Map + Gl algorithms:

1. Given a V-Map, ray shooting queries are reduced to seagdair primitives in thevisibility setof the

primitive under consideration, thereby providingiaw-independermireprocessed visibility solution. An

intelligent search (using kd trees) will yield faster resul

2. Both diffuse and specular passes on Gl for point modelsusanV-Maps and provide an algorithm

(similar to photon mapping), which covers both the illuntioa effects.

2.7 Extending Visibility Maps to Adaptive Octrees

We now have a clear picture of what a V-Map signifies. An ima@ottthing to keep in mind while computing
mutual visibility among points and constructing V-Maps Wbhbe the way spatial sub-division of the scene is

done. The input scene can be divided in two ways using the@dtased data structure.

1. Non-Adaptive Subdivision of space, where all the leafd¢letree are at the same level and of same size

(refer Figure 2.3). Figure 2.3 is divided till level 3, assamroot node to be at level 0.

2. Adaptive sub-division of space based on input model ten$he sub-division stops when a node in a

tree contains somé points or less. Leaves in the tree can now be present atetifféevels and hence

will be of different sizes (See Figure 2.7(b)).

Till now, we saw the mutual point—pair visibility and V-Mapstruction algorithms being applied aon-
adaptiveoctrees. But many a times, non-adaptive division is notguedfle, especially when the data in the
scene is of non-uniform density (see figure 2.7(a)).

However, the 3D Bresenhams algorithm used in determinisgility between points (or centroids for

leaf—pair) is not suitable for irregular sub-division ofege. Also, the Bresenhams algorithm output highly

depends on the step-length selected (step-length is kapt &xleafcell side-length in non-adaptive octree due
to its regular sub-division of space). A wrong step-lengigithmany a times produce false negatives or false

positives (refer Figure 2.7(b)). Interestingly, one wayét around this situation is to decrease the step-length

24

(b)

Figure 2.7: (a) The Buddha model and the cornell room bothaierb00000 points each. However, the
density of points on Buddha is very high as compared to dewsitthe walls of the room. (b) Bresenhain
Algorithm applied for computing visibility between two s in an adaptive octree structure. Wrong step-
length might miss out th@otential occluding cell(cyan colored) in between celp and cell ¢ leading to
wrong computation of visibility status between the two cel.

used in Bresenham Algorithm to be equal to side-length ofgkat greatest depth. But this, on the other hand
increases the running timesastically.

We now present a different approach to computing visiblligtween points (or centroids for leaf—pair) in
an adaptive octree sub-division of space. Here, insteadgiofuhe3D Bresenham'’s Line Algorithnwe use
Sphere-Ray intersectidor finding the list ofPotential occludersLike in Section 2.6, a V-Map is constructed
assuming an input hierarchy using the Algorithm 2.6.3. Téws,refficient and correct mutual leaf—pair visibility

algorithm is presented below.

Algorithm 8 Visibility between Leaf Cell A’ and Leaf Cell 'B’
procedure LeaftoL eafVisibility(A,B)

1: if A andB face each othethen

2. returnisintersectingOctregoot,A,B)

3 else

4: return INVISIBLE

5. end if

In simple words,

25

Algorithm 9 Check whether line joining A and B intersects any octree node
procedure isl ntersectingOctree(Node,A,B)

1: if Node is a leafthen
2: state =true IF
Il Node is equal toA or B OR
/l Tangent plane passing through centroid\afde is parallel to line segmem B) OR
Node belongs to same surface a ¢r B) or line segment intersects outsid&de OR
AB intersects line at a distance more than the bounding sphdiastR)
if STATE ==true then
return VISIBLE
else
10: return INVISIBLE
11: endif
12: end if
13: if AB intersectsNode then
14: for each childNodeC of Node do

15: state = isIntersectingOctree(NodeC, A, B)
16: if state == INVISIBLEthen

17: return INVISIBLE

18: end if

19: end for

20: return VISIBLE

21: end if

Figure 2.8: Ray-Sphere intersection algorithm to deteengiaint-point visibility

e If node is not a leaf angg intersects the node then traverse its children

¢ If node is a leaf then check whether tangent plane of that imddesectsq within radius R then nodep

andq are invisible otherwise declageandgq visible

Bounding sphere radiug for a leafcell is set to the distance between the centroiditarfdrthest point in
the leaf. Radiugr for any non-leaf node in the octree is set equal to maximurhe@sum of distance between

its center and the child’s center aftof that particular child.

26

2.8 Experimental Results

In this section, we discuss the validity and applicationhaf proposed method to various point models. All

examples shown are calculated using a Pentium4 2.6 GHz sgrSRU.

2.8.1 \Visibility Validation

We validate our proposed method here. We have ran the codeinnggenes taken as input and divided using
anAdaptive Octree Divisioto form a hierarchical structure. We used our rfiephere-Ray Intersectianethod

to compute the visibility in the following examples. Fig®(a) shows a point model of empty Cornell room.
Note the default colors of the walls. We now introduce a Siehbunny. In Figure 2.9(b), the eye (w.r.t. which
visibility is being computed) is on the red wall (on the left)arked with acyancolored dot. The violet (purple)
colour indicates those portions of the room that are vidiblinis eye. Notice the “shadow” of the bunny on the
green wall and on the floor. The same idea is repeated withyth@laced at different locations for the Bunny
and for different models like the Buddha and the Dragon.

Figure 2.10(a) shows a point model of a different, empty €bmoom. Note the default colors of the walls. We
repeat similar tests for point model of an Indian god GanéBigure 2.10(b) and 2.10(c)), an Indian goddess
Satya (Figure 2.10(d) and 2.10(e)) and a Stanford Blue Bptaged (Figure 2.10(g), 2.10(h) and 2.11(a)) in
a Cornell room.

We now do a small comparison of the quality of the output ofreew Sphere-Ray Intersection Algorithwith

the output of theBresenham’s Line Algorithribeing applied to the adaptive structure. We use the pointetsod
of Stanford Bunny, the Dragon and the Buddha placed in theetiooom for the same. Figure 2.11 shows the

difference.

2.8.2 Quantitative Results

We note, in Table 2.1, that the number of visibility links ligmn 5) is a small fraction of the quadratic pos-
sibilities. (For example, the decrease in the empty Comwalin is the fraction (1.4 - 0.27)/1.4 (in millions),

roughly 80%). This situation persists whether the scene is sparse,msede

2.8.3 Discussion

We then use the V-Map in our FMM-based Gl algorithm. Figure2Zhows results where the subdivision of
hierarchy is performed till 75 points per leaf. The figurewkahe front view, the back view and the close up of
the point models placed in the cornell room. The color blegdiffects and the soft shadows are clearly visible.
Also notable is the back of the Ganpati and Goddess (See E2§€).and Fig. 2.12(h)) beird, due to global

illumination, even though they are not directly visible e tight source.

27

Model Ppints 'N2 pos_s_ible V—I\/Iz_alp Links % I\/Iemor_y(MB) I\/Iemory_(MB) Bgild V—Map
(millions) | links (millions) (millions) Decrease N? links V-Map links | Time(mins)
ECR 0.1 14 0.27 79.5% 5.35 1.09 20.6
PCR 0.14 3.85 0.67 82.62% 15.43 2.68 23.8
BUN 0.15 1.53 0.38 74.64% 6.09 15 21.7
DRA 0.55 2.75 0.43 84.54% 11.0 1.7 235
BUD 0.67 1.58 0.39 74.75% 6.33 1.6 23.9
GAN 0.15 1.56 0.38 75.64% 6.2 1.55 22.0
GOD 0.17 1.62 0.4 75.31% 6.4 1.63 22.9

Table 2.1: V-Map details for sparse scenes such as the Engotyel Room(ECR), dense scenes such as the
Cornell Room Packed(PCR) to capacity with a large box, guidsl’ scenes such as the Bunny(BUN), the
Dragon(DRA), the Buddha(BUD), one of the Indian God’s, Gdrad GAN), and an Indian Goddess(GOD),
placed in Cornell room.N represents no. of leafcells. The reduced number of vigibilnks essentially
signify less computations for Gl radiosity algorithm. Maxim memory required for V-Map was 2.68MB for
PCR, but was still very less compared to storageNgrlinks.

The models are not very detailed because of a pre-processipgof point-based simplification being

applied on them. Also, sonteughness and discretizati@ppears due to low level of subdivision used (Octree

is divided roughly till level7). More sub-division can be done but the processing timesas®s quite a biaad

hence we require a faster, parallel FMM radiosity kerneh@slon GPU so as not to trade off quality for tijne

The V-Map computation takes approximat@ly — 25 minutes for about amillion points which can further

be improvised when implemented in parallel (if analyzedperty, the visibility algorithm issmbarrassingly

parallel). Note that thenon-adaptiveversion with 6 levelsin the octree tookmnore than 10 hourdor the

Visibility Map computations.

The videos of the results are present at the following |ocesti

e http:/frellis.cse.iitb.ac.in/ rhushabh/aps3/residdos/1.mpeg

e http://trellis.cse.iitb.ac.in/ rhushabh/aps3/residdos/2.mpeg

e http:/frellis.cse.iitb.ac.in/ rhushabh/aps3/resid&os/3.mpeg

28

(&) An empty Cornell room. (b) Visibility test with eye on the red wall.

(c) The Bunny (eye on the floor) (d) The Dragon (eye on the floor)

(e) The Buddha (eye on the floor) (f) The Buddha (eye on the red wall)

Figure 2.9: Various visibility tests where purple color icates portions visible to the candidate eye (marked
cyan/brown).

29

(a) An empty Cornell room. (b) Visibility test with eye on the
red floor.

(c) Ganesha(viewed from a differ- (d) The Goddess (eye on the
ent eye position) floor)

(e) The Goddess(viewed from a (f) A Blue Bunny (eye on the floor)
different eye position)

(9) A Blue Bunny (eye on the right (h) A Blue Bunny (eye on the left
wall) wall)

Figure 2.10: Various visibility tests where purple colodicates portions visible to the candidate eye (marked
green/cyan).
30

(a) The Bunny (eye on the floor). (b) A Blue Bunny (eye on the floor)

(c) The Dragon (eye on the floor) (d) The Dragon (eye on the floor)

(e) The Buddha (eye on the floor) (f) The Buddha (eye on the floor)

Figure 2.11: Various visibility tests where purple colodicates portions visible to the candidate eye (marked
cyan/brown). The left column shows the output of Bresenham’s Line Algorithrapplied to the scene when
divided in an adaptive octree structure. Note the artifadtigh are clearly visible due to errors introduced by
the step-length criteria of Bresenham’s Algorithm. Thedtngth here was chosen to be 1 unit. Decrease in
the step-length leads to drastic increase of running tifimelsours) The right column shows the output of the
new Sphere-Ray Intersection Algorithapplied on similar models and similar input environmente Hotable
artifacts have reduced quite a lot.

31

(b) (c)

L

(d)

f §

C)] (h) 0)

1

(m) (0)

Figure 2.12: Use of V-Maps for Gl effects. The hierarchy wasstructed till we had roughly5 points per leaf.
The images rendered using a custom point-based renderirsHaoows, color bleeding and parts of models
indirectly visible to the light source being can be observed. Five different set of images, correspgniain
different point models, are shown. Each set shows a fromt,\aeack view and a close up of the point model/s
placed in the cornell room.

32

Chapter 3

Discussion: Parallel FMM on GPU

3.1 Introduction

3.1.1 Fast computation with Fast Multipole Method

Computational science and engineering is replete withlpm® which require the evaluation of pairwise in-
teractions in a large collection of particles. Direct ewadion of such interactions results (i N?) complexity
which places practical limits on the size of problems whiem e considered. Techniques that attempt to
overcome this limitation are labeled N-body methods. Thbddy method is at the core of many computa-
tional problems, but simulations of celestial mechanicd eoulombic interactions have motivated much of
the research into these. Numerous efforts have aimed atirggthe computational complexity of the N-
body method, particle-in-cell, particle-particle/pakt-mesh being notable among these. The first numerically-
defensible algorithm [DS00] that succeeded in reducing\ti®dy complexity toO(N') was the Greengard-
Rokhlin Fast Multipole Method (FMM) [GR87].

