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Abstract

Advances in scanning technologies and rapidly growing complexity of geometric objects motivated the use of

point-based geometryas an alternative surface representation, both for efficient rendering and for flexible ge-

ometry processing of highly complex 3D-models. Traditional geometry based rendering methods use triangles

as primitives which make rendering complexity dependent oncomplexity of the model to be rendered. But

point based models overcome that problem as points don’t maintain connectivity information and just repre-

sents surface information. Based on their fundamental simplicity, points have motivated a variety of research on

topics such as shape modeling, object capturing, simplification, rendering and hybrid point-polygon methods.

Global Illumination for point modelsis an upcoming and an interesting problem to solve. The lack of con-

nectivity touted as a plus, however, creates difficulties ingenerating global illumination effects. This becomes

especially true when we have a complex scene consisting of several models, the data for which is available as

hard to segment aggregated point-models. Inter-reflections in such complex scenes requires knowledge of vis-

ibility between point pairs. Computing visibility for points is all the more difficult (as compared to polygonal

models), since we do not have any surface/object information. In this report we present, a novel, hierarchical,

fast and memory efficient algorithm to compute a descriptionof mutual visibility in the form of avisibility map.

Ray shooting and visibility queries can be answered in sub-linear time using this data structure. We evaluate

our scheme analytically, qualitatively, and quantitatively and conclude that these maps are desirable.

We use theFast Multipole Method (FMM), a robust technique for the evaluation of the combined effect

of pairwise interactions ofn data sources, as the light transport kernel for inter-reflections, in point models,

to compute a description –illumination maps– of the diffuse illumination. Parallel computation of the FMM

is considered a challenging problem due to the dependence ofthe computation on the distribution of the data

sources, usually resulting in dynamic data decomposition and load balancing problems. We present, in this

report, an algorithm [HAS02] for parallel implementation of FMM, which does not require any dynamic data

decomposition and load balancing steps. We, further, also provide necessary hints to implement a similar

algorithm on aGraphics Processing Unit (GPU)as a “GPGPU” application.

A complete global illumination solution for point models should cover both diffuse and specular (reflec-

tions, refractions, and caustics) effects. Diffuse globalillumination is handled by generatingillumination maps.

For specular effects, we use theSplat-based Ray Tracingtechnique for handling reflections and refractions

in the scene and generateCaustic Mapsusing optimized Photon generation and tracing algorithms.We fur-

ther discuss a time-efficientkNN query solver required for fast retrieval of caustics photons while ray-traced

rendering.



Chapter 1

Introduction

1.1 Introduction

The pixel indeed has assumed mystical proportions in a worldwhere computer assisted graphical techniques

have made it nearly impossible to distinguish between the real and the synthetic. Digital imagery now underlies

almost every form of computer based entertainment besides serving as an indispensable tool for fields as diverse

as scientific visualization, architectural design, and as one of its initial killer applications, combat training.

The most striking effects of the progress in computer graphics can be found in the filmed and interactive

entertainment industries (Figure 1.1).

Figure 1.1: Impact of photorealistic computer graphics on filmed and interactive entertainment. Left: A still
from the animated motion picture ‘Final Fantasy : The Spirits Within’. Right: A screenshot from the award-
winning first person shooter game ‘Doom III’

The process of visualizing a virtual three dimensional world is usually broken down into three stages:

1



• Modeling. A geometrical specification of the scene to be visualized must be provided. The surfaces in

the scene are usually approximated by sets of simple surfaceprimitives such as triangles, cones, spheres,

cylinders, NURBS surfaces,points etc.

• Lighting. This stage involves ascribinglight scattering propertiesto the surfaces/surface-samples com-

posing the scene (e.g. the surface may be purely reflective like a mirror or glossy like steel). Finally, a

description of thelight sourcesof the scene must be provided - those surfaces that spontaneously emit

light.

• Rendering. The crux of the 3D modeling pipeline, the rendering stage accepts the three dimensional

scene specification from above and renders a two dimensionalimage of the same as seen through a

camera. The algorithm that handles the simulation of the light transport process on the available data is

called therendering algorithm. The rendering algorithm depends on the type of primitive tobe rendered.

For rendering points various rendering algorithms like QSplat, Surfel Renderer etc are available.

Photorealisticcomputer graphics attempts to match as closely as possible the rendering of a virtual scene

with an actual photograph of the scene had it existed in the real world. Of the several techniques that are used

to achieve this goal,physically-basedapproaches (i.e. those that attempt to simulate the actual physical process

of illumination) provide the most striking results. The emphasis of this report is on a very specific form of the

problem known asglobal illuminationwhich happens to be a photorealistic, physically-based approach central

to computer graphics. This report is about capturing interreflection effects in a scene when the input is available

as point samples of hard to segment entities. Computing a mutual visibility solution for point pairs is one major

and a necessary step for achieving good and correct global illumination effects.

Before moving further, let us be familiar with the terms point models and global illumination.

1.1.1 Point Based Modelling and Rendering

Figure 1.2: Example of Point Models
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In recent years, point-based methods have gained significant interest. In particular their simplicity and total

independence of topology and connectivity make them an immensely powerful and easy-to-use tool for both

modelling and rendering. For example, points are a natural representation for most data acquired via measur-

ing devices such as range scanners [LPC+00], and directly rendering them without the need for cleanup and

tessellation makes for a huge advantage.

Second, the independence of connectivity and topology allow for applying all kinds of operations to the

points without having to worry about preserving topology orconnectivity [PKKG03, OBA+03, PZvBG00]. In

particular, filtering operations are much simpler to apply to point sets than to triangular models. This allows for

efficiently reducing aliasing through multi-resolution techniques [PZvBG00, RL00, WS03], which is particu-

larly useful for the currently observable trend towards more and more complex models: As soon as triangles

get smaller than individual pixels, the rationale behind using triangles vanishes, and points seem to be the more

useful primitives. Figure 1.2 shows some example point based models.

1.1.2 Global Illumination

Figure 1.3: Global Illumination. Top Left[KC03]: The ‘Cornell Box’ scene. This image shows local illumina-
tion. All surfaces are illuminated solely by the square light source on the ceiling. The ceiling itself does not
receive any illumination. Top Right[KC03]: The Cornell Boxscene under a full global illumination solution.
Notice that the ceiling is now lit and the white walls have color bleeding on to them.

Global illumination algorithms are those which, when determining the light falling on a surface, take into

3



account not only the light which has taken a path directly from a light source (direct illumination), but also

light which has undergone reflection from other surfaces in the world (indirect illumination).

Figure 1.4: Complex point models with global illumination [WS05] [DYN04] effects like soft shadows, color
bleeding, and reflections. Bottom Right: “a major goal of realistic image synthesis is to create an image that is
perceptually indistinguishable from an actual scene”.

Figures 1.3 and 1.4 gives you some examples images showing the effects ofGlobal illumination. It is a

simulation of the physical process of light transport. Global Illumination effects are the results of two types of

light reflections and refractions, namely Diffuse and Specular.

1.1.2.1 Diffuse and Specular Inter-reflections

Diffuse reflectionis the reflection of light from an uneven or granular surface such that an incident ray is seem-

ingly reflected at a number of angles. The reflected light willevenly spread over the hemisphere surrounding

the surface (2π steradians).

Specular reflection, on the other hand, is the perfect, mirror-like reflection oflight from a surface, in which

light from a single incoming direction (a ray) is reflected into a single outgoing direction. Such behavior is
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described by the law of reflection, which states that the direction of incoming light (the incident ray), and the

direction of outgoing light reflected (the reflected ray) make the same angle with respect to the surface normal,

thus the angle of incidence equals the angle of reflection; this is commonly stated asθi = θr.

Figure 1.5: Specular (Regular) and Diffuse Reflections

The most familiar example of the distinction between specular and diffuse reflection would be matte and

glossy paints as used in home painting. Matte paints have a higher proportion of diffuse reflection, while gloss

paints have a greater part of specular reflection.

Figure 1.6: Left: Colors transfer (or ”bleed”) from one surface to another, an effect of diffuse inter-reflection.
Also notable is the caustic projected on the red wall as lightpasses through the glass sphere. Right: Reflections
and refractions due to the specular objects are clearly evident
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Due to various specular and diffuse inter-reflections in anyscene, various types of global illumination

effects may be produced. Some of these effects are very interesting like color bleeding, soft shadows, specular

highlights and caustics.Color bleedingis the phenomenon in which objects or surfaces are colored byreflection

of colored light from nearby surfaces. It is an effect of diffuse inter-reflection.Specular highlightrefers to the

glossy spot which is formed on specular surfaces due to specular reflections. Acausticis the envelope of light

rays reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another

surface. Light coming from the light source, being specularly reflected one or more times before being diffusely

reflected in the direction of the eye, is the path traveled by light when creating caustics. Figure 1.6 shows color

bleeding and specular inter-reflections including caustics.

Interesting methods like statistical photon tracing [Jen96], directional radiance maps [Wal05], and wavelets

based hierarchical radiosity [GSCH93] have been invented for computing a global illumination solution. A

good global illumination algorithm should cover both diffuse and specular inter-reflections and refractions,

Photon Mappingbeing one such algorithm. Traditionally, all these methodsassume a surfacerepresentation for

the propagation of indirect lighting. Surfaces are either explicitly given as triangles, or implicitly computable.

The lack of any sort of connectivity information in point-based modeling (PBM) systems nowhurts photo-

realistic rendering. This becomes especially true when it is not possible to correctly segment points obtained

from an aggregation of objects (see Figure 2.1) to stitch together a surface.

There have been efforts trying to solve this problem [WS05],[Ama84, SJ00], [AA03, OBA+03] , [RL00]. Our

view is that these methods would workeven betterif fast pre-computation of diffuse illumination could be

performed.Fast Multipole Method(FMM) provides an answer.

1.1.3 Fast computation with Fast Multipole Method

Computational science and engineering is replete with problems which require the evaluation of pairwise in-

teractions in a large collection of particles. Direct evaluation of such interactions results inO(N2) complexity

which places practical limits on the size of problems which can be considered. Techniques that attempt to

overcome this limitation are labeled N-body methods. The N-body method is at the core of many computa-

tional problems, but simulations of celestial mechanics and coulombic interactions have motivated much of

the research into these. Numerous efforts have aimed at reducing the computational complexity of the N-

body method, particle-in-cell, particle-particle/particle-mesh being notable among these. The first numerically-

defensible algorithm [DS00] that succeeded in reducing theN-body complexity toO(N) was the Greengard-

Rokhlin Fast Multipole Method (FMM) [GR87].

The algorithm derives its name from its original application. Initially developed for the fast evaluation of
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potential fields generated by a large number of sources (e.g.the gravitational and electrostatic potential fields

governed by the Laplace equation), this method has been generalized for application to systems described by

the Helmholtz and Maxwell equations, and to name a few, currently finds acceptance in chemistry[BCL+92],

fluid dynamics[GKM96], image processing[EDD03], and fast summation of radial-basis functions [CBC+01].

For its wide applicability and impact on scientific computing, the FMM has been listed as one of the top ten

numerical algorithms invented in the 20th century[DS00]. The FMM, in a broad sense, enables the product of

restricted dense matrices with a vector to be evaluated inO(N) or O(N log N) operations, when direct multi-

plication requiresO(N2) operations.

Besides being very efficient (O(N) algorithm) and applicable to a wide range of problem domains, the

FMM is also highly parallel in structure. Thus implementingit on a parallel, high performance multi-processor

cluster will further speedup the computation of diffuse illumination for our input point sampled scene. Our

interest lies in a design of a parallel FMM algorithm that uses static decomposition, does not require any explicit

dynamic load balancing and is rigorously analyzable. The algorithm must be capable of being efficiently

implemented on any model of parallel computation.

1.1.4 Parallel computations on GPU

The graphics processor (GPU) on today’s video cards has evolved into an extremely powerful and flexible pro-

cessor. The latest GPUs have undergoing a major transition,from supporting a few fixed algorithms to being

fully programmable. High level languages have emerged for graphics hardware, making this computational

power accessible. Architecturally, GPUs are highly parallel streaming processors optimized for vector opera-

tions, with both MIMD (vertex) and SIMD (pixel) pipelines. With the rapid improvements in the performance

and programmability of GPUs, the idea of harnessing the power of GPUs for general-purpose computing has

emerged. Problems, requiring heavy computations, like those dealing with huge arrays, can be transformed and

mapped onto a GPU to get fast and efficient solutions. This field of research, termed asGeneral-purpose GPU

(GPGPU) computinghas found its way into fields as diverse as databases and data mining, scientific image

processing, signal processing etc.

Many specific algorithms like bitonic sorting, parallel prefix sum, matrix multiplication and transpose, par-

allel Mersenne Twister (random number generation) etc. have been efficiently implemented using the GPGPU

framework. Onesuchalgorithm which can harness the capabilities of the GPUs isparallel adaptive fast multi-

pole method.
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1.1.5 Visibility between Point Pairs

Even a good and efficient global illumination algorithm would not give us correct results if we do not have

information about mutual visibility between points. An important aspect of capturing the radiance (be it a finite-

element based strategy or otherwise) is an object spaceview-independentknowledge of visibility between point

pairs.Visibility calculation between point pairs isessential as a point receives energy from other point only if it

is visible to that point.But its easier said than done. Its complicated in our case as our input data set is a point

based model withno connectivityinformation. Thus, we do not have knowledge of any intervening surfaces

occluding a pair of points. Theoretically, it is therefore impossible to determine exact visibility between a pair

of points. We, thus, restrict ourselves toapproximate visibility .

1.2 Problem Definition

After getting a brief overview of the topics, let us now definethe problem we pose in this report.

Problem Definition: Capturing interreflection effects in a scene when the input is available as point sam-

ples of hard to segment entities.

There are four things to look out for:

• Computing a mutual visibility solution for point pairs is one major and a necessary step for achieving

good and correct global illumination effects.

• Inter-reflection effects include both diffuse and speculareffects like reflections, refractions, and caustics.

• We compute diffuse inter-reflections using theFast Multipole Method(FMM).

• We desire parallel implementation of visibility and FMM algorithms on Graphics Processing Units(GPUs)

so as to achieve speedups for generating the global illumination solution.

1.3 Overview of the Report

Having got a brief overview of the keyterms, let us review theapproach in detail in the subsequent chapters.

The rest of the report is organized as follows. We present a novel, hierarchical, fast, and memory efficient

algorithm to compute a description of mutual visibility, inthe form of avisibility map (V-Map), for point

models, especially for the global illumination problem, inChapter 2. We evaluate our scheme analytically,

qualitatively, and quantitatively by providing results for the same. As discussed above, we use FMM for solution

to diffuse global illumination in point sampled scenes. An efficient algorithmic design for fast, parallel FMM

(yet to be implemented) is detailed in Chapter 3 along with necessary hints to implement a similar algorithm
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on GPU. Also, an overview of parallel GPU implementation of elementary operations like parallel perfix sum,

bitonic sort and construction of simple, parallel octree textures is given which are eventually required for

implementing parallel FMM on GPU. Further, Chapter 4 discusses efficient algorithms required for computing

specular effects (reflections, refractions, caustics) forpoint models, so as to give a complete and fast global

illumination package for point models. We conclude our report with our concluding remarks in Chapter 5.
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Chapter 2

Visibility Maps in Point Clouds for Global
Illumination

Overview and Contribution: Point-sampled geometry has gained significant interest dueto their simplicity.

The lack of connectivity touted as a plus, however, creates difficulties in generating global illumination effects.

This becomes especially true when we have a complex scene consisting of several models, the data for which

is available as hard to segment aggregated point models.

Inter-reflections in such scenes requires knowledge of visibility between point pairs. Computing visibility for

points is all the more difficult (as compared to polygonal models), since we do not have any surface or object

information. The visibility function is highly discontinuous and, like the BRDF, does not easily lend itself to an

analytical FMM formulation. Thus the nature of this computation is θ(n2) for n primitives, which depends on

the geometry of the scene. We, in this chapter, present a new visibility algorithm (Section 2.6.1) for Point Based

Models. We further extend this algorithm to an efficient hierarchical algorithm (implemented using Octrees)

to compute mutual visibility between points, represented in the form of avisibility map(V-Map). Thus the key

features are twofold. First, we have a basic point-to-pointvisibility function that might be useful in its own

right. Second, we have a hierarchical version of aggregatedpoint clouds. Ray shooting and visibility queries

can be answered in sub-linear time using thisV-Mapdata structure. The scheme is then evaluated analytically,

qualitatively, and quantitatively and it concludes with the desirability ofvisibility maps.

2.1 Introduction

In this section, I will describe the details of the papers we wrote [RGed].

Points as primitives have come to increasingly challenge polygons for complex models; as soon as triangles

get smaller than individual pixels, the raison d’etre of traditional rendering can be questioned. Simultaneously,

modern 3D digital photography and 3D scanning systems [LPC+00] acquire both geometry and appearance

of complex, real-world objects in terms of (humongous) points. More important, however, is the considerable
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Figure 2.1: Grottoes, such as the ones from China and India form a treasure for mankind. If data from the
ceiling and the statues are available as point samples, can we capture the interreflections?

freedom points enjoy. The independence of connectivity andtopology enable filtering operations, for instance,

without having to worry about preserving topology or connectivity [PKKG03, OBA+03, PZvBG00]. Further,

points are a natural representation for most data acquired by range scanners [LPC+00], and directly rendering

them without the need for cleanup and tessellation makes fora huge advantage.

Such three-dimensional scanned point models of cultural heritage structures are useful for a variety of reasons

– be it preservation, renovation, or simply viewing in a museum under various lighting conditions. We wish

to see the effects of Global Illumination (GI) – the simulation of the physical process of light transport that

captures inter-reflections – on point clouds of not just solitary models, but an environment that consists of such

hard to segment (see Figure 2.1) entities.

Interesting methods like statistical photon tracing, directional radiance maps, and wavelets based hierarchical

radiosity have been invented for this purpose. Traditionally all these methodsassume a surfacerepresentation

for the propagation of indirect lighting. Surfaces are either explicitly given as triangles, or implicitly com-

putable.The absence of connectivity between points inherent in point based models nowhurts computation,

especially in such hard to segment models.

Moreover, an important aspect of capturing the radiance (beit a finite-element based strategy or otherwise)

is an object space view-independent knowledge of visibility between point pairs. A view-independent vis-

ibility solution cannot (in general) use the popular hardware-based z-buffering technique. Since points are

zero-dimensional, only approximate invisibility betweenpoints can be inferred.

This chapter presents a atomic point-pair visibility algorithm. The visibility problem, in general, has aworst-

caseΘ(n2) time complexity forn primitives. Given the fact that point models are complex, dense and consists

of millions of points, visibility algorithms are highly time consuming. In real scenes, we might havepartitions

that are completely unoccluded, or hopelessly obscured. Hierarchical visibility is often used to discover unoc-

cluding portions, and prune uninteresting parts of the mutual-visibility problem. We define thevisibility map

for this purpose. With this map,visibility queries are answered quicklywhether we have lots of unoccluded
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space (such as the Cornell room without any boxes) or denselyoccupied space (the same room packed with

boxes). Although the atomic algorithm is modelled from [DTG00], there are several performance enhance-

ments. Further, the explicit use of hierarchy in the new proposed method is to be noted.

Many global visibility (both view-dependent and view-independent) solutions forpolygonalmodels have previ-

ously been designed [DDP97]. [Bit02] provides a visibilitymap for an input scene given in terms of polygons.

However, the V-Map structure presented here is different from the visibility map of [Bit02], which specifies the

Potential Visible Setfrom a given view (unlikeview-independentin our case) and uses it specifically for occlu-

sion culling. Visibility has been considered by [WS05] for radiosity on point models, but their primary focus

was on computing radiance than visibility. The algorithm presented, on the other hand, focuses on computing

mutual visibility in the context of point clouds.

In summary, the chapter presents a hierarchical, approximate, fast, and memory efficient visibility determina-

tion algorithm suitable for point based models, especiallyfor the global illumination problem.

Before introducing the core algorithm for constructing V-Maps, we first give a brief introduction of the Fast

Multipole Method (FMM), the algorithm used to compute diffuse global illumination solution for input point

cloud in Section 2.2 followed by an overview of what a V-Map isand what all queries can it entertain in Sec-

tion 2.3. We then review our previous approaches for computing mutual visibility between point pairs and

constructing V-Maps in Section 2.4, as described in [Gor06]. We first describe our basic “primitive” visibility

algorithm for point to point visibility in subsection 2.4.1. Next, we extend this primitive in the FMM context

to build a hierarchical visibility algorithm for V-Maps in subsection 2.4.2. We follow it up highlighting the

problems (Section 2.5) the above algorithms had and describe the necessary changes we made to produce an

efficient (both in memory and time) and optimized core algorithm for constructing V-Maps in Section 2.6 and

Section 2.7. We evaluate our scheme by providing results forthe same in Section 2.8.

2.2 FMM-based Global Illumination

The FMM [GR87], in a broad sense, enables the product of restricted dense matrices with a vector to be

evaluated inO(N) or O(N log N) operations, when direct multiplication requiresO(N2) operations. A global

illumination version of FMM (albeit for polygonal models) was given in [KGC04]. However, the inherent

notion of points in FMM blends very well with hierarchical point models as input. We therefore devised a

point-based version which serve as a test bed for the proof ofour concept of V-maps. For every node in

an octree, FMM defines an “interaction” list consisting of all possible nodes which can contribute energy to

this node. The V-map data structure is therefore needed to identify thevisible nodes in the interaction list.
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LEVEL 3
(LEAF)

LEVEL 2

LEVEL 1

LEVEL 0
(ROOT )

With respect to at any level,

−− PARTIALLY VISIBLE

−− COMPLETELY INVISIBLE

−− COMPLETELY VISIBLE

Figure 2.2: Views of the visibility map (with respect to the hatched node in red) is shown. Every point in the
hatched node at the first level is completely visible from every point in only one node (the extreme one). At
level 2, there are two such nodes. The Figure on the left showsthat at the lowest level, there are three visible
leaves for the (extreme) hatched node; on the other hand the Figure on the right shows that there are only two
such visible leaves, for the second son (hatched node). The Figure also shows invisible nodes that are connected
with dotted lines. For example, at level 1, there is one (green) nodeG such that no point inG is visible to any
point in the hatched node. Finally the dashed lines shows “partially visible” nodes which need to be expanded.
Partial and invisible nodes are not explicitly stored in thevisibility map since they can be deduced.

Details on the theoretical foundations of FMM, requirements subject to which the FMM can be applied to

a particular domain and discussion on the actual algorithm and its complexity as well as the mathematical

apparatus required to apply the FMM to radiosity are available in [Gor06] and [KC03]. Five theorems with

respect to the core radiosity equation are also proved in this context.

Note that usage of the V-map is not restricted to FMM based GI but can also be incorporated in existing

hierarchical GI algorithms for point models.

2.3 Visibility Maps

The construction of the visibility map starts assuming a hierarchy is given. For the purpose of illustration of our

method, we use the standardregular octree-based subdivision of space. Figure 2.3 shows a two dimensional

version to illustrate the terminology.
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Thevisibility mapfor a tree is a collection of visibility links for every node in the tree. Thevisibility link

for any nodep is a listL of nodes; every point in any node inL is guaranteed to be visible from every point in

p. Figure 2.2 provides different views of thevisibility map. (The illustration shows directed links for clarity; in

fact, the links are bidirectional.)

Level 1

Level 2

Level 3

Level 0

Figure 2.3: Leaf nodes (or cells, or voxels) are at level three.

Visibility maps entertain efficient answers to the following queries.

1. Is pointx visible to pointy? The answer may well be, “Yes, and, by the way, there are a whole bunch of

other points neary that are also visible.” This leads to the next query.

2. What is the visibility status ofu points aroundx with respect tov points aroundy? An immediate way

of answer this question is to repeat a “primitive” point-point visibility queryuv times. With a visibility

map, based on the scene, the answer is obtained more efficiently with O(1) point-point visibility queries.

3. Given a pointx and a rayR, determine the first object of intersection.

4. Is pointx in the shadow (umbra) of a light source?

All the above queries are done with a simple traversal of the octree. For example for the third query, we traverse

the root to leafO(log n) nodes on whichx lies. For any such nodep, we check ifR intersects any nodepi in

the visibility link of p. A success here enables easy answer to the desired query.
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2.4 Previous Approach: Visibility in Point Models

Visibility is not considered in the original FMM algorithm.For our purposes it is complicated in that occlusion

is a point to point based phenomenon and not a node to node phenomenon where the bulk of the computation

occur. In this section we first give a point to point visibility algorithm. Later we incorporate it in the FMM

context by constructing the V-Maps.