The FMM, in a broad sense, enables the product of restricéededmatrices with a vector to be evaluated in
O(N) or O(N log N) operations, when direct multiplication requir€§N?) operations. The Fast Multipole
Method [GR87] is concerned with evaluating the effect of et ‘& sources’X, on a set of “evaluation points”

Y. More formally, given

= {z1,29,...,2n}, z;€R3 i=1,...,N, (3.1)
= {y1,92,-.,am}, Yy €R® j=1,....M (3.2)

we wish to evaluate the sum N
fly) =D bl@y), j=1,....M (3.3)

=1

The function¢ which describes the interaction between two particles lisd¢ahe “kernel” of the system (e.g.
for electrostatic potential, kernel(z,y) = |= — y|~!). The functionf essentially sums up the contribution

from each of the sources.

33

Assuming that the evaluation of the kerngtan be done in constant time, evaluationfadt each of the\/
evaluation points require§’ operations. The total complexity of this operation will tefore beO (N M). The
FMM attempts to reduce this seemingly irreducible compyeta O(N + M) or evenO(N log N + M). Three

main insights that make this possible are:
1. Factorization of the kernel into source and receiver terms
2. Most application domains do not require that the funciidse calculated at very high accuracy.
3. FMM follows ahierarchical structure (Octree$

Details on the theoretical foundations of FMM, requirensesiibject to which the FMM can be applied
to a particular domain and discussion on the actual algordimd its complexity as well as the mathematical
apparatus required to apply the FMM to radiosity are avélaib [KCO03] and [Gor06]. Five theorems with
respect to the core radiosity equation are also proved $ncibitext.In our case, this highly efficient algorithm
is used for solving the radiosity kernel and getting a défg$obal illumination solution.

Besides being very efficient and applicable to a wide rangarablem domains, the FMM is also highly par-
allel in structure. There are two versions of FMM: theiform FMM works very well when the particles in
the domain are uniformly distributed, while tlaglaptiveFMM is used when the distribution is non-uniform.
It is easy to parallelize the uniform FMM effectively: A sithep static domain decomposition works perfectly
well. However, typical applications of FMM are to highly naniform domains, which require the adaptive
algorithm. Obtaining effective parallel performance issolerably more complicated in this case, and no static
decomposition of the problem works well. Moreover, cerfaindamental characteristics of the FMM translate
to difficult challenges for efficient parallelization. Fay.ehe FMM computation consists of a tree construction
phase followed by a force computation phase. The data dexsitigm required for efficient tree construction
may conflict with the data decomposition required for foroenputation. Most of the parallelizations em-
ploy theoctree-based-MM computation, and thus inherit the distribution-depemidnature of the algorithm.
Considerable research efforts have thus been directedvatogéng parallel implementations of the adaptive
FMM.

However, our interest lies in design of a parallel FMM algfum that is distribution independent and rig-
orously analyzable. We discuss such an algorithm in an tetiore independent fashion, using only well
understood and basic communication operations such algparafix, all-to-all communication and sorting.
It uses only a static data decomposition and does not regnyrexplicit dynamic load balancing, either within
an iteration or across iterations. The algorithm can beiefitty implemented on any model of parallel com-

putation that admits an efficient sorting algorithm.

34

3.1.2 Parallel computations on GPU

The graphics processor (GPU) on today’s video cards haseyahto an extremely powerful and flexible pro-
cessor. The latest GPUs have undergoing a major transftimm, supporting a few fixed algorithms to being
fully programmable. High level languages have emerged faplgics hardware, making this computational
power accessible. Architecturally, GPUs are highly patatreaming processors optimized for vector opera-
tions, with both MIMD (vertex) and SIMD (pixel) pipelines. it the rapid improvements in the performance
and programmability of GPUs, the idea of harnessing the pev&PUs for general-purpose computing has
emerged. Problems, requiring heavy computations, likedlu®aling with huge arrays, can be transformed and
mapped onto a GPU to get fast and efficient solutions. Thid &Etesearch, termed &eneral-purpose GPU
(GPGPU) computinghas found its way into fields as diverse as databases and daitagjrscientific image
processing, signal processing etc.

Many specific algorithms like bitonic sorting, parallel fixesum, matrix multiplication and transpose, paral-
lel Mersenne Twister (random number generation) etc. haen fefficiently implemented using the GPGPU
framework. One such algorithm which can harness the capabilities of3R&Js is parallel adaptive fast mul-
tipole method.

Before moving onto the core parallel FMM algorithm, let ug gequainted with some of the data structures
and algorithms used to get the same viz. parallel domainrdposition methods like space-filling curves and
parallel compressed octrees. These are detailed w.rtdhsiibuted multi-processor system architecture im-
plementation [HAS02]. We, at the same time, provide vitathiand start up points on how to implement them
on GPUs.

3.2 Spatial Locality Based Parallel Domain Decomposition

In the context of parallel scientific computing, the tedomain decompositiois used to refer to the process of
partitioning the underlying domain of the problem acrosscpssors in a manner that attempts to balance the
work performed by each processor while minimizing the nundrel sizes of communications between them,
the reason being communication is significantly slower t@mputation. In fact, it tries to overlap computation
and communication for even better performance. Achievoaglbalance while simultaneously minimizing
communication is quite challenging as the input data ne@dcecessarily be uniformly distributed. Spatial
locality based domain decomposition methods are bestdstoteparticle-based methods (eg. Gravitational
N-body problem) as particles interact with other particlasdd on their spatial locality.

In this section we present a brief overview of some of the madely used spatial locality based parallel

domain decomposition methods such as space filling cunkeSgBand parallel octrees.

35

3.2.1 Space Filling Curves

Consider ad dimensional hypercube. Say we bisect this hyperdukimes recursively along each dimension
results in ad dimensional matrix oR* x 2% x ... x 2 = 29 non-overlapping hypercells of equal size. A
Space Filling Curve (SFC) is a mapping of these hypercdiks |dcation of each of which in the cell space is
given byd coordinates, to a one dimensional linear ordering. An exaraplinearization of two dimensional

data is shown in Fig. 3.1(a) fér=1 and 2.

3 7 11 | 0101 0111 1101| 1111
6 10 | 0100) 0110| 1100|1110
4 01 | 0001 0011f 1001|1011
1 2 5 00 | 0000| 0010 1000|1010

060 01 10 11

@ (b) (©

Figure 3.1: (a) The z-curve fdr=1 and 2. (b) A8 x 8 decomposition of two dimensional space containing 7
points. The points are labeled in the order in which the ealigtaining them are visited usingZaSFC. (c) Bit
interleaving scheme for generating index of a cell asp&FC.

A sample ordering (of non-empty cells) is shown in Fig. 3)1(bhe resulting one dimensional ordering
is divided intop equal partitions which are assigned to processors. How#weruntime to orde2*® cells,

O(2*1), is expensive because typically < 2¢¢. Thus, a fast and efficient method to directly order the cells

containing the points is required.

3.2.1.1 SFC Construction

Let D be the side length of a domain whose corner is at the origindsflanensional coordinate system. The
first step in SFC linearization is to find the coordinates ef ¢klls containing each of the input points. Given
a point ind dimensional space with coordinatg along dimensiori, the integer coordinate along dimension
1 of the cell containing the point is given qu%y The index of a cell inZ-SFC, also known as Morton
Ordering is computed by representing the integer coordmalf the cell using: bits and then interleaving

the bits starting from the first dimension to formda bit integer. In Fig. 3.1(c), the index of the cell with

36

coordinateg3,1) = (11,01) is given by1011 = 11. Thus, the index of the cell containing a given point can be
computed inO(kd) time ind dimensions, oO(k) time in three dimensions. Once the indices corresponding

to all the points are generated, SFC decomposition is aetliby a parallel integer sort.

Algorithm 10 SFC Linearization

procedure SFCLinearization
1: Choose a resolutioh.
2: For each point, compute the index of the cell containing thiatp
3: Parallel sort the resulting set of integer keys.

Partitioning the SFC linearization of the points equallyptocessors ensures load balancing. Because of
its ease of repartitioning, SFCs have been widely used adl &otodomain decomposition in parallel scientific
computing. In the first step SFC is used to preprocess the idg@ia such that the computational domain
is partitioned across multiple processors. In the secoeq, sither data structures, usually tree based, are
subsequently built locally on each processor on the parh@fdomain that it is mapped to. The numerical
computations that drive the scientific application are ttemied out using these latter data structures. The next
section describes a more sophisticated approach of usiatpastfucture called octree for both parallel domain

decomposition and subsequent numerical computations.

3.2.2 Parallel Compressed Octrees

Octrees are hierarchical tree data structures that organidtidimensional points using a recursive decompo-
sition of the space containing them. Such a tree is callgdatreein two dimensions andctreein three

dimensions. For purpose of illustrations, we will be usingdtrees in this report.

3.2.2.1 Octree Construction

Consider a hypercube enclosingnultidimensional points. The domain enclosing all the poforms the root
of the octree. This is subdivided infy subregions of equal size by bisecting along each dimen&ach of
these regions that contain at least one point is represastedchild of the root node. The same procedure is
recursively applied to each child of the root node termimgativhen a subregion contains at most one point (or

some pre-defined number of points). An example is shown inF&)

3.2.2.2 Compressed Octrees

In octrees, the manner in which any subregion is bisecteadisgendent of the specific location of the points
within it. Thus chains may form when many points lie withinraal volume of space (eg. Fig. 3.2). These
chains do not contain any extra information. As such, norimgtion is lost if each of the chains are compressed

into a single node resulting in@mpressed octredote that each node in a compressed octree is either a leaf

37

ﬁ@.
@@

gk * o

Figure 3.2: A quadtree built on a set of 10 points in 2-D.

or has at least two children. This ensures that the size ofdbelting compressed octree (¥n) and is

independent of the spatial distribution of the points. Thenpressed octree corresponding to the octree

T Y @(fé\

n

Fig. 3.2 is shown in Fig. 3.3.

Figure 3.3: A compressed quadtree corresponding to thetigeadf Fig. 3.2

However, such compressed nodes should still encapsutatadtihat it represents multiple regions of space
unlike the nodes that are not compressed. To achieve this;ells are stored in each nodef a compressed

octree,large cell of vandsmall cell of v denoted byL(v) and S(v), respectively. The large cell is defined as

38

the largest cell that encloses all the points the node reptesLikewise, the small cell is the smallest cell that
encloses all the points that the node represents. If a noa# &sresult of compression of a chain, then the large
cell and the small cell of that node are the same; otherwliss, re different. Observe that the large cell of a
node is an immediate subcell of the small cell of its pareiric&a leaf contains a single point, its small cell is
defined to be the hypothetical cell with zero length contajrthe point. Or, when the maximum resolution is

specified, the small cell of a point is defined to be the cehathtighest resolution containing the point.

3.2.2.3 Octrees and SFCs

Octrees can be viewed as multiple SFCs at various resotutitmdefine a linearization that cuts across multiple
levels, we use the fact that given any two cells, they aresettisjoint or one is contained in the other. Thus
given two cells, if one is contained in the other, the subisathken to precede the supercell; if they are disjoint,
they are ordered according to the order of the immediateadigbof the smallest supercell enclosing them. A
nice property that follows from these rules is the resultingarization of all cells in an octree (or compressed
octree) is identical tits postorder traversal

However, ambiguity may arise when distinguishing indicésalls at different levels of resolution. For
example, in Fig. 3.4 it is not possible to distinguish betw&@ (cell of lengthD /2 with coordinates (0,0)),
and 0000 (cell of lengttD /4 with coordinates (00,00)), when both are stored in, sapdstad 32-bit integer
variables. A simple mechanism to overcome this is to prejleadit representation of an index with a ‘1’ bit.
With this, the root cell is 1, the cells with-SFC indices 00 and 0000 are now 100 and 10000, respectively.

11 0101 | 0111 1ot L 11
L O L
10 0100 § 0110 1100 § 1110
o1 0001 | 0011 1001 1011
0 [00—
00 0000 § 0010 1000 § 1010
00 ¢ 01 10 1 11
Figure 3.4: Bit interleaving scheme for a hierarchy of cells

39

The process of assigning indices to cells can also be vieuerdrbhically. A cell at resolutior can be
described using-bit integer coordinates in each dimension. The first 1 of these bits are the same as the
coordinates of its immediate supercell. Thus, the indexa#lacan be obtained by taking the least significant
bit of each of its coordinates, concatenating them intblat string, and appending this to the index of its

immediate supercell.