2.4.1 Point–Point Visibility

Since our input data set is a point based model withno connectivity information, we do not have knowledge of

any intervening surfaces occluding a pair of points. Theoretically, it is therefore impossible to determine exact

visibility between a pair of points. Thus, we restrict ourselves toapproximate visibilitywith a value between 0

and 1. Consider two pointsp andq (as in Figure 2.4) in the input scene on which we run a number oftests to

efficiently produceO(1) possible occluders.

First we apply the culling filter to straightway eliminate backfacing surfaces.

np � pq > 0 and nq � qp > 0

wherenp andnq are normals at pointp andq respectively.

Algorithm 1 Visibility between Point ’p’ and Point ’q’
procedure PointtoPointVisibility(p,q)

1: Define thresholdt1, visiblep,q = 1
2: if FacingEachOther(p,q) then
3: Findk closest points in region∆ aroundpq
4: Prune based on tangent plane
5: for i = 0 to k do
6: contributeV isi = visibility look up(distancei)
7: visiblep,q = visiblep,q ∗ contributeV isi

8: end for
9: if visiblep,q) > thresholdt1 then

10: return(visible)
11: end if
12: end if

If the above condition is satisfied, we then determine the possible occluder setX (| X |= k). This is a set

of points in the point cloud which are close topq and thus can possible affect the visibility. These points lie in

a cylinder aroundpq. In Figure 2.4, for example,x3 is dropped. This set is further pruned by considering the

tangent plane at each potential occluder. If the tangent plane does not intersectpq the occluder is dropped (for

example,x1 in Figure 2.4). A final pruning happens by measuring thedistance along the tangentto pq. We

pick the smallestO(1) occluders (equal to 3 in our implementation) using this distance metric. We compute a

visibility fraction based on this distance. This results inAlgorithm 2.4.1.
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Figure 2.4: Onlyx2 andx4 will be considered as occluders. We rejectx1 as the intersection point of the tangent
plane lies outside the line segmentpq. x3 has earlier been rejected because it is more than a distance∆ from
the line segmentpq.

2.4.2 Hierarchical Visibility

In this section, we now incorporate visibility into the FMM algorithm by constructing the visibility links to

form a V-Map for the point modelled scene. The object space composed of points was was initially divided into

annon-adaptive octree. Note that each point receives energy from every other pointeither directly, or through

the points in the interaction list of the ancestor of the leafit belongs to. The key idea is to modify the interaction

list

If the points in a nodec in the interaction list of nodeb are completely visible fromeverypoint in b, then

the visibility stateof the pair (b,c) is said to bevalid. If, on the other hand, no point inc is visible from any

point in b, the visibility state of the pair (b,c) is said to beinvalid. The nodec is dropped from the interaction

list since no exchange of energy is permissible. Finally, when the visibility state ispartial, we postponethe

interaction. In the sequel, we ensure that the postponed interaction happens at the lowest possible depth (the

root is at depth 0) for maximum efficiency. This is done by extending the notion of point–point visibility to the

node level as follows.
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2.4.2.1 Point–Leaf Visibility

In this section, we determine the visibility between a leaf nodeL and a pointp. We start by making point to

point visibility calculations between pointp and every pointpi ∈ L. This results in Algorithm 2.4.2.1.

Algorithm 2 Visibility between Point ’p’ and Leaf ’L’
procedure PointtoLeafVisibility(p,L)

1: Define thresholdt2, Visi point L = 0
2: for each pointpi ∈ L do
3: state =PointtoPointVisibility(p, pi)
4: if equals(state,visible)then
5: V isi point L = V isi point L + 1
6: if V isi point L > thresholdt2 then
7: return(visible)
8: end if
9: end if

10: end for
11: return(invisible)

2.4.2.2 Leaf–Leaf Visibility

Similarly we determine visibility between two leaf nodesC and L. For every pointpi ∈ C, we start by

calculatingPoint–Leaf Visibilitybetween pointpi andL. This results in Algorithm 2.4.2.2.

Algorithm 3 Visibility between Leaf ’L’ and Leaf ’C’
procedure LeaftoLeafVisibility(L,C)

1: Define thresholdt3, Visi point L = 0
2: for each pointpi ∈ C do
3: state =PointtoLeafVisibility(pi , Leaf L)
4: if equals(state,visible)then
5: Visi point L = Visi point L + 1
6: end if
7: end for
8: if V isi point L > thresholdt3 then
9: return(visible)

10: end if
11: return(invisible)

2.4.2.3 Node–Node Visibility

In this section, we determine the visibility between nodesA and B of the octree. We start by computing

visibility of all b ∈ Leafnodes(B) to all a ∈ Leafnodes(A). If all are visible, the status is valid. If none

are visible, the state is invalid. Otherwise, we have partial visibility. In this scenario, we repeat the procedure
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Node–Node Visibilityfor all the child nodes ofA andB. Note that there is no case of partial visibility between

leaf nodes. The algorithm 2.4.2.3 is summarized below.

Algorithm 4 Visibility between Node ’A’ and Node ’B’
procedure NodetoNodeVisibility(A,B)

1: Declare viscnt = 0
2: for each a∈ leafcell(A) do
3: for each b∈ leafcell(B) do
4: state =LeaftoLeafVisibility(a, b)
5: if equals(state,visible)then
6: vis cnt = vis cnt + 1
7: end if
8: end for
9: end for

10: if equals(viscnt,LeafNode(A).size*LeafNode(B).size)then
11: return(valid)
12: else if equals(viscnt,0) then
13: return(invalid)
14: else
15: return(partial)
16: end if

2.4.2.4 Constructing Visibility Map

We now are in a position to compute the interaction list and construct the Visibility Map as in Algorithm 2.4.2.4.

We start by initializing an interaction list of every node tobe its seven siblings. This default list ensures that

every point is presumed to interact with every other point. The V-Map is then constructed by calling Algo-

rithm 2.4.2.4 initially for theroot node. It then recursively sets up the relevant visibility links in the interaction

list. The complexity of this algorithm is aroundO(N2logN), assuming point-point visibility takesO(1) time.

2.5 Limitations

Having looked at the previous approach to the constuction ofthe Visibility Maps, we now look at some of the

limitations the above described algorithms possess.

• We use three different thresholds in the whole process of construction of V-Maps. Getting a proper

combination of all the three threshold values so as to produce correct results is a difficult task. Further,

these threshold values are somewhat dependent on the input scene complexity and hence finding the

correct thresholds for the given scene calls for lots of trial and error tests.
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Algorithm 5 Construct Visibility Map
procedure OctreeVisibility(Node A)

1: for each node B∈ interactionlist(A) do
2: if notLeaf(A) then
3: state=NodetoNodeVisibility(A,B)
4: else if Leaf(A) then
5: state=LeaftoLeafVisibility(A,B)
6: end if
7: if equals(state,valid)then
8: Retain B in interactionlist(A)
9: else if equals(state,partial)then

10: for each a∈ children(A) do
11: for each b∈ children(B) do
12: interactionlist(a).add(b)
13: end for
14: end for
15: interactionlist(A).remove(B)
16: else if equals(state,invalid)then
17: interactionlist(A).remove(B)
18: end if
19: end for
20: for each R∈ child(A) do
21: OctreeVisibility(R)
22: end for

• The process of finding thek nearest occluders, out of millions of input points, for determining mutual

visibility between points is a time consuming task and a major bottleneck in terms of speedups desired.

We should have an efficient algorithm for finding the potential occluders for a fast point–pair visibility

algorithm.

• In the point–pair visibility algorithm, we dont use any conditions which helps us to exit instantaneously

as soon as an invisibility case is detected. We, thus, perform unnecessary time-consuming calculations

reducing the speed further.

• If noted carefully, Algorithm 2.4.2.4 doeshigh amountof extra computations in case a partial visibility

case is detected at a particular level. To elaborate, we compute visibility between two nodes by computing

visibility between all leaf–pairs of both the nodes. If a partial visibility case is detected, we postpone the

computations to the next level, i.e. between the children ofthe two nodes. We thenagaincompute (re-

compute) the visibility between the same leaf–pairs when wevisit the children of those nodes in future.

This extra computation introduces a factor of at leastO(log(N), assuming the leaf–pair visibility takes

O(1) time (which is not generally the case. Leaf–Pair visibilitygenerally takesa lot morethenO(1)).

Hence, if we can reduce these extra computations, high speed-ups can be achieved.
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• The algorithms described above has been implemented on non-adaptive octrees constructed on input

point model. But many a times, non-adaptive division is not preferable, especially when the data in

the scene is of non-uniform density. Thus we would desire to scale this algorithm to suit the adaptive

sub-division structure of the octree.

2.6 New Approach: Visibility Maps in Point Models

We now present a modified, hierarchical, fast and memory efficient visibility determination algorithm suitable

for point based models, which overcomes all the limitationsdescribed in Section 2.5. We first explain the

modifiedpoint–pair visibility algorithmin subsection 2.6.1 and follow it up by extending it to construct the

V-Maps in themost efficientmanner in subsection 2.6.3.

2.6.1 Point–Pair Visibility Algorithm

Since our input data set is a point model withno connectivity information, we don’t have knowledge of any

intervening surfaces occluding a pair of points. Theoretically, it is therefore impossible to determine exact

visibility but only approximate visibility. Albeit, for practical purposes we restrict ourself to boolean visibility

(0 or 1) based on results of the following visibility tests. This algorithm is motivated by work done in [DTG00].
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Figure 2.5: Onlyx2 andx3 will be considered as occluders. We rejectx1 as the intersection point of the tangent
plane lies outside segmentpq, x4 because it is more than a distanceR away frompq, andx5 as its tangent plane
is parallel topq.

Consider two pointsp andq with normalsnp & nq as in Figure 2.5. We run the following tests to efficiently

produceO(1) possible occluders.
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1. Cull backfacing surfacesnot satisfying the constraintnp · pq > 0 and nq · qp > 0

2. Determine the possible occluder setX, of points close topq which can possibly affect their visibility. As

an example, in Figure 2.5, points (x1, x2, x3, x4, x5)∈X. An efficient way to obtainX is to start with the

output of a 3D Bresenham line segment algorithm [E.62] betweenp andq. Bresenhams algorithm will

output a setY of points which are co-linear with and betweenp andq. Using the hierarchical structure,

add toX, all points from the leaves containing any point fromY .

3. PruneX further by applying a variety of tangent plane intersectiontests as shown in Figure 2.5.

Any point fromX which fails any of the tangent tests is considered an occluder to pq. If we find K such

occluders,q is considered invisible top.

Elimination of thresholds as compared to previous point–pair visibility approach simplifies the tasks for the

user and also helps in achieving better results. Also, the bresenham’s algorithm used, gives us an efficient way

to find the potential occluders between given point–pair, thereby providing us with necessary speedups.

2.6.2 Octree Depth Considerations

In a hierarchical setting, and for sake of efficiency, we may terminate the hierarchy to some level with several

points in a leaf. A simple extension of our point–pair visibility algorithm to aleaf–pair would be to compute

visibility between their centroids (p andq, Figure 2.5). SetX now comprises of centroids, each corresponding

to a intersecting leaf (ILF). Our occlusion criteria is then:

• If the ILF contains no point, it is dropped.

• Likewise, if the tangent plane of the centroid of ILF is parallel to pq(x5), intersects outside segment

pq(x1), or intersects outside distanceR (distance between centroid to itsfarthestpoint in the leaf)(x3),

we drop the leaf (See Figure 2.6).

Any ILF which fails any of the above tests is deemed to be an occluder for point-pairp − q. We consider

p − q as invisible, if there existsat leastone occluding ILF. Although this algorithm involves approximation,

the high density of point models results in no significant artifacts. (See Section 2.8.1).

Extending point–pair visibility determination algorithmto the leaf level (although is an approximation) makes

it much more faster. The strict condition of concluding a leaf–pair asinvisible, in a presence of just asingle

occluder balances the approximation done. Further, findingjust a single occluder makes us exit instantaneously

(as soon as an invisibility case is detected) and thereby avoids making unnecessary computations, making it

much more time efficient.
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(a) A potential occluding set of voxels
are generated given centroidsc1 and
c2. The dotted voxel contains no point
and is dropped.
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(b) cZ3 is rejected because the tangent
plane is parallel toc1c2. Similarly, we
rejectcZ4 as the intersection point of
the tangent plane lies outside the line
segment.
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c2
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cZ2

(c) cZ2 is rejected because the line
segmentc1c2 doesn’t intersect the tan-
gent plane within a circle of radius de-
termined by the farthest point from the
centroid. OnlycZ1 is considered as a
potential occluder.

Figure 2.6: Point-Point visibility is obtained by performing a number of tests. Now its extended to Leaf-Leaf
visibility

2.6.3 Construction of Visibility Maps

We now extend the leaf–pair algorithm (subsection 2.6.2) todetermine visibility between nodes (non-leaf)

in the hierarchy. In addition, the new algorithm presented is the most efficient and optimized algorithm for

constructing the V-Maps for the given point model.No extra computations between node and leaf pairs are are

performed, thereby reducing much of the time complexity as compared tothe original algorithm(Section 2.4.2).

We also give a brief overview of how the constructed V-Map canbe applied to compute a global illumination

solution.

In constructing a visibility map, we are given a hierarchy and, optionally for each node, a list of interacting

nodes termed o-IL (a mnemonic for Old Interaction List). If the o-IL is not given, we initialize the o-IL of

every node to be its seven siblings. This default o-IL list ensures that every point is presumed to interact with

every other point. The V-Map is then constructed by calling Algorithm 2.6.3 initially for theroot node, which

sets up the relevant visibility links in New Interaction List(n-IL). This algorithm invokes Algorithm 2.6.3 which

constructs the visibility links for all descendants ofA w.r.t all descendants ofB (and vice-versa) at the best (i.e.

highest) possible level. This ensures an optimal structurefor hierarchical radiosity as well as reduces redundant

computations.

Computational Complexity: The visibility problem provides an answer toN = Θ(n2) pair-wise queries,

n being the number of points in input model. As a result, we measure the efficiency w.r.tN especially since

the V-Map purports to answeranyof theseN queries. We shall see later thatNodetoNodeVisibility()

is linear w.r.tN . OctreeVisibility() then has the recurrence relationT (h) = 8T (h − 1) + N (for a

NodeA at heighth) resulting in an overall linear time algorithm (w.r.t.N ), which is as far the best possible for

anyalgorithm that builds the V-Map.
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Algorithm 6 Construct Visibility Map
procedure OctreeVisibility(Node A)

1: for each node B in old interaction list (o-IL) of Ado
2: if NodetoNodeVisibility(A,B) == VISIBLEthen
3: add B in new interaction list (n-IL) of A
4: add A in new interaction list (n-IL) of B
5: end if
6: remove A from old interaction list (o-IL) of B
7: end for
8: for each C in children(A)do
9: OctreeVisibility(C)

10: end for

Algorithm 7 Node to Node Visibility Algorithm
procedure NodetoNodeVisibility(Node A, Node B)

1: if A andB are leafthen
2: return the status of leaf–pair visibility algorithm forA & B (subsection 2.6.2)
3: end if
4: Declare s1=children(A).size
5: Declare s2=children(B).size
6: Declare atemporary booleanmatrix M of size(s1 ∗ s2)
7: Declare count=0
8: for each a∈ children(A) do
9: for each b∈ children(B) do

10: state=NodetoNodeVisibility(a,b)
11: if equals(state,visible)then
12: Storetrue at corresponding location inM .
13: count = count + 1
14: end if
15: end for
16: end for
17: if count ==s1 ∗ s2 then
18: freeM and return VISIBLE
19: else ifcount == 0then
20: freeM and return INVISIBLE
21: else
22: for each a∈ children(A) do
23: for each b∈ children(B) do
24: Update n-IL ofa w.r.t everyvisiblechild b (simplelook up inM ) & vice-versa, freeM
25: end for
26: end for
27: return PARTIAL.
28: end if
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The complexity forNodetoNodeVisibility(A,B) is determined by the calls to point-pair visibility

algorithm. Assuming the latter to beO(1), the recurrence relation for the former isT (h) = 64T (h−1)+O(1)

(for a nodeA at heighth). The resulting equation is linear inN .

The overall algorithm consumes a small amount of memory (forstoring M ) during runtime. The con-

structed V-Map is also a memory efficient data structure as (apart from the basic octree structure) it requires to

store only the link structure for every node.

Visibility Map + GI algorithms:

1. Given a V-Map, ray shooting queries are reduced to searching for primitives in thevisibility setof the

primitive under consideration, thereby providing aview-independentpreprocessed visibility solution. An

intelligent search (using kd trees) will yield faster results.

2. Both diffuse and specular passes on GI for point models canuse V-Maps and provide an algorithm

(similar to photon mapping), which covers both the illumination effects.

2.7 Extending Visibility Maps to Adaptive Octrees

We now have a clear picture of what a V-Map signifies. An important thing to keep in mind while computing

mutual visibility among points and constructing V-Maps would be the way spatial sub-division of the scene is

done. The input scene can be divided in two ways using the octree-based data structure.

1. Non-Adaptive Subdivision of space, where all the leaves of the tree are at the same level and of same size

(refer Figure 2.3). Figure 2.3 is divided till level 3, assuming root node to be at level 0.

2. Adaptive sub-division of space based on input model density. The sub-division stops when a node in a

tree contains somek points or less. Leaves in the tree can now be present at different levels and hence

will be of different sizes (See Figure 2.7(b)).

Till now, we saw the mutual point–pair visibility and V-Map construction algorithms being applied onnon-

adaptiveoctrees. But many a times, non-adaptive division is not preferable, especially when the data in the

scene is of non-uniform density (see figure 2.7(a)).

However, the 3D Bresenhams algorithm used in determining visibility between points (or centroids for

leaf–pair) is not suitable for irregular sub-division of space. Also, the Bresenhams algorithm output highly

depends on the step-length selected (step-length is kept equal to leafcell side-length in non-adaptive octree due

to its regular sub-division of space). A wrong step-length might many a times produce false negatives or false

positives (refer Figure 2.7(b)). Interestingly, one way toget around this situation is to decrease the step-length
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(a)

Level 2
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p

q

(b)

Figure 2.7: (a) The Buddha model and the cornell room both contain 500000 points each. However, the
density of points on Buddha is very high as compared to density on the walls of the room. (b) Bresenham
Algorithm applied for computing visibility between two leaves in an adaptive octree structure. Wrong step-
length might miss out thepotential occluding cell(cyan colored) in between cellp and cell q leading to
wrong computation of visibility status between the two cells.

used in Bresenham Algorithm to be equal to side-length of theleaf at greatest depth. But this, on the other hand

increases the running timesdrastically.

We now present a different approach to computing visibilitybetween points (or centroids for leaf–pair) in

an adaptive octree sub-division of space. Here, instead of using the3D Bresenham’s Line Algorithm, we use

Sphere-Ray intersectionfor finding the list ofPotential occluders. Like in Section 2.6, a V-Map is constructed

assuming an input hierarchy using the Algorithm 2.6.3. The new, efficient and correct mutual leaf–pair visibility

algorithm is presented below.

Algorithm 8 Visibility between Leaf Cell ’A’ and Leaf Cell ’B’
procedure LeaftoLeafVisibility(A,B)

1: if A andB face each otherthen
2: return isIntersectingOctree(root,A,B)
3: else
4: return INVISIBLE
5: end if

In simple words,
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Algorithm 9 Check whether line joining A and B intersects any octree node
procedure isIntersectingOctree(Node,A,B)

1: if Node is a leafthen
2: state =true IF
3: // Node is equal toA or B OR
4: // Tangent plane passing through centroid ofNode is parallel to line segmentAB) OR
5: Node belongs to same surface as (A or B) or line segment intersects outsideNode OR
6: AB intersects line at a distance more than the bounding sphere radiusR)
7: if STATE ==true then
8: return VISIBLE
9: else

10: return INVISIBLE
11: end if
12: end if
13: if AB intersectsNode then
14: for each childNodeC of Node do
15: state = isIntersectingOctree(NodeC, A, B)
16: if state == INVISIBLEthen
17: return INVISIBLE
18: end if
19: end for
20: return VISIBLE
21: end if

p

q

Figure 2.8: Ray-Sphere intersection algorithm to determine point-point visibility

• If node is not a leaf andpq intersects the node then traverse its children

• If node is a leaf then check whether tangent plane of that nodeintersectspq within radiusR then nodep

andq are invisible otherwise declarep andq visible

Bounding sphere radiusR for a leafcell is set to the distance between the centroid andits farthest point in

the leaf. RadiusR for any non-leaf node in the octree is set equal to maximum of the sum of distance between

its center and the child’s center andR of that particular child.
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2.8 Experimental Results

In this section, we discuss the validity and application of the proposed method to various point models. All

examples shown are calculated using a Pentium4 2.6 GHz sans any GPU.

2.8.1 Visibility Validation

We validate our proposed method here. We have ran the code on point scenes taken as input and divided using

anAdaptive Octree Divisionto form a hierarchical structure. We used our newSphere-Ray Intersectionmethod

to compute the visibility in the following examples. Figure2.9(a) shows a point model of empty Cornell room.

Note the default colors of the walls. We now introduce a Stanford bunny. In Figure 2.9(b), the eye (w.r.t. which

visibility is being computed) is on the red wall (on the left), marked with acyancolored dot. The violet (purple)

colour indicates those portions of the room that are visibleto this eye. Notice the “shadow” of the bunny on the

green wall and on the floor. The same idea is repeated with the eye placed at different locations for the Bunny

and for different models like the Buddha and the Dragon.

Figure 2.10(a) shows a point model of a different, empty Cornell room. Note the default colors of the walls. We

repeat similar tests for point model of an Indian god Ganesha(Figure 2.10(b) and 2.10(c)), an Indian goddess

Satya (Figure 2.10(d) and 2.10(e)) and a Stanford Blue Bunnyplaced (Figure 2.10(g), 2.10(h) and 2.11(a)) in

a Cornell room.

We now do a small comparison of the quality of the output of ournewSphere-Ray Intersection Algorithmwith

the output of theBresenham’s Line Algorithmbeing applied to the adaptive structure. We use the point models

of Stanford Bunny, the Dragon and the Buddha placed in the cornell room for the same. Figure 2.11 shows the

difference.

2.8.2 Quantitative Results

We note, in Table 2.1, that the number of visibility links (column 5) is a small fraction of the quadratic pos-

sibilities. (For example, the decrease in the empty Cornellroom is the fraction (1.4 - 0.27)/1.4 (in millions),

roughly80%). This situation persists whether the scene is sparse, or dense.

2.8.3 Discussion

We then use the V-Map in our FMM-based GI algorithm. Figure 2.12 shows results where the subdivision of

hierarchy is performed till 75 points per leaf. The figure shows the front view, the back view and the close up of

the point models placed in the cornell room. The color bleeding effects and the soft shadows are clearly visible.

Also notable is the back of the Ganpati and Goddess (See Fig 2.12(e) and Fig. 2.12(h)) beinglit , due to global

illumination, even though they are not directly visible to the light source.
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Points N2 possible V-Map Links % Memory(MB) Memory(MB) Build V-Map
Model

(millions) links (millions) (millions) Decrease N2 links V-Map links Time(mins)

ECR 0.1 1.4 0.27 79.5% 5.35 1.09 20.6

PCR 0.14 3.85 0.67 82.62% 15.43 2.68 23.8

BUN 0.15 1.53 0.38 74.64% 6.09 1.5 21.7

DRA 0.55 2.75 0.43 84.54% 11.0 1.7 23.5

BUD 0.67 1.58 0.39 74.75% 6.33 1.6 23.9

GAN 0.15 1.56 0.38 75.64% 6.2 1.55 22.0

GOD 0.17 1.62 0.4 75.31% 6.4 1.63 22.9

Table 2.1: V-Map details for sparse scenes such as the Empty Cornell Room(ECR), dense scenes such as the
Cornell Room Packed(PCR) to capacity with a large box, or ‘typical’ scenes such as the Bunny(BUN), the
Dragon(DRA), the Buddha(BUD), one of the Indian God’s, Ganesha(GAN), and an Indian Goddess(GOD),
placed in Cornell room.N represents no. of leafcells. The reduced number of visibility links essentially
signify less computations for GI radiosity algorithm. Maximum memory required for V-Map was 2.68MB for
PCR, but was still very less compared to storage forN2 links.