3.2.2.4 Parallel Compressed Octree Construction

The algorithm to construct parallel compressed octreewéngdelow.

Algorithm 11 Parallel Compressed Octree
procedure ConstructParallel CompressedOctree()

1. For each point, compute the index of the leaf cell contairting

2. Parallel sort the leaf indices to compute their SFC linesdian.

3: Each processor obtains the leftmost leaf cell of the nextgssor.

4: On each processor, construct a local compressed octrebddeaf cells within it and the borrowed leaf
cell.

5. Send the out of order nodes to appropriate processors.

6: Insert the received out of order nodes in the already exjsorted order of nodes.

After SFC linearization of leaf indices, we now generatagaf the compressed octree on each processor,
such that each node and edge of ¢i@bal compressed treis generated on some processor. To do this, each
processor first borrows the leftmost leaf cell from the nexicessor. This is because if we generate the lowest
common ancestor of every consecutive pair of leaf nodes revguaranteed to generate every internal node in
the compressed octree. It then runs a sequential algoritheoristruct the compressed octree for its leaf cells
together with the borrowed leaf cell as follows: Initialthe tree has a single node which represents the first
leaf cell in SFC-order. The remaining leaf cells are ingtdre at a time as per the SFC-orderClfs the next
leaf cell to be inserted, then starting from the most regenerted leaf, walk up the path toward the root until

the first nodev such thatC' C L(v) is encountered. Now, two possibilities arise:

e Case l:If C'is not contained it¥(v), thenC'is in the regionL(v)S(v), which was empty previously. The
smallest cell containing’ andS(v) is a subcell ofL(v) and containg” and.S(v) in different immediate

subcells. Create a new nodéetweerv and its parent and insert a new childwivith C' as small cell.

e Case II: If C is contained inS(v), v is not a leaf node. The compressed octree presently does not
contain a node that corresponds to the immediate subcéll©f that containg”, i.e., this immediate
subcell does not contain any of the points previously imgeriTherefore, it is enough to inseftas a

child of v corresponding to this subcell.

40

The local tree is stored in its postorder traversal ordemi@ay. For each node, indices of its parent and
children in the array are stored.

Now we need to generate the postorder traversal order ofltimigcompressed octree. To do so, nodes
which should actually appear later in the postorder traates§the global tree (out of order nodes), should be
sent to the appropriate processors, which appear congelgutifter the borrowed leaf in the postorder traversal
of the local tree. The first leaf cell in each processor is gath into an array of size. Using a binary search
in this array, the destination processor for each out ofondele can be found. Nodes that should be routed to
the same processor are collected together and sent usitigtarath communication.

The received nodes are merged with the local postorderrsalvarray and their positions are communicated
back to the sending processors. The net result is the pestoaversal of the global octree distributed across

processors. Each node contains the position of its pareheach of its children in this array.

3.2.3 Spatial Domain Decomposition Methods on GPU

Here, we provide some hints about how to implensdtial domain decompositiaomethods on GPU. As we
know, GPU’s architecture can be considered similar to shanemory multi-processor system architecture,

except for the fact that the GPU’s memory is specifically giesd to store color and texture information.

3.2.3.1 Space Filling Curves on GPU

Algorithm 3.2.1.1 defines the procedure to construct SFCairalfel. No major changes will be required to
Algorithm 3.2.1.1 to be implemented on GPUs, expect for tlag e information will be stored in memory.
The procedure to compute the indices will take as input thatlon information of points and the cells to which
they belong. Cell locations can be stored as an indirecti@hig texture memory whereas the points will be
stored as an 1-D array. THRGBAvalue of the cell will index the location of the point (in texé memory)
contained in it, as shown in Fig 3.5.

The procedure will return the index values computed. Furtteesort these values in parallel, we have an

efficient implementation dBitonic Sortalgorithm on GPU.

3.2.3.2 Bitonic Sort

A sorting network is a sorting algorithm, where the sequeoteomparisons is not data-dependent. That
makes them suitable for parallel implementations. Bit@ud is one of the fastest sorting networks designed
for parallel machines. A bitonic sequence is composed oktisequences, one monotonically non-decreasing
and the other monotonically non-increasing. Moreover,ratgtion of a bitonic sequence is a bitonic sequence.
Of course, a sorted sequence is itself a bitonic sequeneeofaihe sub-sequences is empty. Suppose we have

a bitonic sequence of lengthn, that is, elements in position8, 2n). We can easily divide it into two halves,

41

\I\J

™~
()]
T \ /
‘e ?;4}1 ol o

1 8
3 ——'-'_—'——'_}(
7 /
.______._--'---.

4 +—1] .
.
.

51—t

Cell Locations Point Locations

Figure 3.5: Cell locations stored as an indirection grideixtire memory and the points as an 1-D array. The
RGBAvalue of the cell will index the location of the point (in texé memory) contained in it.

[0,n) and[n, 2n), such that each half is a bitonic sequence and every eleméatfil0, n) is less than or equal
to (Or greater than or equal to) each elemertir2n).
Simple comparison of elements in the corresponding pasitia the two halves and exchanging them if

they are out of order achieves this. This is calEnic merge

Algorithm 12 Recursive Bitonic Sort
procedure BitonicSort

1. Sort only sequences a power of two in length, so a subsequémere than one element can always be
divided into two halves.

2: Sort the lower half into ascending order and the upper h&dfdescending order to get a bitonic sequence.

3: Perform a bitonic merge on the sequence, which gives a bisejuence in each half and all the larger
elements in the upper half.

4: Recursively bitonically merge each half until all the elentseare sorted.

Let us first have a look at recursive bitonic sort shown in Aiifion 3.2.3.2. It uses methods sortup,
sortdown, mergeup and mergedown to sort into ascendingéddsng) order and to recursively merge into

ascending (descending) order.

42

3 3 3 3 2
7 7 4 4 1
4 8 7 2 3
8 4 8 1 4
6 2 6 6 6
2 6 5 5 5
1 5 2 7 7
5 1 1 v 8 8

Figure 3.6: A simple parallel Bitonic Merge Sort of eight mlents requires six passes. Elements at the h
and tail of each arrow are compared, with larger elementsimgoto the head of the arrow. The nal sorte
sequence is achieved @(log, n) passes.

cad
d

void sortup (int m, int n)
{ //from m to m+n
if (n == 1) return;
sortup (m, n/2);
sortdown (m+n/2, n/2);
mergeup (m, n/2);

void mergeup (int m, int n)
{

if (n == 0) return;

for (int i=0; i<n; i++)

{

if (x[m+i] > x[m+i+n])
swap (m+i, m+i+n);

}

mergeup (m, n/2);

mergeup (m+n, n/2);

void sortdown (int m, int n)

{

//from m to m+n

if (n == 1) return;
sortup (m, n/2);
sortdown (m+n/2, n/2);
mergedown (m, n/2);

void mergedown (int m, int n)

{

if (n == 0) return;
for (int i=0; i<n; i++)
{

if (x[m+i] < x[m+i+n])

swap (m+i, m+i+n);

}
mergedown (m, n/2);
mergedown (m+n, n/2);

Method sortup(intm,intn) sorts then elements in the rangen, m + n) into ascending order. It uses
methodmergeup(intm,intn) to merge the: elements in the subsequenee, m + n) into ascending order.
Methods mergeup and mergedown compare elements in the tweshaxchange them if they are out of order,

and recursively merge the two halves. Similarly fortdown(intm,intn) andmergedown(intm,intn).

to produce an A-frame shape and then recursively mergeritman ascending or descending sequence.

If we look at the algorithm we see that recursive calls of reezgn be done in parallel. The loops in the

43

The overall sort is performed by callingrtup(0, N). Both sortup and sortdown recursively sort each half

merges, comparing and conditionally exchanging elements i) and(m + i + n) can also be run in parallel.

It allows an array of. processors to soft elements irO(log? n) steps[Chr].

3.2.4 Parallel Compressed Octrees on GPU

Algorithm 3.2.2.4 gives us an idea of implementing parati@inpressed octrees on distributed multiprocessor
architecture system.

The first two steps of the algorithm can be implemerdedGPUin a fashion similar to the one discussed in
subsection 3.2.3. Further, the process of assigning iadacthe cell as well as locating cells from its supercells
can be done using an efficient parallel implementatioRrefix Sunalgorithm. Subsection 3.2.4.1 below gives

an efficient implementation of the parallel Prefix Sum aldiomn on GPU.

3.2.4.1 Prefix Sum on GPU

The prefix-sum problem takes an array of numbers as input atplits an array with partial sums. It is called
prefix-sum because it computes sums over all prefixes of tiag.dfor example, if one is to put into an array
one’s initial checkbook balance, followed by the amountthefcheck one has written as negative numbers and

deposits as positive numbers, then computing the partabgroduces all the intermediate and final balances.

3.2.4.2 Parallel Algorithm

Prefix-sum problem is inherently sequential, but, givenmier of processors, it can be parallelized efficiently

to finish computation irD (log n) time. One such algorithm [Har] is presented below.

Algorithm 13 Calculate Prefix sum of an arraywith n» numbers

1: for d — 1tolog,n do

2. forall kin paralleldo

3 if & > 27 then

4 z[k] — z[k — 2971 4 z[K]
5 else

6: x[k] «— z[k]
7 end if

8: end for

9: end for

Fig. 3.7 shows the calculation of prefix sum on an exampleyasfanumbers, using this algorithm. The
cells whose indices are not greater tidn!, whered is the iteration number, are directly copied. The input
array is stored in a two-dimensional texture. Each fragnusess its screen-space position to index into this
texture. It sums the value at its position ad* position to the left. This is written to a separate outputuigx

which is used as input to the next pass.

44

=0 | X X1 X2 X3 X4 X5 X6 X7

e B B e i B

d=1 | Z(X¢..X0) | Z(Xo..X1) | Z(X1..X2) | Z(X2..X3) | Z(X3..X4) | Z(X4..X5) | Z(X5..Xg) | Z(X6..X7)

[e S S S S

=2 Z(Xo..Xo) Z(Xo..Xl) Z(Xo..Xz) Z(X()..X3) Z(X]..X4) Z(Xz..X5) Z(X3..X6) Z(X4..X7)

s 4

=3 Z(Xo..Xo) Z(X()..X]) Z(Xo..Xz) Z(Xo..X3) Z(Xo..X4) Z(Xo..XS) Z(Xo..X.g) Z(Xo.,X7)

Figure 3.7: Computing the scan of an array of 8 elements

We notice that in any iteratiod, only n/2¢ fragments are doing useful work. However, the Algorithm 13
does more computation in one pass, enabling it to finish teipesum computation i) (log n) time, compared
to O(n) time taken by the sequential algorithm to compute the sasdtre

We also note that thé(log n) computation time is true only when there arer more processors which
can compute in parallel in which case the execution time midated by step complexity rather than work
complexity. However, the fragment pipeline can only exe@iixed maximum number of fragments in parallel.
We call this limit the degree of parallelism. If we begin win array which is greater than this limit, the
fragment pipeline would have to break up the fragments iatches, which it executes sequentially.

Now to construct a local compressed octree for each progessofirst look at how simple octrees are
constructed on GPU. The following subsection 3.2.4.3 goress such implementation, where octrees are con-

structed as textures on GPU.

3.2.4.3 Octree Textures on GPUs

A simple way to implement an octree on a CPU is to use pointeligk the tree nodes together. Each internal
node contains an array of pointers to its children. A child ba another internal node or a leaf. A leaf only
contains a data field. To implement a hierarchical tree on d @ need to define how to store the structure in
texture memory and how to access the structure from a fragpregram. In the GPU implementation pointers
simply become indices within a texture. They are encoded@B fRalues. The content of the leaves is directly

stored as an RGB value within the parent node’s array of pantAlpha channel is used to distinguish between

45

a pointer to a child and the content of a leaf (alpha = 1 inégalata, alpha = 0.5 indicates index and alpha =

0 indicates empty cell). For simplicitguadtreewhich is a 2D equivalent of an octree is discussed. Figure 3.

shows the octree storage.