The models are not very detailed because of a pre-processingstep of point-based simplification being

applied on them. Also, someroughness and discretizationappears due to low level of subdivision used (Octree

is divided roughly till level7). More sub-division can be done but the processing time increases quite a bit (and

hence we require a faster, parallel FMM radiosity kernel solver on GPU so as not to trade off quality for time).

The V-Map computation takes approximately20 − 25 minutes for about amillion points, which can further

be improvised when implemented in parallel (if analyzed properly, the visibility algorithm isembarrassingly

parallel). Note that thenon-adaptiveversion with6 levels in the octree tookmore than 10 hoursfor the

Visibility Map computations.

The videos of the results are present at the following locations:

• http://trellis.cse.iitb.ac.in/ rhushabh/aps3/resultVideos/1.mpeg

• http://trellis.cse.iitb.ac.in/ rhushabh/aps3/resultVideos/2.mpeg

• http://trellis.cse.iitb.ac.in/ rhushabh/aps3/resultVideos/3.mpeg
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(a) An empty Cornell room. (b) Visibility test with eye on the red wall.

(c) The Bunny (eye on the floor) (d) The Dragon (eye on the floor)

(e) The Buddha (eye on the floor) (f) The Buddha (eye on the red wall)

Figure 2.9: Various visibility tests where purple color indicates portions visible to the candidate eye (marked
cyan/brown).
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(a) An empty Cornell room. (b) Visibility test with eye on the
red floor.

(c) Ganesha(viewed from a differ-
ent eye position)

(d) The Goddess (eye on the
floor)

(e) The Goddess(viewed from a
different eye position)

(f) A Blue Bunny (eye on the floor)

(g) A Blue Bunny (eye on the right
wall)

(h) A Blue Bunny (eye on the left
wall)

Figure 2.10: Various visibility tests where purple color indicates portions visible to the candidate eye (marked
green/cyan).
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(a) The Bunny (eye on the floor). (b) A Blue Bunny (eye on the floor)

(c) The Dragon (eye on the floor) (d) The Dragon (eye on the floor)

(e) The Buddha (eye on the floor) (f) The Buddha (eye on the floor)

Figure 2.11: Various visibility tests where purple color indicates portions visible to the candidate eye (marked
cyan/brown). The left column shows the output of theBresenham’s Line Algorithmapplied to the scene when
divided in an adaptive octree structure. Note the artifactswhich are clearly visible due to errors introduced by
the step-length criteria of Bresenham’s Algorithm. The step-length here was chosen to be 1 unit. Decrease in
the step-length leads to drastic increase of running times(in hours). The right column shows the output of the
newSphere-Ray Intersection Algorithmapplied on similar models and similar input environment. The notable
artifacts have reduced quite a lot.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2.12: Use of V-Maps for GI effects. The hierarchy was constructed till we had roughly75 points per leaf.
The images rendered using a custom point-based renderer. Soft shadows, color bleeding and parts of models
indirectly visible to the light source beinglit can be observed. Five different set of images, corresponding to
different point models, are shown. Each set shows a front view, a back view and a close up of the point model/s
placed in the cornell room.
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Chapter 3

Discussion: Parallel FMM on GPU

3.1 Introduction

3.1.1 Fast computation with Fast Multipole Method

Computational science and engineering is replete with problems which require the evaluation of pairwise in-

teractions in a large collection of particles. Direct evaluation of such interactions results inO(N2) complexity

which places practical limits on the size of problems which can be considered. Techniques that attempt to

overcome this limitation are labeled N-body methods. The N-body method is at the core of many computa-

tional problems, but simulations of celestial mechanics and coulombic interactions have motivated much of

the research into these. Numerous efforts have aimed at reducing the computational complexity of the N-

body method, particle-in-cell, particle-particle/particle-mesh being notable among these. The first numerically-

defensible algorithm [DS00] that succeeded in reducing theN-body complexity toO(N) was the Greengard-

Rokhlin Fast Multipole Method (FMM) [GR87].

The FMM, in a broad sense, enables the product of restricted dense matrices with a vector to be evaluated in

O(N) or O(N log N) operations, when direct multiplication requiresO(N2) operations. The Fast Multipole

Method [GR87] is concerned with evaluating the effect of a “set of sources”X, on a set of “evaluation points”

Y. More formally, given

X = {x1, x2, . . . , xN}, xi ∈ R
3, i = 1, . . . ,N, (3.1)

Y = {y1, y2, . . . , xM}, yj ∈ R
3, j = 1, . . . ,M (3.2)

we wish to evaluate the sum

f(yj) =
N∑

i=1

φ(xi, yj), j = 1, . . . ,M (3.3)

The functionφ which describes the interaction between two particles is called the “kernel” of the system (e.g.

for electrostatic potential, kernelφ(x, y) = |x − y|−1). The functionf essentially sums up the contribution

from each of the sourcesxi.
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Assuming that the evaluation of the kernelφ can be done in constant time, evaluation off at each of theM

evaluation points requiresN operations. The total complexity of this operation will therefore beO(NM). The

FMM attempts to reduce this seemingly irreducible complexity to O(N +M) or evenO(N log N +M). Three

main insights that make this possible are:

1. Factorization of the kernel into source and receiver terms

2. Most application domains do not require that the functionf be calculated at very high accuracy.

3. FMM follows ahierarchical structure (Octrees)

Details on the theoretical foundations of FMM, requirements subject to which the FMM can be applied

to a particular domain and discussion on the actual algorithm and its complexity as well as the mathematical

apparatus required to apply the FMM to radiosity are available in [KC03] and [Gor06]. Five theorems with

respect to the core radiosity equation are also proved in this context.In our case, this highly efficient algorithm

is used for solving the radiosity kernel and getting a diffuse global illumination solution.

Besides being very efficient and applicable to a wide range ofproblem domains, the FMM is also highly par-

allel in structure. There are two versions of FMM: theuniform FMM works very well when the particles in

the domain are uniformly distributed, while theadaptiveFMM is used when the distribution is non-uniform.

It is easy to parallelize the uniform FMM effectively: A simple, static domain decomposition works perfectly

well. However, typical applications of FMM are to highly non-uniform domains, which require the adaptive

algorithm. Obtaining effective parallel performance is considerably more complicated in this case, and no static

decomposition of the problem works well. Moreover, certainfundamental characteristics of the FMM translate

to difficult challenges for efficient parallelization. For eg. the FMM computation consists of a tree construction

phase followed by a force computation phase. The data decomposition required for efficient tree construction

may conflict with the data decomposition required for force computation. Most of the parallelizations em-

ploy theoctree-basedFMM computation, and thus inherit the distribution-dependent nature of the algorithm.

Considerable research efforts have thus been directed at developing parallel implementations of the adaptive

FMM.

However, our interest lies in design of a parallel FMM algorithm that is distribution independent and rig-

orously analyzable. We discuss such an algorithm in an architecture independent fashion, using only well

understood and basic communication operations such as parallel prefix, all-to-all communication and sorting.

It uses only a static data decomposition and does not requireany explicit dynamic load balancing, either within

an iteration or across iterations. The algorithm can be efficiently implemented on any model of parallel com-

putation that admits an efficient sorting algorithm.
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3.1.2 Parallel computations on GPU

The graphics processor (GPU) on today’s video cards has evolved into an extremely powerful and flexible pro-

cessor. The latest GPUs have undergoing a major transition,from supporting a few fixed algorithms to being

fully programmable. High level languages have emerged for graphics hardware, making this computational

power accessible. Architecturally, GPUs are highly parallel streaming processors optimized for vector opera-

tions, with both MIMD (vertex) and SIMD (pixel) pipelines. With the rapid improvements in the performance

and programmability of GPUs, the idea of harnessing the power of GPUs for general-purpose computing has

emerged. Problems, requiring heavy computations, like those dealing with huge arrays, can be transformed and

mapped onto a GPU to get fast and efficient solutions. This field of research, termed asGeneral-purpose GPU

(GPGPU) computinghas found its way into fields as diverse as databases and data mining, scientific image

processing, signal processing etc.

Many specific algorithms like bitonic sorting, parallel prefix sum, matrix multiplication and transpose, paral-

lel Mersenne Twister (random number generation) etc. have been efficiently implemented using the GPGPU

framework.One such algorithm which can harness the capabilities of theGPUs is parallel adaptive fast mul-

tipole method.

Before moving onto the core parallel FMM algorithm, let us get acquainted with some of the data structures

and algorithms used to get the same viz. parallel domain decomposition methods like space-filling curves and

parallel compressed octrees. These are detailed w.r.t their distributed multi-processor system architecture im-

plementation [HAS02]. We, at the same time, provide vital hints and start up points on how to implement them

on GPUs.

3.2 Spatial Locality Based Parallel Domain Decomposition

In the context of parallel scientific computing, the termdomain decompositionis used to refer to the process of

partitioning the underlying domain of the problem across processors in a manner that attempts to balance the

work performed by each processor while minimizing the number and sizes of communications between them,

the reason being communication is significantly slower thancomputation. In fact, it tries to overlap computation

and communication for even better performance. Achieving load balance while simultaneously minimizing

communication is quite challenging as the input data need not necessarily be uniformly distributed. Spatial

locality based domain decomposition methods are best suited for particle-based methods (eg. Gravitational

N -body problem) as particles interact with other particles based on their spatial locality.

In this section we present a brief overview of some of the mostwidely used spatial locality based parallel

domain decomposition methods such as space filling curves (SFCs) and parallel octrees.

35



3.2.1 Space Filling Curves

Consider ad dimensional hypercube. Say we bisect this hypercubek times recursively along each dimension

results in ad dimensional matrix of2k × 2k × · · · × 2k = 2dk non-overlapping hypercells of equal size. A

Space Filling Curve (SFC) is a mapping of these hypercells, the location of each of which in the cell space is

given byd coordinates, to a one dimensional linear ordering. An example of linearization of two dimensional

data is shown in Fig. 3.1(a) fork = 1 and 2.
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Figure 3.1: (a) The z-curve fork = 1 and 2. (b) A8× 8 decomposition of two dimensional space containing 7
points. The points are labeled in the order in which the cellscontaining them are visited using aZ-SFC. (c) Bit
interleaving scheme for generating index of a cell as perZ-SFC.

A sample ordering (of non-empty cells) is shown in Fig. 3.1(b). The resulting one dimensional ordering

is divided intop equal partitions which are assigned to processors. However, the runtime to order2kd cells,

Θ(2kd), is expensive because typicallyn ≪ 2kd. Thus, a fast and efficient method to directly order the cells

containing the points is required.

3.2.1.1 SFC Construction

Let D be the side length of a domain whose corner is at the origin of ad-dimensional coordinate system. The

first step in SFC linearization is to find the coordinates of the cells containing each of the input points. Given

a point ind dimensional space with coordinatexi along dimensioni, the integer coordinate along dimension

i of the cell containing the point is given by⌊2
kxi

D
⌋. The index of a cell inZ-SFC, also known as Morton

Ordering is computed by representing the integer coordinates of the cell usingk bits and then interleaving

the bits starting from the first dimension to form adk bit integer. In Fig. 3.1(c), the index of the cell with
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coordinates(3, 1) = (11, 01) is given by1011 = 11. Thus, the index of the cell containing a given point can be

computed inO(kd) time in d dimensions, orO(k) time in three dimensions. Once the indices corresponding

to all the points are generated, SFC decomposition is achieved by a parallel integer sort.

Algorithm 10 SFC Linearization
procedure SFCLinearization

1: Choose a resolutionk.
2: For each point, compute the index of the cell containing the point.
3: Parallel sort the resulting set of integer keys.

Partitioning the SFC linearization of the points equally toprocessors ensures load balancing. Because of

its ease of repartitioning, SFCs have been widely used as a tool for domain decomposition in parallel scientific

computing. In the first step SFC is used to preprocess the input data such that the computational domain

is partitioned across multiple processors. In the second step, other data structures, usually tree based, are

subsequently built locally on each processor on the part of the domain that it is mapped to. The numerical

computations that drive the scientific application are thencarried out using these latter data structures. The next

section describes a more sophisticated approach of using a data structure called octree for both parallel domain

decomposition and subsequent numerical computations.

3.2.2 Parallel Compressed Octrees

Octrees are hierarchical tree data structures that organize multidimensional points using a recursive decompo-

sition of the space containing them. Such a tree is called aquadtreein two dimensions andoctree in three

dimensions. For purpose of illustrations, we will be using quadtrees in this report.

3.2.2.1 Octree Construction

Consider a hypercube enclosingn multidimensional points. The domain enclosing all the points forms the root

of the octree. This is subdivided into2d subregions of equal size by bisecting along each dimension.Each of

these regions that contain at least one point is representedas a child of the root node. The same procedure is

recursively applied to each child of the root node terminating when a subregion contains at most one point (or

some pre-defined number of points). An example is shown in Fig. 3.2.

3.2.2.2 Compressed Octrees

In octrees, the manner in which any subregion is bisected is independent of the specific location of the points

within it. Thus chains may form when many points lie within a small volume of space (eg. Fig. 3.2). These

chains do not contain any extra information. As such, no information is lost if each of the chains are compressed

into a single node resulting in acompressed octree. Note that each node in a compressed octree is either a leaf
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Figure 3.2: A quadtree built on a set of 10 points in 2-D.

or has at least two children. This ensures that the size of theresulting compressed octree isO(n) and is

independent of the spatial distribution of the points. The compressed octree corresponding to the octree in

Fig. 3.2 is shown in Fig. 3.3.

Figure 3.3: A compressed quadtree corresponding to the quadtree of Fig. 3.2

However, such compressed nodes should still encapsulate the fact that it represents multiple regions of space

unlike the nodes that are not compressed. To achieve this, two cells are stored in each nodev of a compressed

octree,large cell of vandsmall cell of v, denoted byL(v) andS(v), respectively. The large cell is defined as
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the largest cell that encloses all the points the node represents. Likewise, the small cell is the smallest cell that

encloses all the points that the node represents. If a node isnot a result of compression of a chain, then the large

cell and the small cell of that node are the same; otherwise, they are different. Observe that the large cell of a

node is an immediate subcell of the small cell of its parent. Since a leaf contains a single point, its small cell is

defined to be the hypothetical cell with zero length containing the point. Or, when the maximum resolution is

specified, the small cell of a point is defined to be the cell at the highest resolution containing the point.

3.2.2.3 Octrees and SFCs

Octrees can be viewed as multiple SFCs at various resolutions. To define a linearization that cuts across multiple

levels, we use the fact that given any two cells, they are either disjoint or one is contained in the other. Thus

given two cells, if one is contained in the other, the subcellis taken to precede the supercell; if they are disjoint,

they are ordered according to the order of the immediate subcells of the smallest supercell enclosing them. A

nice property that follows from these rules is the resultinglinearization of all cells in an octree (or compressed

octree) is identical toits postorder traversal.

However, ambiguity may arise when distinguishing indices of cells at different levels of resolution. For

example, in Fig. 3.4 it is not possible to distinguish between 00 (cell of lengthD/2 with coordinates (0,0)),

and 0000 (cell of lengthD/4 with coordinates (00,00)), when both are stored in, say, standard 32-bit integer

variables. A simple mechanism to overcome this is to prependthe bit representation of an index with a ‘1’ bit.

With this, the root cell is 1, the cells withZ-SFC indices 00 and 0000 are now 100 and 10000, respectively.

Figure 3.4: Bit interleaving scheme for a hierarchy of cells.
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The process of assigning indices to cells can also be viewed hierarchically. A cell at resolutioni can be

described usingi-bit integer coordinates in each dimension. The firsti − 1 of these bits are the same as the

coordinates of its immediate supercell. Thus, the index of acell can be obtained by taking the least significant

bit of each of its coordinates, concatenating them into ad-bit string, and appending this to the index of its

immediate supercell.

3.2.2.4 Parallel Compressed Octree Construction

The algorithm to construct parallel compressed octrees is given below.

Algorithm 11 Parallel Compressed Octree
procedure ConstructParallelCompressedOctree()

1: For each point, compute the index of the leaf cell containingit.
2: Parallel sort the leaf indices to compute their SFC linearization.
3: Each processor obtains the leftmost leaf cell of the next processor.
4: On each processor, construct a local compressed octree for the leaf cells within it and the borrowed leaf

cell.
5: Send the out of order nodes to appropriate processors.
6: Insert the received out of order nodes in the already existing sorted order of nodes.

After SFC linearization of leaf indices, we now generate parts of the compressed octree on each processor,

such that each node and edge of theglobal compressed treeis generated on some processor. To do this, each

processor first borrows the leftmost leaf cell from the next processor. This is because if we generate the lowest

common ancestor of every consecutive pair of leaf nodes, we are guaranteed to generate every internal node in

the compressed octree. It then runs a sequential algorithm to construct the compressed octree for its leaf cells

together with the borrowed leaf cell as follows: Initially,the tree has a single node which represents the first

leaf cell in SFC-order. The remaining leaf cells are inserted one at a time as per the SFC-order. IfC is the next

leaf cell to be inserted, then starting from the most recently inserted leaf, walk up the path toward the root until

the first nodev such thatC ⊆ L(v) is encountered. Now, two possibilities arise:

• Case I: If C is not contained inS(v), thenC is in the regionL(v)S(v), which was empty previously. The

smallest cell containingC andS(v) is a subcell ofL(v) and containsC andS(v) in different immediate

subcells. Create a new nodeu betweenv and its parent and insert a new child ofu with C as small cell.

• Case II: If C is contained inS(v), v is not a leaf node. The compressed octree presently does not

contain a node that corresponds to the immediate subcell ofS(v) that containsC, i.e., this immediate

subcell does not contain any of the points previously inserted. Therefore, it is enough to insertC as a

child of v corresponding to this subcell.
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The local tree is stored in its postorder traversal order in an array. For each node, indices of its parent and

children in the array are stored.

Now we need to generate the postorder traversal order of the global compressed octree. To do so, nodes

which should actually appear later in the postorder traversal of the global tree (out of order nodes), should be

sent to the appropriate processors, which appear consecutively after the borrowed leaf in the postorder traversal

of the local tree. The first leaf cell in each processor is gathered into an array of sizep. Using a binary search

in this array, the destination processor for each out of order node can be found. Nodes that should be routed to

the same processor are collected together and sent using an all-to-all communication.

The received nodes are merged with the local postorder traversal array and their positions are communicated

back to the sending processors. The net result is the postorder traversal of the global octree distributed across

processors. Each node contains the position of its parent and each of its children in this array.

3.2.3 Spatial Domain Decomposition Methods on GPU

Here, we provide some hints about how to implementspatial domain decompositionmethods on GPU. As we

know, GPU’s architecture can be considered similar to shared memory multi-processor system architecture,

except for the fact that the GPU’s memory is specifically designed to store color and texture information.

3.2.3.1 Space Filling Curves on GPU

Algorithm 3.2.1.1 defines the procedure to construct SFC in parallel. No major changes will be required to

Algorithm 3.2.1.1 to be implemented on GPUs, expect for the way the information will be stored in memory.

The procedure to compute the indices will take as input the location information of points and the cells to which

they belong. Cell locations can be stored as an indirection grid in texture memory whereas the points will be

stored as an 1-D array. TheRGBAvalue of the cell will index the location of the point (in texture memory)

contained in it, as shown in Fig 3.5.

The procedure will return the index values computed. Further, to sort these values in parallel, we have an

efficient implementation ofBitonic Sortalgorithm on GPU.

3.2.3.2 Bitonic Sort

A sorting network is a sorting algorithm, where the sequenceof comparisons is not data-dependent. That

makes them suitable for parallel implementations. Bitonicsort is one of the fastest sorting networks designed

for parallel machines. A bitonic sequence is composed of twosubsequences, one monotonically non-decreasing

and the other monotonically non-increasing. Moreover, anyrotation of a bitonic sequence is a bitonic sequence.

Of course, a sorted sequence is itself a bitonic sequence: one of the sub-sequences is empty. Suppose we have

a bitonic sequence of length2n, that is, elements in positions[0, 2n). We can easily divide it into two halves,
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Figure 3.5: Cell locations stored as an indirection grid in texture memory and the points as an 1-D array. The
RGBAvalue of the cell will index the location of the point (in texture memory) contained in it.

[0, n) and[n, 2n), such that each half is a bitonic sequence and every element in half [0, n) is less than or equal

to ( Or greater than or equal to) each element in[n, 2n).

Simple comparison of elements in the corresponding positions in the two halves and exchanging them if

they are out of order achieves this. This is calledbitonic merge.

Algorithm 12 Recursive Bitonic Sort
procedure BitonicSort

1: Sort only sequences a power of two in length, so a subsequenceof more than one element can always be
divided into two halves.

2: Sort the lower half into ascending order and the upper half into descending order to get a bitonic sequence.
3: Perform a bitonic merge on the sequence, which gives a bitonic sequence in each half and all the larger

elements in the upper half.
4: Recursively bitonically merge each half until all the elements are sorted.

Let us first have a look at recursive bitonic sort shown in Algorithm 3.2.3.2. It uses methods sortup,

sortdown, mergeup and mergedown to sort into ascending (descending) order and to recursively merge into

ascending (descending) order.
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Figure 3.6: A simple parallel Bitonic Merge Sort of eight elements requires six passes. Elements at the head
and tail of each arrow are compared, with larger elements moving to the head of the arrow. The nal sorted
sequence is achieved inO(log2 n) passes.

Methodsortup(int m, int n) sorts then elements in the range[m,m + n) into ascending order. It uses

methodmergeup(int m, int n) to merge then elements in the subsequence[m,m + n) into ascending order.

Methods mergeup and mergedown compare elements in the two halves, exchange them if they are out of order,

and recursively merge the two halves. Similarly forsortdown(int m, int n) andmergedown(int m, int n).

The overall sort is performed by callingsortup(0, N). Both sortup and sortdown recursively sort each half

to produce an A-frame shape and then recursively merge that into an ascending or descending sequence.

If we look at the algorithm we see that recursive calls of merge can be done in parallel. The loops in the
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merges, comparing and conditionally exchanging elements(m + i) and(m + i+ n) can also be run in parallel.

It allows an array ofn processors to sortn elements inO(log2 n) steps[Chr].

3.2.4 Parallel Compressed Octrees on GPU

Algorithm 3.2.2.4 gives us an idea of implementing parallelcompressed octrees on distributed multiprocessor

architecture system.

The first two steps of the algorithm can be implementedon GPU in a fashion similar to the one discussed in

subsection 3.2.3. Further, the process of assigning indices to the cell as well as locating cells from its supercells

can be done using an efficient parallel implementation ofPrefix Sumalgorithm. Subsection 3.2.4.1 below gives

an efficient implementation of the parallel Prefix Sum algorithm on GPU.

3.2.4.1 Prefix Sum on GPU

The prefix-sum problem takes an array of numbers as input and outputs an array with partial sums. It is called

prefix-sum because it computes sums over all prefixes of the array. For example, if one is to put into an array

one’s initial checkbook balance, followed by the amounts ofthe check one has written as negative numbers and

deposits as positive numbers, then computing the partial sums produces all the intermediate and final balances.

3.2.4.2 Parallel Algorithm

Prefix-sum problem is inherently sequential, but, given a number of processors, it can be parallelized efficiently

to finish computation inO(log n) time. One such algorithm [Har] is presented below.

Algorithm 13 Calculate Prefix sum of an arrayx with n numbers

1: for d← 1 to log2 n do
2: for all k in paralleldo
3: if k ≥ 2d then
4: x[k]← x[k − 2d−1] + x[k]
5: else
6: x[k]← x[k]
7: end if
8: end for
9: end for

Fig. 3.7 shows the calculation of prefix sum on an example array of numbers, using this algorithm. The

cells whose indices are not greater than2d−1, whered is the iteration number, are directly copied. The input

array is stored in a two-dimensional texture. Each fragmentuses its screen-space position to index into this

texture. It sums the value at its position and2d−1 position to the left. This is written to a separate output texture

which is used as input to the next pass.
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Figure 3.7: Computing the scan of an array of 8 elements

We notice that in any iterationd, only n/2d fragments are doing useful work. However, the Algorithm 13

does more computation in one pass, enabling it to finish the prefix-sum computation inO(log n) time, compared

to O(n) time taken by the sequential algorithm to compute the same result.