Let us first define the following terminology:
e Indirection pool: An 8-bit RGBA 3D texture in which the tree is stored.
e Cell: Each ‘pixel’ of the indirection pool.

e Indirection grid : The indirection pool is subdivided into indirection gridan indirection grid ha¢
cells wherel is the dimension. Each node of the tree is represented bydaedtion grid. It corresponds
to the array of pointers of the CPU implementation descriiedve. A cell of an indirection grid can
be empty or contain either (a) data if the correspondingddhilthe tree is a leaf, or (b) the index of an

indirection grid if the corresponding child is another imal node.

Now the tree is stored in the texture memory and we want téeketrthe value stored in the tree at a point
M €10,1] x [0,1]. LetIp = (Ip,, Ip,) be the index of the indirection grid of the node visited atttie. Let
us also assign the root nodgto be(0,0). The tree lookup starts from the root and successivelys/isg nodes

containing the poinf/ until a leaf is reached. To do so, at levelwe need to read from the indirection grig

8

the value stored at the location corresponding4avhich in turn requires the computation of the coordinates

of M within the node.

A
A(0,0) C(2,0) D(3,0)
H
S,=1
D (3,0) (2,0)
) S=4 "
A quadtree Corresponding indirection pool

Figure 3.8: Storage in texture memory. The indirection paatodes the tree. Indirection grids are drawn w
different colors. The grey cells contain data.

At depth D a complete tree produces a regular grid of resolufiénx 2° within the unit square (cube

in 3D). Each node of the tree at depthcorresponds to a cell of this grid. In particul&f is within the cell

46

corresponding to the node visited at depthThe coordinates af/ within this cell are given byfrac(M - 2P).
These coordinates are used to read the value from the itidimegrid /. Thus, the lookup coordinates within

the indirection pool are thus computed/as= (P,, P,) where

_Ip, + frac(M-2P) _ Ip, + frac(M-2")
- S, - Sy

HereS, andS, denote the number of indirection grids along eawmlv andcolumnof the indirection pool

P, , Py

respectively. The RGBA value stored Atin the indirection pool is then retrieved. Depending on thgha
value, we will either return the RGB color if the child is afear we will interpret the RGB values as the index
of the child’s indirection grid {p+1) and continue to the next tree depth. Figure 3.9 summarizeshtire

process.

A(0,0) C(2,0) D(3,0)
\ (3,0 (2,0
lookup point M The indirection pool

The quadtree

Having seen how to implement octrees on GPU, we now need teeautise following queries for construc-

tion of compressed octrees on GPU.

e Apart from point lookupoperation, what other operations need to be performed opEssed octrees ?

e How do we modify the octree implementation on GPU to storetiplel data corresponding to each

leaf-cell ?

e How do we modify the octree implementation on GPU (specifidile memory model) to store infor-

mation about large-cell and small-cell of every node, alaith the indices to its children ?

e How to access the last leaf node belonging to another progeskich is required for construction of

local compressed octree ?
e Being a shared memory system, can we ignoreathto-all communication step required previously ?
e How to identify and take care afut-of-ordernodes ?
e How to handle multiple access by processors to same memaatido simultaneously ?

a7

Lookup at point M:

I,=(0,0) node A (root)
A(0,0 C(2,0) D(3,0)

R | |

(2,0)

Alpha=0.5, continue to next depth

Y

I,=(1,0) node B
A(0,0) C(2,0) D(3,0)
M
p,= 1[},+fr'ac(M.2‘) (3,00 L — (2F;0)
Alpha=0.5, continue to next depth
YDepth2 — == == = o o o e e o o o e — — ————————
L,=(2,0) node C
A(0,0) C(2.0) D(3,0)
i e 7
P = L, + frac(M.2%) (3,0) (2,0)
T
Alpha=1, RGB color is returned

Figure 3.9: At each step the value stored within the currewters indirection grid is retrieved. If this valug
encodes an index, the lookup continues to the next deptler®@ite, the value is returned.

7

Answer to thesdints/queriedorms the start point for a parallel compressed octree coctsdn on GPU.

3.3 Parallel FMM Algorithm

Having looked at some baspatial Domain Decompositiomethods and their algorithms and implementa-
tion overviews on both distributed multi-processor syseand GPUs, we now move further and review one

particular implementation of FMM on parallel, distributedulti-processor system [HAS02].

48

The FMM computation consists of the following phases: a)dng the compressed octree, b) computing
multipole expansions using a bottom-up traversal, c) cdmguranslations for each cell using its interaction
list, d) computing the local expansions using a top-dowwersal. All these phases afford substantial paral-

lelism which is exploited within each phase.

3.3.1 Constructing Parallel Compressed Octree

A parallel compressed octree is built as described in SBR2.4. The tree construction requires an insignificant
amount of the total run-time. However, this stage is veryangmt since tree partitioning is key determinant of

the load balancing and communication efficiency of the syibset stages.

3.3.2 Near Field Computations

The computation of the nearfield for leaf cells associatetth wiprocessor requires information from the ad-
jacent leaf cells. Therefore, each processor maintaingray af size2p by gathering the integer keys of the
first and last leaf nodes of every processor. Binary searthisnarray can be used to determine the processor
responsible for a leaf cell. Now using an all-to-all comnuation each processor sends information of its leaf

cells to processors that should contain leaf cells adjaoeint

3.3.3 Building Interaction Lists

For a cell in a compressed octree, its parent box, correspgita the cell of the parent node in the tree, need not
necessarily be a cell of double the side length of that of Hilel cell and may reside on some other processor.
To compute the parent of a cell we find the smallest cell cairtgiit and its adjacent cell in the postorder
traversal.
Thus, to compute the interaction list of a cklve find its parent and obtain the cells in the nearfield of the
parent using bit arithmetic operations. Then we computediof these cells such that size of each subcell
is equal to the size di. We discard those subcells that are in the nearfield. ofve finally partition these
subcells into two arrays, one for subcells that laal to the processor and other for subcells thatraraote
The latter array will thus have all the nodes whose infororatieeds to be fetched at ttranslation phase of
each iteration.

Following the building of interaction lists, multiple it&tions of the remaining stages are run until conver-

gence.

3.3.4 Computing Multipole Expansions

In this section, we describe how to compute the field radibiedach cell using multipole expansions. First,

each processor scans its local array from left to right. Waédeaf node is reached, its multipole expansion

49

is directly computed from the particles within the leaf cdfi the node’s multipole expansion is known, it is
shifted to its parent and added to the parent’s multipole@ssgjon, provided the parent is local to the processor.
As the tree is stored in postorder traversal order, if alldhiédren of a node are present in the same processor, it
is encountered only after all its children are. This enstinasthe multipole expansion at a cell is known when
the scan reaches it. This computation ta@e{% + k) time, wherek is the highest resolution. During the scan,

some nodes are labelegsidual nodedased on the following rules:

o If the multipole expansion due to a cell is known but its pates in a different processor, it is labeled a

residual leaf node

¢ |fthe multipole expansion at a node is not yet computed whisrvisited, it is labeled &esidual internal

node

Each processor copies its residual nodes into an array.eHsg to see that the residual nodes form a tree
(termed theesidual treg¢ and the tree is present in its postorder traversal ordstriblited across processors.

Multipole expansion calculation has the associative ptgp8ecause of this, multipole expansions on the
residual tree can be computed using an efficient parallelangpiree accumulation algorithm [SAFQ5]. The
main advantage of using the residual tree is that its sizedisgendent of the number of particles, and is rather
small. Due to this reason the residual tree can be accunduiat®(logp + log k) rounds as compared to
O(logn) in case of global compressed octree. Thus, the worst-casderuof communications are reduced

from logarithm of the size of the tree to the logarithm of tleegt of the tree, which is much smaller.

3.3.5 Computing Multipole to Local Translations

First, for each node an all-to-all communication is usecetjuest fields of nodes from the interaction lists that
reside on remote processors. Another all-to-all commuiainas used to receive the fields at these nodes. Once
all the information is available locally, the multipole tockl translations are conducted within each processor

as much as in the same way as in sequential FMM. Each progesgormsO(n /p) translations.

3.3.6 Computing Local Expansions

Similar to the multipole expansion calculation, the locgb@nsion calculation is also associative. Thus, local
expansions can be computed using a reverse of the algora@hmmomputing multipole expansions in paral-
lel. First, local expansions for the residual tree are dated. This require® (log p + log k) communication
rounds. Then, local expansions for the local tree are coetpusing a right-to-left scan of the postorder traver-
sal of the local tree. The exact number of communicationdsuaquired is the same as in computing multipole

expansions.

50

3.3.7 Parallel FMM on GPU

Implementing the above algorithm on GPU essentially meaifing to a shared memory system, thereby
replacing the time consumirgjl-to-all communication steps by calls to local memadtnts have been given

to implement compressed octrees on GPU in subsection 3.2@nce the octrees are implemented, all it
remains are traditional memory access operations of GPEad and write the data at desired locations, and
doing computations on those data on each GPU processingriémparallel. Shared memory makes it much
more easier to build and use the interaction lists, storecangpute on the residual trees and eliminate the time
required for data communication (which was done usiltgo-all primitive previously).

Note that this gives us just a starting point for parallel ieqpention of FMM on GPU. Many intricate and
vital details are still ignored and left unanswered. Theyl ewentually be solved as the implementation work

progresses.

51

Chapter 4

Discussion: Specular Inter-reflections
and Caustics in Point based Models

4.1 Introduction

After having seen the algorithms and techniques for comgudiffuse global illumination on point models, let
us now focus on computing specular effects (reflections afrdations) including caustics for the point mod-
els. These, combined with already calculated diffuse iihation gives the user@mplete global illumination
solution for point models

Attempts have been made to get these effects. Schaufler][8a6Q@he first to propose a ray-tracing technique
for point clouds. Their idea is based on sending out rays we&tttain width which can geometrically be de-
scribed as cylinders. The intersection detection is peréat by determining the points of the point cloud that
lie within such a cylinder followed by calculating the rayrface intersection point as distance-weighted aver-
age of the locations of these points. The normal informaéibthe intersection point is determined using the
same weighted averaging. This approddes nothandle varying point density within the point cloud. More-
over, the surface generation is view-dependent, which mag to artifacts during animations. Wand [WS03]
introduced a similar concept by replacing the cylindershweibnes, but they started with triangular models as
their input instead of point models. Adamson [AA03] propbsemethod for ray-tracing point-set surfaces but
was computationally too expensive, the running times beirggveral hours. Wald [WSO05] then described a
framework for interactive ray-tracing of point models bés® a combination of an implicit surface represen-
tation, an efficient surface intersection algorithm and ecdifrally designed acceleration structure. However,
implicit surface calculation was too expensive and heneg tlsed ray-tracingnly for shadow computations.
Also, the actual shading was performed only by a local sttadiodel. Thus, transparency and mirroring re-
flections were not modelled. Linsen [LMRO7] recently intnoed a method of Splat-Based Ray-Tracing for
Point Models handling the shadow, reflections and refracitects efficiently. However, they did not consider

rendering caustics effects in their algorithm.

52

Our proposed method is a combination of many such methodsistisd above, which combines the advan-
tages each of them offer under one domain. We will succdgdiel able to get all the desired specular effects
(reflections, refractions and caustics) along with prodgd time and memory efficient algorithm for the same.
We will also be able to fuse it with the diffuse illuminatiofgarithm to give a complete global illumination
solution.

Our proposed algorithm follow the Photon Mapping (for palpgl models) [Jen96] strategy closely. Therefore,
we start by giving a brief overview of all the stages of photoapping algorithm in Section 4.2 and conclude
with some limitations of this technique. We then follow it wjith our proposed method in Section 4.3 to get

all the desired specular effects in a point model scene.

4.2 Photon Mapping

This section aims to give an overview of the photon mappiggrthm along with some of their limitations
(for details refer [Jen96]).