We also note that theO(log n) computation time is true only when there aren or more processors which

can compute in parallel in which case the execution time is dominated by step complexity rather than work

complexity. However, the fragment pipeline can only execute a fixed maximum number of fragments in parallel.

We call this limit the degree of parallelism. If we begin withan array which is greater than this limit, the

fragment pipeline would have to break up the fragments into batches, which it executes sequentially.

Now to construct a local compressed octree for each processor, we first look at how simple octrees are

constructed on GPU. The following subsection 3.2.4.3 givesone such implementation, where octrees are con-

structed as textures on GPU.

3.2.4.3 Octree Textures on GPUs

A simple way to implement an octree on a CPU is to use pointers to link the tree nodes together. Each internal

node contains an array of pointers to its children. A child can be another internal node or a leaf. A leaf only

contains a data field. To implement a hierarchical tree on a GPU we need to define how to store the structure in

texture memory and how to access the structure from a fragment program. In the GPU implementation pointers

simply become indices within a texture. They are encoded as RGB values. The content of the leaves is directly

stored as an RGB value within the parent node’s array of pointers. Alpha channel is used to distinguish between
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a pointer to a child and the content of a leaf (alpha = 1 indicates data, alpha = 0.5 indicates index and alpha =

0 indicates empty cell). For simplicity,quadtreewhich is a 2D equivalent of an octree is discussed. Figure 3.8

shows the octree storage.

Let us first define the following terminology:

• Indirection pool : An 8-bit RGBA 3D texture in which the tree is stored.

• Cell: Each ‘pixel’ of the indirection pool.

• Indirection grid : The indirection pool is subdivided into indirection grids. An indirection grid has2d

cells whered is the dimension. Each node of the tree is represented by an indirection grid. It corresponds

to the array of pointers of the CPU implementation describedabove. A cell of an indirection grid can

be empty or contain either (a) data if the corresponding child in the tree is a leaf, or (b) the index of an

indirection grid if the corresponding child is another internal node.

Now the tree is stored in the texture memory and we want to retrieve the value stored in the tree at a point

M ∈ [0, 1]× [0, 1]. Let ID = (IDx , IDy) be the index of the indirection grid of the node visited at depth D. Let

us also assign the root nodeI0 to be(0, 0). The tree lookup starts from the root and successively visits the nodes

containing the pointM until a leaf is reached. To do so, at levelD we need to read from the indirection gridID

the value stored at the location corresponding toM which in turn requires the computation of the coordinates

of M within the node.

Figure 3.8: Storage in texture memory. The indirection poolencodes the tree. Indirection grids are drawn with
different colors. The grey cells contain data.

At depthD a complete tree produces a regular grid of resolution2D × 2D within the unit square (cube

in 3D). Each node of the tree at depthD corresponds to a cell of this grid. In particularM is within the cell
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corresponding to the node visited at depthD. The coordinates ofM within this cell are given byfrac(M · 2D).

These coordinates are used to read the value from the indirection grid ID. Thus, the lookup coordinates within

the indirection pool are thus computed asP = (Px, Py) where

Px =
IDx + frac(M · 2D)

Sx

, Py =
IDy + frac(M · 2D)

Sy

HereSx andSy denote the number of indirection grids along eachrow andcolumnof the indirection pool

respectively. The RGBA value stored atP in the indirection pool is then retrieved. Depending on the alpha

value, we will either return the RGB color if the child is a leaf, or we will interpret the RGB values as the index

of the child’s indirection grid (ID+1) and continue to the next tree depth. Figure 3.9 summarizes this entire

process.

Having seen how to implement octrees on GPU, we now need to answer the following queries for construc-

tion of compressed octrees on GPU.

• Apart frompoint lookupoperation, what other operations need to be performed on compressed octrees ?

• How do we modify the octree implementation on GPU to store multiple data corresponding to each

leaf-cell ?

• How do we modify the octree implementation on GPU (specifically the memory model) to store infor-

mation about large-cell and small-cell of every node, alongwith the indices to its children ?

• How to access the last leaf node belonging to another processor, which is required for construction of

local compressed octree ?

• Being a shared memory system, can we ignore theall-to-all communication step required previously ?

• How to identify and take care ofout-of-ordernodes ?

• How to handle multiple access by processors to same memory location simultaneously ?
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Lookup at point M:

Figure 3.9: At each step the value stored within the current node’s indirection grid is retrieved. If this value
encodes an index, the lookup continues to the next depth. Otherwise, the value is returned.

Answer to thesehints/queriesforms the start point for a parallel compressed octree construction on GPU.

3.3 Parallel FMM Algorithm

Having looked at some basicSpatial Domain Decompositionmethods and their algorithms and implementa-

tion overviews on both distributed multi-processor systems and GPUs, we now move further and review one

particular implementation of FMM on parallel, distributed, multi-processor system [HAS02].
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The FMM computation consists of the following phases: a) Building the compressed octree, b) computing

multipole expansions using a bottom-up traversal, c) computing translations for each cell using its interaction

list, d) computing the local expansions using a top-down traversal. All these phases afford substantial paral-

lelism which is exploited within each phase.

3.3.1 Constructing Parallel Compressed Octree

A parallel compressed octree is built as described in Sec. 3.2.2.4. The tree construction requires an insignificant

amount of the total run-time. However, this stage is very important since tree partitioning is key determinant of

the load balancing and communication efficiency of the subsequent stages.

3.3.2 Near Field Computations

The computation of the nearfield for leaf cells associated with a processor requires information from the ad-

jacent leaf cells. Therefore, each processor maintains an array of size2p by gathering the integer keys of the

first and last leaf nodes of every processor. Binary search inthis array can be used to determine the processor

responsible for a leaf cell. Now using an all-to-all communication each processor sends information of its leaf

cells to processors that should contain leaf cells adjacentto it.

3.3.3 Building Interaction Lists

For a cell in a compressed octree, its parent box, corresponding to the cell of the parent node in the tree, need not

necessarily be a cell of double the side length of that of the child cell and may reside on some other processor.

To compute the parent of a cell we find the smallest cell containing it and its adjacent cell in the postorder

traversal.

Thus, to compute the interaction list of a cellb we find its parent and obtain the cells in the nearfield of the

parent using bit arithmetic operations. Then we compute subcells of these cells such that size of each subcell

is equal to the size ofb. We discard those subcells that are in the nearfield ofb. We finally partition these

subcells into two arrays, one for subcells that arelocal to the processor and other for subcells that areremote.

The latter array will thus have all the nodes whose information needs to be fetched at thetranslationphase of

each iteration.

Following the building of interaction lists, multiple iterations of the remaining stages are run until conver-

gence.

3.3.4 Computing Multipole Expansions

In this section, we describe how to compute the field radiatedby each cell using multipole expansions. First,

each processor scans its local array from left to right. Whena leaf node is reached, its multipole expansion
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is directly computed from the particles within the leaf cell. If the node’s multipole expansion is known, it is

shifted to its parent and added to the parent’s multipole expansion, provided the parent is local to the processor.

As the tree is stored in postorder traversal order, if all thechildren of a node are present in the same processor, it

is encountered only after all its children are. This ensuresthat the multipole expansion at a cell is known when

the scan reaches it. This computation takesO(n
p

+ k) time, wherek is the highest resolution. During the scan,

some nodes are labeledresidual nodesbased on the following rules:

• If the multipole expansion due to a cell is known but its parent lies in a different processor, it is labeled a

residual leaf node.

• If the multipole expansion at a node is not yet computed when it is visited, it is labeled aresidual internal

node.

Each processor copies its residual nodes into an array. It iseasy to see that the residual nodes form a tree

(termed theresidual tree) and the tree is present in its postorder traversal order, distributed across processors.

Multipole expansion calculation has the associative property. Because of this, multipole expansions on the

residual tree can be computed using an efficient parallel upward tree accumulation algorithm [SAF05]. The

main advantage of using the residual tree is that its size is independent of the number of particles, and is rather

small. Due to this reason the residual tree can be accumulated in O(log p + log k) rounds as compared to

O(log n) in case of global compressed octree. Thus, the worst-case number of communications are reduced

from logarithm of the size of the tree to the logarithm of the height of the tree, which is much smaller.

3.3.5 Computing Multipole to Local Translations

First, for each node an all-to-all communication is used to request fields of nodes from the interaction lists that

reside on remote processors. Another all-to-all communication is used to receive the fields at these nodes. Once

all the information is available locally, the multipole to local translations are conducted within each processor

as much as in the same way as in sequential FMM. Each processorperformsO(n/p) translations.

3.3.6 Computing Local Expansions

Similar to the multipole expansion calculation, the local expansion calculation is also associative. Thus, local

expansions can be computed using a reverse of the algorithm for computing multipole expansions in paral-

lel. First, local expansions for the residual tree are calculated. This requiresO(log p + log k) communication

rounds. Then, local expansions for the local tree are computed using a right-to-left scan of the postorder traver-

sal of the local tree. The exact number of communication rounds required is the same as in computing multipole

expansions.
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3.3.7 Parallel FMM on GPU

Implementing the above algorithm on GPU essentially means shifting to a shared memory system, thereby

replacing the time consumingall-to-all communication steps by calls to local memory.Hints have been given

to implement compressed octrees on GPU in subsection 3.2.4.3. Once the octrees are implemented, all it

remains are traditional memory access operations of GPU to read and write the data at desired locations, and

doing computations on those data on each GPU processing element in parallel. Shared memory makes it much

more easier to build and use the interaction lists, store andcompute on the residual trees and eliminate the time

required for data communication (which was done usingall-to-all primitive previously).

Note that this gives us just a starting point for parallel implemention of FMM on GPU. Many intricate and

vital details are still ignored and left unanswered. They will eventually be solved as the implementation work

progresses.
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Chapter 4

Discussion: Specular Inter-reflections
and Caustics in Point based Models

4.1 Introduction

After having seen the algorithms and techniques for computing diffuse global illumination on point models, let

us now focus on computing specular effects (reflections and refractions) including caustics for the point mod-

els. These, combined with already calculated diffuse illumination gives the user acomplete global illumination

solution for point models.

Attempts have been made to get these effects. Schaufler [SJ00] was the first to propose a ray-tracing technique

for point clouds. Their idea is based on sending out rays withcertain width which can geometrically be de-

scribed as cylinders. The intersection detection is performed by determining the points of the point cloud that

lie within such a cylinder followed by calculating the ray-surface intersection point as distance-weighted aver-

age of the locations of these points. The normal informationat the intersection point is determined using the

same weighted averaging. This approachdoes nothandle varying point density within the point cloud. More-

over, the surface generation is view-dependent, which may lead to artifacts during animations. Wand [WS03]

introduced a similar concept by replacing the cylinders with cones, but they started with triangular models as

their input instead of point models. Adamson [AA03] proposed a method for ray-tracing point-set surfaces but

was computationally too expensive, the running times beingin several hours. Wald [WS05] then described a

framework for interactive ray-tracing of point models based on a combination of an implicit surface represen-

tation, an efficient surface intersection algorithm and a specifically designed acceleration structure. However,

implicit surface calculation was too expensive and hence they used ray-tracingonly for shadow computations.

Also, the actual shading was performed only by a local shading model. Thus, transparency and mirroring re-

flections were not modelled. Linsen [LMR07] recently introduced a method of Splat-Based Ray-Tracing for

Point Models handling the shadow, reflections and refraction effects efficiently. However, they did not consider

rendering caustics effects in their algorithm.
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Our proposed method is a combination of many such methods discussed above, which combines the advan-

tages each of them offer under one domain. We will successfully be able to get all the desired specular effects

(reflections, refractions and caustics) along with producing a time and memory efficient algorithm for the same.

We will also be able to fuse it with the diffuse illumination algorithm to give a complete global illumination

solution.

Our proposed algorithm follow the Photon Mapping (for polygonal models) [Jen96] strategy closely. Therefore,

we start by giving a brief overview of all the stages of photonmapping algorithm in Section 4.2 and conclude

with some limitations of this technique. We then follow it upwith our proposed method in Section 4.3 to get

all the desired specular effects in a point model scene.

4.2 Photon Mapping

This section aims to give an overview of the photon mapping algorithm along with some of their limitations

(for details refer [Jen96]).