The global illumination algorithm based on photon maps is@pass method. The first pass builds the photon
map by emitting photons from the light sources into the scame storing them in a photon map when they
hit non-specular objects. The second pass, the rendersyy pses statistical techniques on the photon map to
extract information about incoming flux and reflected radeaat any point in the scene. The photon map is
decoupled from the geometric representation of the scelmis.i a key feature of the algorithm, making it ca-
pable of simulating global illumination in complex scenesitaining millions of triangles, instanced geometry,
and complex procedurally defined objects. We will look irfie tetails related to the emission, tracing, storing
of photons and rendering in the remainder of this section.

To help explain the algorithms presented in this section gagpta notation for light transport introduced by
Heckbert [Hec90]. In Heckbég notation a path traveled by light can be described by a aegxpression

of the interactions the light has been through. Possibkractions are: the light source (L), the eye (E), a
diffuse reflection (D), a specular reflection (S). An examipléhe light pathLS™ D E, which describes light
coming from the light source, being specular reflected ormaare times before being diffusely reflected in the

direction of the eye. Incidentally, this is the path tradeley light when creating caustics.

4.2.1 Photon Tracing (First Pass)

The purpose of the photon tracing pass is to compute indifentination on diffuse surfaces. This is done by
emitting photons from the light sources, tracing them tigitothe scene, and storing them at diffuse surfaces.
Photon Emission: The photons emitted from a light source should have a digidb corresponding to the

distribution of emissive power of the light source. If thenms of the light is Plight and the number of emitted

53

photons isw., the power of each emitted photon is

Pphoton = -Plight/ne-

Pseudocode for a simple example of photon emission fronfasdifpoint light source is given below:

Algorithm 14 Photon emission from a diffuse point light
procedure emitPhotons

1: n = 0// number of emitted photons
2: while not enough photondo

3: DO

/I use simple rejection sampling

/I to find diffuse photon direction

x = random number betweenl and1
y = random number betweenl and1
z = random number betweenl and1
while (zxz+y*xy+z2x2z>1)

190 d=<uxv9, 2>

11: p =light source position

12: trace photon from p in direction d
132 n=n+1

14: end while

15: scale power of stored photons with 1/n

© N o gk

Photon Tracing: Once a photon has been emitted, it is traced through the sisémgephoton tracing. When
a photon hits an object, it can either be reflected, transthitbr absorbed (with some power loss), decided
probabilistically based on the material parameters of tirase using Russian roulette [Jen96] Examples of
photon paths are shown in Figure 4.1.

Photon Storing: Photons are only stored where they hit diffuse surfacesforge precisely, nhonspecular
surfaces). The reason is that storing photons on specuffaces does not give any useful information: the
probability of having a matching incoming photon from thesplar direction is zero, so if we want to render
accurate specular reflections the best way is to trace a réyeimirror direction using standard ray tracing.
For all other photon-surface interactions, data is stored global data structure, thghoton map Note that
each emitted photon can be stored several times along tis pégo, information about a photon is stored at
the surface where it is absorbed if that surface is diffuser dach photon-surface interaction, the position,
incoming photon power, and incident direction are stored.

Three Photon Maps: For efficiency reasons, it pays off to divide the stored phstmto three photon

maps:

54

Figure 4.1: Photon paths in a scene (a Cornell box with a chrsphere on left and a glass sphere on right):
(a) two diffuse reflections followed by absorption, (b) acar reflection followed by two diffuse reflectiong
(c) two specular transmissions followed by absorption.

e Caustic Photon Map:contains photons that have been through at least one speefléction before
hitting a diffuse surfaceL S+ D.

e Global Photon Map:an approximate representation of the global illuminatioluson for the scene for
all diffuse surfacesL{S|D|V }*D

¢ Volume Photon Mapindirect illumination of a participating mediunt:{S|D|V } V.

A separate photon tracing pass is performed for the caustitop map since it should be of high quality and
therefore often needs more photons than the global photgname the volume photon map. The construction
of the photon maps is most easily achieved by using two sepat@ton tracing steps in order to build the
caustics photon map and the global photon map (includingvétheme photon map). This is illustrated in
Figure 4.2 for a simple test scene with a glass sphere anduaéifvalls. Figure 4.2(a) shows the construction
of the caustics photon map with a dense distribution of pgtnd Figure 4.2(b) shows the construction of the

global photon map with a more coarse distribution of photons

4.2.2 Preparing the Photon Map for Rendering

In the rendering pass, the photon map is a static data steutttat is used to compute estimates of the incoming
flux and the reflected radiance at many points in the scene. oTihid it is necessary to locate the nearest
photons in the photon map. This is an operation that is dotrerarly often, and it is therefore a good idea to

optimize the representation of the photon map before théemmg pass such that finding the nearest photons

is as fast as possible

55

Light Source Light Source

Caustic Map

(a) (b)

Figure 4.2: Building (a) the caustics photon map and (b) tbbal photon map.

The data structure should be compact and at the same timefalldast nearest neighbor searching. It should
also be able to handle highly non-uniform distributionsstisivery often the case in the caustics photon map.
A natural candidate that handles these requirementbaseanced kd-tree

The balanced kd-tree: The time it takes to locate one photon in a balanced kd-treeahaorst time

performance of O(logN) [M0093], where N is the number of gmstin the tree.

4.2.3 Rendering (Second Pass)

Given the photon map, we can proceed with the rendering pBlss.photon map is view independent, and
therefore a single photon map constructured for an envissriroan be utilized to render the scene from any
desired view. The final image is rendered using distributgntracing in which the pixel radiance is computed
by averaging a number of sample estimates. Each samplestowgitracing a ray from the eye through a
pixel into the scene. The radiance returned by each ray gdjualoutgoing radiance in the direction of the ray
leaving the point of intersection at the first surface irgeted by the ray. The outgoing radianésg, is the sum

of the emitted L., and the reflected radiance
Lo(2, W) = Le(z, W) + Ly (z, w)
where the reflected radianck,, is computed by integrating the contribution from the incognradiance ;,
Ly(z,w) = f% fole, @', W) Li(z, W) cosbdw,

where f,. is the bidirectional reflectance distribution function (BR), and x is the set of incoming directions

around x. The BRDF is separated into a sum of two componenggegular/glossyf, s, and a diffusef, 4
fr(@, W' @) = fro(a, @, W) + fra(z, @', @)

56

The incoming radiance is classified using 3 components:
o L;(x, w") is direct illumination by light coming from the light sourse

e L;.(x,w') is caustics - indirect illumination from the light sourceia gpecular reflection or transmis-

sion.
o L4z, ") is indirect illumination from the light sources which hasheeflected diffusely at least once.
The incoming radiance is the sum of these three components:
Li(z, @) = Liy(2, W) + Lio(z, W) + Li gz, W)

By using the classifications of the BRDF and the incomingaacé we can split the expression for reflected

radiance into a sum of four integrals:

!/

gl
él

W) Li(z, W)cosdw,

Li(z,@) = / i (.

:/frx,/

/ fT,S(xv wlv w)(Li,C(:C> w/) + Li,d(:m wl))coseidw; +

él

Li(z, E)/)cosé?idw; +

/ fralz, W /,@)) (x,@)/)cosﬂidw; +
/ de xuwlaw) Zd(.’E,E)I)COSGidw;

There are 4 integrals in the above equatidfi.term computeirect lllumination 2"¢ terms computeSpec-

ular and Glossy Reflectior™ term compute€austics 4t term computedultiple Diffuse Reflections

Specular and Glossy ReflectionSpecular and glossy reflection is computed by evaluatiohefdrm

/

[frs(@, @, W) (Lie(, W) + Lia(z, W) costiduw;

The photon map is not used in the evaluation of this integnalesit is strongly dominated by, ; which has a

narrow peak around the mirror direction. Using the photorp rimaoptimize the integral would require a huge
number of photons in order to make a useful classificatiorhefdifferent directions within the narrow peak
of f, ;. To save memory this strategy is not used and the integrakisiated using standard Monte Carlo ray

tracing optimized with importance sampling basedfpn.

Caustics: Caustics are represented by the integral

W)L o(z, W) cosbdw,

fam fT,d(xu w

57

The evaluation of this term is dependent on whether an atcoraan approximate computation is required. In
the accurate computation, the term is solved by using amadiastimate from the caustics photon map. The
number of photons in the caustics photon map is high and wexpact good quality of the estimate. The

approximate evaluation of the integral is included in theiaace estimate from the global photon map.

4.2.4 Radiance Estimate

The reflected illumination is reconstruction from the phrotoap through a series of queries to the photon maps.
Each query is used to estimate the reflected radiance atacsypbint as the result of a local photon density
estimate. A query to the photon map locates khghotons nearest the surface point for which the reflected
radiance is to be estimated. In conjunction with the surBB®F, the incoming direction, the surface point
and the area encompassing the photons this informatiorets insa local density estimate that estimates the
reflected radiance. This estimate is calledrddiance estimat§Sch06].

The accuracy of the radiance estimate is controlled by twmoiant factors; the resolution of the photon map
and the number of photon used in each radiance estimatew Ipfi®tons are used in the radiance estimate,
noise in the illumination becomes visible, if many photores@sed edges and other sharp illumination features
such as those caused by caustics are blurred. Unless arsigecegmber of photons are stored in the photon
map, it is impossible to avoid either of these effects. Thighe mentioned trade-off problem between variance
versus bias as it manifests itself in photon mapping.

Figure 4.3 shows an example output of Photon Mapping algorit

4.2.5 Limitations of Photon Mapping

Although Photon Mapping is a well established techniquegieing a complete global illumination solution, it

too suffers from some limitations as itemized below:

e Works only for polygonal models. We need to modify the altjori so that it works for point models as

well.

e One obvious cost factor for photon mapping is the cost fofgoering &£ nearest neighbor queries used
for density estimation of photons. As we already have a preguted diffuse illumination, we are only
interested in caustic maps. But still, althoug' N queries are commonly considered to be rather cheap,
it is infact quite expensive when compared to a fast ray trémerendering (aboul0 times expensive)

even for just caustic maps.

e Photon Generation and Tracing are quite slow as well. Nezls bptimized.

58

Figure 4.3: Example output of Photon Mapping Algorithm [@&hshowing reflection, refractions and caustigs

4.3 Our Approach

We now present our algorithm to generate specular effecisdimt models. We try to eliminate the restrictions
of traditional Photon Mapping algorithm at the same timerojating on the basic technique using a combina-
tion of several algorithms available in literature.

Note that, our specular-effects generation algorithm $a&e input a point model with diffuse global illumi-

nation solution already calculated for it. As the diffuselgdl illumination solution is view-independent, it

provides us with an advantage of having an interactive whtkugh of the input scene of point models. How-
ever, specular effects being view-dependent needs to belai@d for every new view-point in the ray-trace
rendered frame. Thus, if specular effect generation taklkes af time, we loose out of having an interactive
walk-through of the scene. We desire not to loose this adgantand try to optimize every algorithm required
for specular effect generation.

We saw traditional Photon Map works only for polygonal mage&hich have surface information. But point

models do not have any kind of surface representations. &elily make necessary modifications in this

algorithm to apply it to point models. We can divide our gaaRimajor tasks:

e Modifying Path Tracing (First Pass)

e Modifying Ray Tracing (Second Pass)

All the other modules of the algorithm are independent ofexg representations.

59

Fortunately, solution to both of the above tasks is the sdPneper analysis of the algorithm suggests that
both Photon Tracing and the final rendering is done using Ragifig techniques. So, modifying the Ray
Tracing technique to suit Point Models is sufficient. Thess heen some research efforts in the same direction
(as discussed in Section 4.1). We will discuss here one o¥éng efficient techniques for doing the same,

Splat-based Ray TraciqifMRO07], in the next section.

4.3.1 Splat-Based Ray Tracing

Surface splatting is established as one of the main rerglegthniques for point clouds. This section presents
a ray-tracing approach for objects whose surfaces aregepted by point clouds. This approach is based on
casting rays and intersecting them witisks around pointsr splats[LMRO7].

Splats in their general form define a piece-wise constarfaser In particular, each splat has exactly one surface
normal assigned to it. Assuming that the point cloud wasinbthby scanning a smooth surface, the application
of the rendering technique should result in the display ahaathly varying surface. Since ray tracing is based
on casting rays, whose directions depend on the surfaceat@rithere’s a need to define smoothly varying
normals over the entire surface, i.e., also within eachtsfla do so, estimated normals at each point of the
point cloud are considered and splat radii are computedrafipg on local curvature properties. The generated
splats should cover several points of the point cloud. Thienats at the covered points of each splat are used to
determine a smoothly varying normal field defined over a Ipeahmeter space of the splat. It can be beneficial
to consider further surrounding points and their normaidtie normal field computations. Details on the splat
and normal field generation are described later in the Sedtid.1.1.

The actual ray-tracing procedure is executed by sendingay# that intersect the splats, potentially being
reflected or refracted. Surface normals are interpolatedh fthe normal fields. Care has to be taken where

splats overlap. The ray-splat intersection and the ovaralje generation is described in subsection 4.3.2.

4.3.1.1 Splat Generation

Let P be a point cloud consisting of pointsp, ..., p,, € ®3. We generaten splatsSy, ..., S,, that cover the
entire surface represented by point clobid For each of these splats we are computing its ragius R, ¢ =
1,...,m, and a normal fielah; (u,v),i = 1, ..., m, where(u,v) € [~1,1]x[~1, 1] with u? 4+ v? < 1 describes a
local parametrization of the splat.

Splat Radius: The radii of the m splatsy, ..., S, should vary with respect to the curvature of the surface cov-
ered by the splat. In regions of high curvature, a piece-w@@estant surface representation via splats requires
us to use many splats with small radii to stay within a predefiarror bound. In regions of low curvature, some
few large splats may suffice to represent the surface welltiedefinition of the error bound, the maximum

distance of points oP covered by the splat to their closest point on the splat iseho

60

Let p, € P be any of the points of point clou#® and letn; be the respective surface normal of the surface
described by at positionp;. If the normaln; is unknown, we determine the normal by computingkimearest
neighborsy,, ..., q; € P of p,, fit a plane througlp, and its neighbors in the least-squares sense, any 8@t
the normal of the fitting plane.

Let the neighbors op,; be sorted in the order of increasing distancepfo We initially define splatS; =

(¢, mj,7;) with centerc; = p;, normaln; = n;, and radius-; = 0. Next, the splat is grown iteratively, until
the error bound condition is violated.

At each iteration step, the radius is increased such thadpila coverd additional neighbor op,. The normal
remains unchanged, but centgris moved along the surface normmglsuch that the splat position minimizes

its maximal distance to all covered pointsRfFigure 4.4(a) illustrates the optimal choiceogf

Figure 4.4: (a) Generation of splal; starts with pointp, and grows the splat with radius by iteratively
including neighborsy; of p, until the approximation errof, for the covered points exceeds a predefined efror
bound. (b) Splat density criterion: Points whose distancfthe splats center; when projected onto spla;
is smaller than a portioperc of the splats radius; are not considered as starting points for splat generatjon.
(c) Generation of linear normal field (green) over s@afrom normals at points covered by the splat. Nornal
field is generated using local parametgisv) € [1,1]X[1, 1] over the splats plane spanned by vectorand
v; orthogonal to normat; = n;. The normal of the normal field at center pomtmay differ fromn;.

Splat Density: Let S; be the splat that covers the pomt and itsk nearest neighborg,, ..., q;, again
sorted by increasing distanceg To not generate holes in the surface, thiesearest neighbors should also
include all natural neighbors @i, when computing natural neighbors locally for points peogel into a fitting
plane. If the natural neighbors of one of the poigts € 1, ..., k, are also among thenearest neighbors @f,
no splat needs to be generated starting fagm Obviously, the smaller the distance of a neighfpto point
p; is, the higher are the chances that the natural neighboisraady among the neighbors f
This motivation led to the following criterion: If spla; is generated starting from poipf, then no splats need

to be generated starting from neighbored points within ttegegted distanceercr; from the splats cente;

61

, Whereperc € [0,1] is a factor that defines the percentage of the splats radies fog the criterion, see
Figure 4.4(b). The factopercis defined globally foP, which is possible as it is multiplied with the locally
varying radiir; . The optimal choice fopercis a value such that the generated splats cover the entiigsur
and have minimal overlap.

Normal Field: In order to generate a smooth-looking visualization of diesgr with a piece-wise constant
representation, there is a need to smoothly (e. g. lineerigjpolate the normals over the surface before locally
applying the light and shading model. Since we do not havaectvity information for our splats, we cannot
interpolate between the normals of neighbored splatsedalstwe need to generate a linearly changing normal
field within each splat. The normal fields of adjacent poifisutd approximately have the same interpolated
normal where the splats meet or intersect.

Let S; = (¢j,n;4,7;) be one of the splats generated as described above. In ordefite a linearly changing
normal field over the splat, we use a local parametrizatiothensplat. Let; be a vector orthogonal to the
normal vectom; andv; be defined ag; = n;xu; . Moreover, let|u;|| = |lv;|| = r; . The orthogonal vectors

u; andv; span the plane that contains spfat. A local parametrization of the splat is given by
(u,v) = Cj 4+ ulj 4 vV,

with (u,v) € R? andu? + v? < 1. The origin of the local 2D coordinate system is the centehefsplats;.

Using this local parametrization, a linearly changing nakifield n;(u, v) for splat is defined; by
nj(u,v) = ﬁ)j + uviju; + vw;V;

The vectoer describes the normal direction in the splats center. Ittesdtialong the splat with respect to the
yet to be determined factorg,w; € . Figure 4.4(c) illustrates the idea.

To determine the tilting factors; andw; is exploited the fact that the normal directions are knowthatpoints
of point cloudP that are covered by the splat. Lgtbe one of these pointg, is projected onto the splat, local

coordinates;, v;) of p, are determined, and the following equation is derived
n, = Wj + U + vjw;V;

wheren; denotes the surface normal . Proceeding analogously for all other points outFotovered by
splat.S;, a system of linear equations is obtained with unknown We&; andwj. Since the system is

overdetermined, it can only be solved approximately.

4.3.2 Ray Tracing
4.3.2.1 Main Approach

The input of the ray-tracing procedure are the m spfats.., S,, generated from point cloud. Each splatS;

is given by its centec; , its radiusr; , and its normal fieleh; (u, v) using local parameters:, v) over the local

62

coordinate systerfu;, v;).

The standard ray-tracing method that is applied sends @uiapy rays from the camera position through the
center of each pixel of the resulting image onto the scene.ifitlersection of the primary rays with the objects
of the scene using ray-splat intersections is computednfine intersection points are sent out secondary rays,
i.e., shadow rays towards all light sources, reflection iaysase of reflective surfaces, and refraction rays in

case of transmissive surfaces. In the latter two cases, tee e recursion until the ray-trace depth is met.
4.3.2.2 Octree Generation

In order to process computations of ray-splat intersestiefficiently, an octree for storing the splats is used.
The generation of the octree and the insertion of the satsme in two steps.

The first step is the dynamic phase, where the octree is gedet@tarting with an empty octree represented by
the root that describes the bounding box of the entire saamh splat is iteratively inserted into that leaf cell
that contains the center of the splat. As soon as one leaivoelld contain more than a given small number

of splat entries, the leaf cell gets subdivided into eightadlg-sized subcells. The splats that were stored in the
former leaf cell get adequately distributed among its kit which are the new leaf cells. This first phase is
as simple as generating an octree for points. The iteratmpsnce all splats have been inserted.

The second step is the static phase. Further splat inseri@made, but the structure of the octree does not
change anymore, i.e., no further cell subdivisions are @weet The additional splat insertions are necessary,
as splats have an expansion and may stretch over varioss Gélus, in this second phase, we want to insert
the splats into all leaf cells they intersect, see Figurda}.5Since such an exact cell-splat intersection is
computationally rather expensive, the splats are insémntedeaf cells that potentially intersect the splat.

For each splab;, the tree is traversed top-down applying a nested test fun g#aversed cell. The first test
checks for splats; whether the axes-aligned box with centgrand side lengtl2.r; intersects the cell. If the
test fails, tree traversal for that branch stops. For all éedls, for which the first test was positive, a second
test is performed. The second test uses the local paraat@irizof the splat. The local parameters (0,0), (0,1),
(1,0), and (1,1) define a 2D square that bounds the splat. d$iggn of these four points is checked against
the leaf cell. If all four points lie on one side of one of thg planes that bound the leaf cell, the splat cannot

intersect the leaf cell, see Figure 4.5(c). Otherwise, &t $s inserted into the leaf cell, see Figure 4.5(b).

4.3.2.3 Ray-splat Intersection

The intersection of rays with splats is computed using theeegoartitioning of the three-dimensional scene.
For primary rays starting from the camera position (or ey@pothe intersection of the ray with the bounding
box of the octree is computed, i.e., with the cell represeiie the octrees root. The leaf cell to which the

intersection point belongs is determined, and then algoritontinues from there. From then on, primary and

63

7

@) (b)

Figure 4.5: (a) Octree generation: In the first phase, theeedts generated while inserting splatsinto the
cells containing their centers (red cell). In the second phase, spitis inserted into all additional cells i
intersects (yellow cells). (b)(c) The second test checkstidr the edges of the bounding square of sflat
intersect the planel that bound the octree leaf cell. (5) is inserted into the cell. (c¥; is not inserted into
the cell. This second test is only performed if the first testupding box test) was positive.

secondary rays can be treated equally.

If the rays hits a (leaf) cell of the octree, intersectiontwd tay with all splats stored within that cell is checked
for. If the ray does not intersect any of the splats storedhat tell or if the cell is empty, the algorithm pro-
ceeds with the adjacent cell in the direction of the ray. #ritls up leaving the bounding box of the octree, the
respective background color is reported back. If the ragrgects a splat stored in the current cell, it computes
the precise intersection point and applies the shadingatésh, and refraction model possibly using recursive
calls to compute the color, which is reported back. If themdg multiple splats stored in the current cell, the

algorithm computes the intersection points and pick thetrapgropriate one.

After having a look at the&splat-Based Ray Tracingchnique, we know how to incorporate Photon Mapping
for point models (replacing the ray-tracer). But, Photonpigiag by itself still takes a lot of time to generate
visually pleasingresults. Hence, next, we try to optimize the traditional ®8haviapping algorithm to work

faster (and possibly at interactive rates). Photon mapjintivided, works in three stages:
e Photon Generation
e Photon Traversing and performing intersection tests

e Photon retrieval using/N N queries while ray-trace rendering

64

We target each of the three stages of Photon Mapping one bgrahtry to optimize them as much as possible

in the following sections.

4.3.3 Optimizing Photon Generation and Sampling

Recall that we generate only caustic photon maps as we glhea@ a pre-computed diffuse global illumination
solution. Thus, the obvious candidate for optimizatioristime required for generating caustic photons.
Looking at the Photon Mapping algorithm reveals that sonte@tost factors for photon generation can not be
improved on. For example, rays will be incoherent duringtphayeneration, and each light path will require
several surface interactions (for reflection and reframtio order to generate a caustic photon. However, the

number of paths that actually yield caustic photons can thesinced, and should be maximized.

4.3.3.1 Sampling Caustics using Selective Photon Tracing

We use a method similar to Wald [GWS04] which useslective Photon Tracing (SP[DBMSO02]. Like [GWS04]
we do not consider the temporal domain, but ratherSslective Photon Tracinipr adaptively sampling path
space: In a first step, a set of “pilot photons” is traced i@ $cene in order to detect paths that generate
caustics. For those pilot paths, periodicity propertiethefHalton sequence [Nie92] are exploited to generate
similar photons.

By using Selective Photon Tracintpe increase in the yield of caustic photons is roughly byctofaof four.
Essentially, this means that the same number of caustiopbatan be generated with only one fourth of all
rays. As the improvement depends significantly on the (ptef size of the caustic generator, the results for
smaller caustic generators are likely to be more signifitiaan large ones.

This approach also handles indirect caustics , as the phaibone group also stay together after diffuse
bounces. Most importantly, however, this method does rpiire any preprocessing and maintains the photon
map’s property of being independent of scene geometry amlwtell-suited for both complex scenes and in-
teractive setups.

More details of this algorithm can be found in [GWS04] and {8802].

We thus, previously, had a ray-traceplat-Based Ray Tracifigvhich is capable of generating specular ef-
fects 6ans caustigson point models. Combining this ray-tracer with the newdagaustic-map generation

technique (usingelective Photon tracingyives us quite a bit of speedup.

4.3.4 Optimized Photon Traversal and Intersection tests

The intersection tests performed for generating caustitgghmap is similar to those performed while doing
Splat-Based Ray-Tracingay-splat intersections), and thereby we need not worouadesigning a new algo-

rithm for the same. FurtheBplat-Based Ray-TracingsesOctree data-structurdor traversal of the primary

65

and secondary rays during ray-tracing. The use of Octreegiaicture provides us with quite a few advantages:

e We already have Octree data structure generated for inpot padel while doing diffuse illumination.

Hence same structure can feeused

e The same traversal algorithm whi@plat-Based Ray Tracingses on Octrees can be used for photon

traversal as well.

e Further more, we can go for an even more optimized algoritbmOctree Traversal using neighbor
finding [Sam89]. Here we traverse the octtearizontally via neighbor finding instead of traversing

vertically starting from the root to the desired node.

Thus, we already have a well-established data structurérd€cand algorithm (ray-splat intersection) for

performing optimal photon traversal and intersectionst@$trays and splats around points.

4.3.5 Fast Photon Retrieval using Optimized: N N Query Algorithm

We now have an optimized caustic photon generation codeptimiaed photon traversal and ray-splat inter-
section code, a good ray-tracer capable of handling speetitcts on point models. All it remains is to have
an optimizedk N N query algorithm for fast photon retrieval while rendering.

Although, kd-trees provides for fast/N N queries, they are still slow for interactive settings weiidesAlso,

its difficult to extendkd-trees to hardware, and would account for high latency orlevoequire a large cache
to avoid this latency on average.

The algorithm discussed here avoids the above mentionedssskd-trees and provides for low-latency and
has sub-linear access time, there by providing for fastghaettrieval and optimized N N query algorithm.

We just provide a brief overview. Details of this algorithmncbe found in Ma [MMO02].

4.3.5.1 Low Latency Photon Retrieval Using Block Hashing

Jensen [Jen96] uses the kd-tree data structure to find tleasesh photons. However, solving the KNN problem
via kd-trees requires a search that traverses the tree. iEtrentree is stored as a heap, traversal still requires
random-order memory access and memory to store a stack. iMpretantly, a search-path pruning algorithm,
based on the data already examined, is required to avoigsiogeall data in the tree. This introduces serial
dependencies between one memory look up and the next, e@rgggslowing down the retrieval process.

We present here a hashing-bas&dV N (Approximatek N N) solution for fast retrieval of photons. This algo-
rithm has bounded query time, bounded memory usage, angbbtghtial for fine-scale parallelism. Moreover,
the algorithm results in coherent, non-redundant acceedaglsck-oriented memory. The results of one mem-

ory look up do not affect subsequent memory lookups, so aesasan take place in parallel within a pipelined

66

memory system. The algorithm is based on array access, amokéscompatible with current texture-mapping
capabilities than tree-based algorithms.

A novel technique calleBlock HashingBH) is used to solve the approximaté&’ N (AkN N) problem in pho-

ton mapping. The algorithm uses hash functions to categpfitons by their positions. Thenk& N query
proceeds by deciding which hash bucket is matched to theyquant and retrieving the photons contained
inside the hash bucket for rendering purposes. One atiraofithe hashing approach is that evaluation of hash
functions takes constant time. In addition, once we haventish value, accessing data we want in the hash
table takes only a single access. These advantages pertoiausid operations that are serially dependent on
one another, such as those required by kd-trees, and heyasd®a low-latency implementation.

The technique is designed under two assumptions on the ioeledivnemory systems.
e Its assumed that memory is allocated in fixed-sized blocks.
e Its assumed that access to memory is via burst transfer ockblihat are then cached.

Thus if any part of a fixed-sized memory block is touched, ssde the rest of this block will be virtually
zero-cost. Therefore, in BH all memory used to store phottta & broken into fixed-sized blocks.
Locality-Sensitive Hashing: Since our goal is to solve theN N problem as efficiently as possible in a
block-oriented cache-based context, our hashing tecbnmieguires hash functions that preserve spatial neigh-
borhoods. These hash functions take points that are closadw other in the domain space and hash them
close to each other in hash space. By using such hash fuscfbiotons within the same hash bucket as a
query point can be assumed to be close to the query point inrtmal domain space. Consequently, these
photons are good candidates for th& /N search. The algorithm uses the Locality-Sensitive Has{ii®H)
algorithm proposed by [GIM99] for the same.

The hash function in LSH groups one-dimensional real numbeihash space by their spatial location. It
does so by partitioning the domain space and assigning aeitigsh value to each partition. To deal with
n-dimensional points, each hash table will have one hastibtmper dimension. Each hash function generates
one hash value per coordinate of the point and the final hdsle v& calculated byz;:(} h; P* whereh; are

the hash values and P is the number of thresholds. Thus eatbnpyets mapped to three hash tables corre-
sponding to itse, y, z location co-ordinates. Details on how the thresholds fotifi@ns are selected, how hash
tables are created and what is an optimal bucket size carfdyeagfrom Ma [MMO02].

Further, each of these photons occupies exactlgiit words in memory and are stored in fixed size memory
blocks of64 32-bit words (10 photons per block).

Block Hashing: It, thus, contains a preprocessing phase and a query phasgréprocessing phase consists

of three steps after the photons have been traced in the.scene

67

e Organizing the photons into fixed-sized memory blocks
e Creation of a set of hash tables

e Inserting photon blocks into the hash tables.

Details of the pre-processing phase can be looked in Ma [MM0@2he second phase, the hash tables will be

gueried for a set of candidate photons from which/theearest photons will be selected for each point in space

to be shaded by the renderer.
Querying: A query into the BH data structure proceeds by delegatingjtiezy to each of thé hash tables.

These parallel accesses will yield as candidates all phbtocks represented by buckets that matched the

query. The final approximate nearest neighbor set comesdoamning the unified candidate set for the nearest

neighbors to the query point (see Figure 4.6.) Note thakerilivV N algorithms based on hierarchical data

structures, where candidates for th& N set trickle in as the traversal progresses, in BH all carid&lare
available once the parallel queries are completed. ThexeBH can use algorithms likeelection(instead of a

priority queug when selecting thé nearest photons.

1
1
I °© o © o a O :
| o o © D © O |
1 [m] o) o} |
: o* Blo ot ° o ot B o |
1 a O © o © o] !
: o] o OO o olo © o o o |© :
| o o © o o) o o o o :
I © o o |
|m———mmmmm—— = mmm———
e N C Tt Rl
1 o I | O
I ol B 1 I !
I + O I I ! .
| e o | | | o Data point
1© o p — O ! + Query point
! o @|o © LTI O Matched point
1 o fo) o 1
) I

Figure 4.6: Merging the results from multiple hash tables) the query point retrieves different candidat
sets from different hash tables, (b) the union set of caneafter merging, and (c) the two closest neighb
selected.

ES
DI'S

Thus, this completes the whole set-up of making Photon Mgppork for point models and optimizing

every stage of the algorithm. However, issues like how talleaspecular objects while computing purely

diffuse global illumination using FMM is still a questionhi§ is just a starting point and many issues need to

be tackled while actual implementation.

68

Chapter 5

Conclusion and Future Work

Point-sampled geometry has gained significant interestaltieeir simplicity. The lack of connectivity touted
as a plus, however, creates difficulties in many operatittes denerating global illumination effects. This
becomes especially true when we have a complex scene dogsistseveral models, the data for which is
available as hard to segment aggregated point-based mauteisreflections in such complex scenes requires
knowledge of visibility between point pairs. Computingikiity for point models becomes all the more diffi-
cult, than for polygonal models, since we do not have anyaserbr object information.

Point-to-Point Visibility is arguably one of the most diffit problems in rendering since the interaction be-
tween two primitives depends on the rest of the scene. Onagavagluce the difficulty is to consider clustering
of regions such that their mutual visibility is resolved ajraup level. Most scenes admit clustering, and the
Visibility Map data structure we propose enables efficient answer to comemaiering queries. In this report,
we have given a novel, provably efficient, hierarchicaljbiigy determination scheme for point based models.
By viewing this visibility map as a ‘preprocessing’ stepopitrealistic global illumination rendering of com-
plex point-based models have been shown.

Further, we have used theast Multipole Method (FMMAs the light transport kernel for inter-reflections, in
point models, to compute a descriptioflldmination maps- of the diffuse illumination. Parallel implementa-
tion of FMM is a difficult task with load balancing, data deqmosition and communication efficiency being the
major challenges. In Sec. 3.3 we have discussed one sudtittatgevhich uses only a static data decomposi-
tion using parallel compressed octrees, offers commupita&fficiency and guaranteed load balancing within
a small constant factor. We now aim to exploit the parall@hpating power of GPUs for implementation of the
Fast Multipole Methodased radiosity kernel as well as the point-pair visibitigtermination algorithm using
Visibility Mapsto provide an efficientfast inter-visibility and global illumination solution for pot models.
Necessanhintswere given for the same in the report.

A complete global illumination solution for point modelsastd coverboth diffuse and specular (reflections,

refractions, and caustics) effects. Diffuse global illaation is handled by generatiiigumination maps We,

69

thus, further saw in the report how various algorithms fréwa literature were combined under a single domain
to get us dime-efficientsystem designed to generate the desired specular effegsifi models. We now aim

to implement these algorithms, merge them together anchgedgecular effects solution for point models.

We, thus, will have awo—pass global illumination solver for point modelBhe input to the system will be a
scene consisting of both diffuse and specular point modeilst pass will calculate the diffuse illumination
maps, followed by the second pass for specular effects.ll¥sitlae scene will be rendered using splat-based
ray-tracing technique. However, a question remains thratesive are parting the diffuse and specular effect
calculations for the scene, how would we handle speculaatbjand their effects on diffuse objects) while
calculatingonly diffuse global illumination (This issue is very well handlen Photon Mapping [Jen96]) in the

first pass of the global illumination solverhis important issue needs to be investigated thoroughly

70

References

[AAO3] Anders Adamson and Marc Alexa. Ray tracing point sefaces. INSMI '03: Proceedings of
the Shape Modeling International 20Q3age 272, Washington, DC, USA, 2003. IEEE Computer
Society.

[ABCOT03] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachashfean, David Levin, and Claudio T.
Silva. Computing and rendering point set surfacéSEE Transactions on Visualization and
Computer Graphics9(1):3-15, 2003.

[Ama84] John Amanatides. Ray tracing with cones. In Hankis@iansen, editorComputer Graphics
(SIGGRAPH "84 Proceedingsyolume 18, pages 129-135, 1984.

[BCLT92] J.A.Board, J. W. Causey, J. F. Leathrum, A. WindemutH,KrSchulten. Accelerated molecular

dynamics simulation with the parallel fast multipole mathGhemistry Physics Letter$98:89—

94, 1992.
[BG] R. Beatson and L. Greengard. A Short Course on Fast phi#iMethods.
[Bit02] Jiri Bittner. Hierarchical Techniques for Visibility Computatian®hD thesis, Czech Technical

University, 2002.

[CBCT01] J.C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, RVFright, B. C. McCallum, and T. R.
Evans. Reconstruction and representation of 3d objectsrattial basis functions?roceedings
of ACM SIGGRAPHpages 67-76, August 2001.

[CGR88] J. Carrier, L. Greengard, and V. Rokhlin. A fast adepmultipole algorithm for particle simula-
tions. SIAM Journal of Scientific and Statistical Computifgp69—686, July 1988.

71

[CGR99] H. Cheng, L. Greengard, and V. Rokhlin. A fast adepthultipole algorithm in three dimensions.
Journal of Computational Physic$55:468-498, 1999.

[Chr] T. W. Christopher. Bitonic Sort Tutoriaht t p: / / www. t ool s- of - conputi ng. com t c/
CS/ Sorts/bitonicsort. htm

[DBMS02] K. Dmitriev, S. Brabec, K. Myszkowski, and H. Sdiddnteractive global illumination using
selective photon tracing. Mhe 13th Eurographics Workshop on Renderipages 21-34, 2002.

[DDP96] Frédo Durand, George Drettakis, and Claude Pu€&hbk.3d visibility complex: A new approach
to the problems of accurate visibility. [Burographics Rendering Workshopages 245-256,
1996.

[DDP97] Frédo Durand, George Drettakis, and Claude Puelde visibility skeleton: a powerful and
efficient multi-purpose global visibility toolComputer Graphics31:89-100, 1997.

[DS96] George Drettakis and Francois Sillion. Accuratghility and meshing calculation for hierarchi-

cal radiosity. InRendering Techniques, 7th EG Workshop on Rendepiages 269-278, 1996.

[DSO00] J. Dongarra and F. Sullivan. The top ten algorithr@mputing in Science and Engineering
2:22-23, 2000.

[DTGOO] Philip Dutre, Parag Tole, and Donald P. Greenbengpraximate visibility for illumination com-
putation using point clouds. Technical report, Cornell\émnsity, 2000.

[DYNO4] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomaybishita. Radiosity for point sampled
geometry. InPacific Graphics 2004.

[E.62] Bresenham J. E. Bresenham'’s line drawing algorith862.

[EDDO3] A. Elgammal, R. Duraiswami, and L. Davis. Efficiergrkel density estimation using the fast
gauss transform with applications to color modeling andkireg. IEEE Transactions on PAMI
2003.

[GCCCed] Rhushabh Goradia, Anish Chandak, Biswarup Chgudad Sharat Chandran. Fmm-based
illumination maps for point models. IWas submitted to Symposium on Point Based Graphics
(pbg06) 2006 (Not Accepted).

[GD98] J. P. Grossman and William J. Dally. Point sample ezimd). InRendering Techniquepages
181-192, 1998.

72

[GDBO3] N. A. Gumerov, R. Duraiswami, and E. A. Borikov. Dafructures, optimal choice of param-
eters, and complexity results for generalized multilewasit inultipole methods id dimensions.
Technical report, Perceptual Interfaces and Reality Latlooy, Institute for Advanced Computer

Studies, University of Maryland, College Park, 2003.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev MotwanSimilarity search in high dimensions via
hashing. InVLDB '99: Proceedings of the 25th International ConferemceVery Large Data
Basespages 518-529, San Francisco, CA, USA, 1999. Morgan KauifrRablishers Inc.

[GKM96] L. Greengard, M. C. Kropinski, and A. Mayo. Integrafjuation methods for stokes flow and
isotropic elasticity.Journal of Computational Physic&25:403-414, 1996.

[Gor06] Rhushabh Goradia. Fmm-based illumination mapg&nt models. Second Progress Report,
Ph.D, 2006.
[GR87] L. Greengard and V. Rokhlin. A fast algorithm for pele simulationsJournal of Computational

Physics 73:325-348, 1987.

[Gre88] L. Greengard.The Rapid Evaluation of Potential Fields in Particle SystemT Press, Cam-
bridge, Massachusetts, 1988.

[GSCH93] Steven J. Gortler, Peter Schroder, Michael Febphnd Pat Hanrahan. Wavelet radiositySI-
GRAPH '93: Proceedings of the 20th annual conference on Ctenguaphics and interactive
techniquespages 221-230, New York, NY, USA, 1993. ACM Press.

[GTG84] C. M. Goral, K. E. Torrance, and D. P. Greenberg. Miodethe interaction of light between
diffuse surfacesComputer Graphicsl8(3):213-222, Jul 1984.

[GWS04] Johannes Gunther, Ingo Wald, and Philipp SlukallRealtime caustics using distributed pho-
ton mapping. InRendering Techniquepages 111-121, jun 2004. (Proceedings of the 15th

Eurographics Symposium on Rendering).

[HAQO5] B. Hariharan and S. Aluru. Efficient parallel algdmihs and software for compressed octrees

with applications to hierarchical methodRarallel Computing31:311-331, 2005.

[Har] M. Harris. Parallel Prefix Sum (Scan) with CUDAht t p: / / devel oper. downl oad.

nvi di a. conf conput e/ cuda/ sdk/ websi t e/ sanpl es. ht m

73

[HAS02]

[Hau97]

[Hec90]

[HSA91]

[Jen96]

[Jen03]

[K2j86]

[KCO3]

[KGCO4]

[LHNO5]

[LMRO7]

[LPC*00]

B. Hariharan, S. Aluru, and B. Shanker. A ScalableaRal Fast Multipole Method for Analysis
of Scattering from Perfect Electrically Conducting Sudac Proc. Supercomputingoage 42,
2002.

A. Haunsner. Multipole expansion of the light vectiEEE Transactions on Visualization and

Computer Graphics3(1):12—-22, Jan-Mar 1997.

P. S. Heckbert. Adaptive radiosity textures forit@dtional ray tracing. Computer Graphics,

ACM Siggraph Conference proceedingages 145-154, 1990.

Pat Hanrahan, David Salzman, and Larry Aupperleapid hierarchical radiosity algorithm. In

Computer Graphigsvolume 25, pages 197-206, 1991.

H. W. Jensen. Global illumination using photon ma&agographics Rendering Workshop 1996
pages 21-30, June 1996.

Henrik Wann Jensen. Monte carlo ray traci8gygraph Course 4oages 15-30, 2003.

James T. Kajiya. The rendering equation. Rroceedings of the 13th annual conference on

Computer graphics and interactive techniqupages 143—-150. ACM Press, 1986.

A. Karapurkar and S. Chandran. Fmm-based globatilhation for polygonal models. Master’s

thesis, Indian Institute of Technology, Bombay, 2003.

A. Karapurkar, N. Goel, and S. Chandran. Fmm-baselodj illumination for polygonal models.
Indian Conference on Computer Vision, Graphics, and Imageéssing pages 119-125, 2004.

S. Lefebvre, S. Hornus, and F. Neyr&PU Gems 2chapter Octree Textures on the GPU, pages
595-614. Addison Wesley, 2005.

Lars Linsen, Karsten Muller, and Paul RosenthalaEpased ray tracing of point cloudiournal
of WSCG, (Proceedings of Fifteenth International Confegeim Central Europe on Computer
Graphics, Visualization and Computer Vision - WSCG 200R|@N Agency2007.

Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiezy David Koller, Lucas Pereira, Matt
Ginzton, Sean Anderson, James Davis, Jeremy Ginsberghdmn8hade, and Duane Fulk. The
digital michelangelo project: 3D scanning of large statlieurt Akeley, editorSiggraph 2000,
Computer Graphics Proceedingpages 131-144. ACM Press /| ACM SIGGRAPH / Addison
Wesley Longman, 2000.

74

[LTCO8]

[LW85]

[MMO2]

[Mo093]

[Nie92]

[OBA+03]

[OCL96]

[Pau03]

[PD90]

[PGKO2]

[PKKGO3]

[PZvBGOO]

[RGed]

Y. Landa, R. Tsai, and L.T. Cheng. Visibility of painlouds and mapping of unknown environ-
ments. INACIVS06 pages 1014-1025, 2006.

Marc Levoy and Turner Whitted. The use of points as spliiy primitive. Technical report,

University of North Carolina at Chapel Hill, 1985.

Vincent C. H. Ma and Michael D. McCool. Low latency pioa mapping using block hashing.
In SIGGRAPH/Eurographics Graphics Hardware Workshogges 89—-98, 2002.

Andrew W. Moore. An introductory tutorial on kd-&e. Carnegie Mellon University1993.

H. Niederreiter. Random number generation and iguesite carlo methodsSociety for Indus-

trial and Applied Mathematigsl992.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Takd Hans-Peter Seidel. Multi-level
partition of unity implicits. ACM Trans. Graph.22(3):463—-470, 2003.

Ming Ouhyoung, Yung-Yu Chuang, and Rung-Huei LiafReusable radiosity object. @om-
puter Graphics Forumvolume 15/3, pages 347-356. Eurographics / Blackwell iBlubts, Au-
gust 1996. ISBN 1067-7055.

Mark Pauly.Point Primitives for Interactive Modeling and Processing3® Geometry PhD
thesis, ETH Zurich, 2003.

Harry Plantinga and Charles R. Dyer. Visibility, tggion, and the aspect grapmternational
Journal of Computer Visigrb(2):137-160, 1990.

Mark Pauly, Markus Gross, and Leif P. Kobbelt. E#iui simplification of point-sampled sur-
faces. InVIS '02: Proceedings of the conference on Visualization fiEyes 163-170, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

Mark Pauly, Richard Keiser, Leif P. Kobbelt, and fias Gross. Shape modeling with point-
sampled geometryACM Trans. Graph.22(3):641-650, 2003.

Hanspeter Pfister, Matthias Zwicker, Jeroen vaarBand Markus Gross. Surfels: Surface ele-
ments as rendering primitives. In Kurt Akeley, edit8iggraph 2000, Computer Graphics Pro-
ceedingspages 335-342. ACM Press / ACM SIGGRAPH / Addison Wesleyginoen, 2000.

Sharat Chandran Rhushabh Goradia, Anil Kanakaigibity maps for point models for global
illumination. InSubmitted to CGI/EuroGraphics/VRSA007 (Not Accepted).

75

[RLOO]

[Sac64]

[SAFO5]

[Sag94]

[Sam89]

[Scho6]

[SJOO]

[SK98]

[SP94]

[THO3]

[TS91]

[Wal05]

[WS03]

Szymon Rusinkiewicz and Marc Levoy. QSplat: A mdsplution point rendering system for
large meshes. In Kurt Akeley, editdBiggraph 2000, Computer Graphics Proceedijngages
343-352. ACM Press / ACM SIGGRAPH / Addison Wesley Longm&9®

R. A. Sack. Addition theorems for functions of sptedrharmonics.Journal of Mathematical

Physics 5(2):245-251, Feb 1964.

Fatih E. Sevilgen, Srinivas Aluru, and Natsuhikadfmura. Research note: Parallel algorithms

for tree accumulations]. Parallel Distrib. Comput.65(1):85-93, 2005.
H. Sagan. Space Filling Curv&pringer-Verlag 1994.

H. Samet. Implementing ray tracing with octreesragighbor finding Computers and Graphics
13(4):445-460, 1989.

Lars Schjoth. Diffusion based photon mappimgernational Conference on Computer Graphics

Theory and Applications GRARROO6.

G. Schaufler and H. Jensen. Ray tracing point samgenthetry. InEurographics Rendering
Workshop Proceedingpages 319-328, 2000.

A. James Stewart and Tasso Karkanis. Computing theoaate visibility map, with applica-
tions to form factors and discontinuity meshingurographics Workshop on Renderjrmpges
57-68, June 1998.

F. Sillion and C. PuecliRadiosity and Global llluminatianMorgan Kaufmann Publishers, 1994.

S. Teller and P. Hanrahan. Global visibility algars for illumination computations. IRroc. of

SIGGRAPH-93: Computer Graphigsages 239-246, 1993.

Seth J. Teller and Carlo H. Séquin. Visibility prepessing for interactive walkthrough€om-
puter Graphics25(4):61-68, 1991.

Ingo Wald. High-Quality Global lllumination Wallktoughs using Discretized Incident Radiance
Maps. Technical Report, SCI Institute, University of Utah, No UU005-010 (submitted for
publication) 2005.

Michael Wand and Wolfgang Straer. Multi-resolutipaint-sample raytracingGraphics Inter-
face pages 139-148, 2003.

76

[WSO05] Ingo Wald and Hans-Peter Seidel. Interactive Ragifgrof Point Based Models. Froceedings
of 2005 Symposium on Point Based GraphR05.

[ZPKGO02] Matthias Zwicker, Mark Pauly, Oliver Knoll, and Mas Gross. Pointshop 3d: An interactive

system for point-based surface editing, 2002.

[ZPvBGO1] Matthias Zwicker, Hanspeter Pfister, Jeroen vaarBand Markus Gross. Surface splatting. In
SIGGRAPH '01: Proceedings of the 28th annual conference angiter graphics and interac-
tive techniquespages 371-378, New York, NY, USA, 2001. ACM Press.

1