The global illumination algorithm based on photon maps is a two-pass method. The first pass builds the photon

map by emitting photons from the light sources into the sceneand storing them in a photon map when they

hit non-specular objects. The second pass, the rendering pass, uses statistical techniques on the photon map to

extract information about incoming flux and reflected radiance at any point in the scene. The photon map is

decoupled from the geometric representation of the scene. This is a key feature of the algorithm, making it ca-

pable of simulating global illumination in complex scenes containing millions of triangles, instanced geometry,

and complex procedurally defined objects. We will look into the details related to the emission, tracing, storing

of photons and rendering in the remainder of this section.

To help explain the algorithms presented in this section we adopt a notation for light transport introduced by

Heckbert [Hec90]. In Heckbert′s notation a path traveled by light can be described by a regular expression

of the interactions the light has been through. Possible interactions are: the light source (L), the eye (E), a

diffuse reflection (D), a specular reflection (S). An exampleis the light pathLS+DE, which describes light

coming from the light source, being specular reflected one ormore times before being diffusely reflected in the

direction of the eye. Incidentally, this is the path traveled by light when creating caustics.

4.2.1 Photon Tracing (First Pass)

The purpose of the photon tracing pass is to compute indirectillumination on diffuse surfaces. This is done by

emitting photons from the light sources, tracing them through the scene, and storing them at diffuse surfaces.

Photon Emission: The photons emitted from a light source should have a distribution corresponding to the

distribution of emissive power of the light source. If the power of the light is Plight and the number of emitted
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photons isne, the power of each emitted photon is

Pphoton = Plight/ne.

Pseudocode for a simple example of photon emission from a diffuse point light source is given below:

Algorithm 14 Photon emission from a diffuse point light
procedure emitPhotons

1: n = 0 // number of emitted photons
2: while not enough photonsdo
3: DO
4: // use simple rejection sampling
5: // to find diffuse photon direction
6: x = random number between−1 and1
7: y = random number between−1 and1
8: z = random number between−1 and1

while ( x ∗ x + y ∗ y + z ∗ z > 1 )
9:10: d = < x, y, z >

11: p = light source position
12: trace photon from p in direction d
13: n = n + 1
14: end while
15: scale power of stored photons with 1/n

Photon Tracing: Once a photon has been emitted, it is traced through the sceneusing photon tracing. When

a photon hits an object, it can either be reflected, transmitted, or absorbed (with some power loss), decided

probabilistically based on the material parameters of the surface using Russian roulette [Jen96] Examples of

photon paths are shown in Figure 4.1.

Photon Storing: Photons are only stored where they hit diffuse surfaces (or,more precisely, nonspecular

surfaces). The reason is that storing photons on specular surfaces does not give any useful information: the

probability of having a matching incoming photon from the specular direction is zero, so if we want to render

accurate specular reflections the best way is to trace a ray inthe mirror direction using standard ray tracing.

For all other photon-surface interactions, data is stored in a global data structure, thephoton map. Note that

each emitted photon can be stored several times along its path. Also, information about a photon is stored at

the surface where it is absorbed if that surface is diffuse. For each photon-surface interaction, the position,

incoming photon power, and incident direction are stored.

Three Photon Maps: For efficiency reasons, it pays off to divide the stored photons into three photon

maps:
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Figure 4.1: Photon paths in a scene (a Cornell box with a chrome sphere on left and a glass sphere on right):
(a) two diffuse reflections followed by absorption, (b) a specular reflection followed by two diffuse reflections,
(c) two specular transmissions followed by absorption.

• Caustic Photon Map:contains photons that have been through at least one specular reflection before

hitting a diffuse surface:LS+D.

• Global Photon Map:an approximate representation of the global illumination solution for the scene for

all diffuse surfaces:L{S|D|V }∗D

• Volume Photon Map:indirect illumination of a participating medium:L{S|D|V }+V.

A separate photon tracing pass is performed for the caustic photon map since it should be of high quality and

therefore often needs more photons than the global photon map and the volume photon map. The construction

of the photon maps is most easily achieved by using two separate photon tracing steps in order to build the

caustics photon map and the global photon map (including thevolume photon map). This is illustrated in

Figure 4.2 for a simple test scene with a glass sphere and 2 diffuse walls. Figure 4.2(a) shows the construction

of the caustics photon map with a dense distribution of photons,and Figure 4.2(b) shows the construction of the

global photon map with a more coarse distribution of photons.

4.2.2 Preparing the Photon Map for Rendering

In the rendering pass, the photon map is a static data structure that is used to compute estimates of the incoming

flux and the reflected radiance at many points in the scene. To do this it is necessary to locate the nearest

photons in the photon map. This is an operation that is done extremely often, and it is therefore a good idea to

optimize the representation of the photon map before the rendering pass such that finding the nearest photons

is as fast as possible.
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(a) (b)

Figure 4.2: Building (a) the caustics photon map and (b) the global photon map.

The data structure should be compact and at the same time allow for fast nearest neighbor searching. It should

also be able to handle highly non-uniform distributions this is very often the case in the caustics photon map.

A natural candidate that handles these requirements is abalanced kd-tree.

The balanced kd-tree: The time it takes to locate one photon in a balanced kd-tree has a worst time

performance of O(logN) [Moo93], where N is the number of photons in the tree.

4.2.3 Rendering (Second Pass)

Given the photon map, we can proceed with the rendering pass.The photon map is view independent, and

therefore a single photon map constructured for an environment can be utilized to render the scene from any

desired view. The final image is rendered using distributionray tracing in which the pixel radiance is computed

by averaging a number of sample estimates. Each sample consists of tracing a ray from the eye through a

pixel into the scene. The radiance returned by each ray equals the outgoing radiance in the direction of the ray

leaving the point of intersection at the first surface intersected by the ray. The outgoing radiance,Lo, is the sum

of the emitted,Le, and the reflected radiance

Lo(x,−→w ) = Le(x,−→w ) + Lr(x,−→w )

where the reflected radiance,Lr, is computed by integrating the contribution from the incoming radiance,Li,

Lr(x,−→w ) =
∫
σx

fr(x,−→w
′

,−→w )Li(x,−→w
′

)cosθidw
′

i

wherefr is the bidirectional reflectance distribution function (BRDF), and x is the set of incoming directions

around x. The BRDF is separated into a sum of two components: Aspecular/glossy,fr,s, and a diffuse,fr,d

fr(x,−→w
′

,−→w ) = fr,s(x,−→w
′

,−→w ) + fr,d(x,−→w
′

,−→w )
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The incoming radiance is classified using 3 components:

• Li,l(x,−→w
′

) is direct illumination by light coming from the light sources.

• Li,c(x,−→w
′

) is caustics - indirect illumination from the light sources via specular reflection or transmis-

sion.

• Li,d(x,−→w
′

) is indirect illumination from the light sources which has been reflected diffusely at least once.

The incoming radiance is the sum of these three components:

Li(x,−→w
′

) = Li,l(x,−→w
′

) + Li,c(x,−→w
′

) + Li,d(x,−→w
′

)

By using the classifications of the BRDF and the incoming radiance we can split the expression for reflected

radiance into a sum of four integrals:

Lr(x,−→w ) =

∫
σx

fr(x,−→w
′

,−→w )Li(x,−→w
′

)cosθidw
′

i

=

∫
σx

fr(x,−→w
′

,−→w )Li,l(x,−→w
′

)cosθidw
′

i +

∫
σx

fr,s(x,−→w
′

,−→w )(Li,c(x,−→w
′

) + Li,d(x,−→w
′

))cosθidw
′

i +

∫
σx

fr,d(x,−→w
′

,−→w )Li,c(x,−→w
′

)cosθidw
′

i +

∫
σx

fr,d(x,−→w
′

,−→w )Li,d(x,−→w
′

)cosθidw
′

i

There are 4 integrals in the above equation.1st term computesDirect Illumination. 2nd terms computesSpec-

ular and Glossy Reflection. 3rd term computesCaustics. 4th term computesMultiple Diffuse Reflections.

Specular and Glossy Reflection:Specular and glossy reflection is computed by evaluation of the term

∫
σx

fr,s(x,−→w
′

,−→w )(Li,c(x,−→w
′

) + Li,d(x,−→w
′

))cosθidw
′

i

The photon map is not used in the evaluation of this integral since it is strongly dominated byfr,s which has a

narrow peak around the mirror direction. Using the photon map to optimize the integral would require a huge

number of photons in order to make a useful classification of the different directions within the narrow peak

of fr,s. To save memory this strategy is not used and the integral is evaluated using standard Monte Carlo ray

tracing optimized with importance sampling based onfr,s.

Caustics: Caustics are represented by the integral

∫
σx

fr,d(x,−→w
′

,−→w )Li,c(x,−→w
′

)cosθidw
′

i
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The evaluation of this term is dependent on whether an accurate or an approximate computation is required. In

the accurate computation, the term is solved by using a radiance estimate from the caustics photon map. The

number of photons in the caustics photon map is high and we canexpect good quality of the estimate. The

approximate evaluation of the integral is included in the radiance estimate from the global photon map.

4.2.4 Radiance Estimate

The reflected illumination is reconstruction from the photon map through a series of queries to the photon maps.

Each query is used to estimate the reflected radiance at a surface point as the result of a local photon density

estimate. A query to the photon map locates thek photons nearest the surface point for which the reflected

radiance is to be estimated. In conjunction with the surfaceBRDF, the incoming direction, the surface point

and the area encompassing the photons this information is used in a local density estimate that estimates the

reflected radiance. This estimate is called theradiance estimate[Sch06].

The accuracy of the radiance estimate is controlled by two important factors; the resolution of the photon map

and the number of photon used in each radiance estimate. If few photons are used in the radiance estimate,

noise in the illumination becomes visible, if many photons are used edges and other sharp illumination features

such as those caused by caustics are blurred. Unless an excessive number of photons are stored in the photon

map, it is impossible to avoid either of these effects. This is the mentioned trade-off problem between variance

versus bias as it manifests itself in photon mapping.

Figure 4.3 shows an example output of Photon Mapping algorithm.

4.2.5 Limitations of Photon Mapping

Although Photon Mapping is a well established technique forgiving a complete global illumination solution, it

too suffers from some limitations as itemized below:

• Works only for polygonal models. We need to modify the algorithm so that it works for point models as

well.

• One obvious cost factor for photon mapping is the cost for performing k nearest neighbor queries used

for density estimation of photons. As we already have a pre-computed diffuse illumination, we are only

interested in caustic maps. But still, althoughkNN queries are commonly considered to be rather cheap,

it is infact quite expensive when compared to a fast ray tracer for rendering (about10 times expensive)

even for just caustic maps.

• Photon Generation and Tracing are quite slow as well. Needs to be optimized.
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Figure 4.3: Example output of Photon Mapping Algorithm [Jen96] showing reflection, refractions and caustics

4.3 Our Approach

We now present our algorithm to generate specular effects for point models. We try to eliminate the restrictions

of traditional Photon Mapping algorithm at the same time optimizing on the basic technique using a combina-

tion of several algorithms available in literature.

Note that, our specular-effects generation algorithm takes as input a point model with diffuse global illumi-

nation solution already calculated for it. As the diffuse global illumination solution is view-independent, it

provides us with an advantage of having an interactive walk-through of the input scene of point models. How-

ever, specular effects being view-dependent needs to be calculated for every new view-point in the ray-trace

rendered frame. Thus, if specular effect generation takes alot of time, we loose out of having an interactive

walk-through of the scene. We desire not to loose this advantage, and try to optimize every algorithm required

for specular effect generation.

We saw traditional Photon Map works only for polygonal models, which have surface information. But point

models do not have any kind of surface representations. We thereby make necessary modifications in this

algorithm to apply it to point models. We can divide our goal in 2 major tasks:

• Modifying Path Tracing (First Pass)

• Modifying Ray Tracing (Second Pass)

All the other modules of the algorithm are independent of surface representations.
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Fortunately, solution to both of the above tasks is the same.Proper analysis of the algorithm suggests that

both Photon Tracing and the final rendering is done using Ray Tracing techniques. So, modifying the Ray

Tracing technique to suit Point Models is sufficient. There has been some research efforts in the same direction

(as discussed in Section 4.1). We will discuss here one of thevery efficient techniques for doing the same,

Splat-based Ray Tracing[LMR07], in the next section.

4.3.1 Splat-Based Ray Tracing

Surface splatting is established as one of the main rendering techniques for point clouds. This section presents

a ray-tracing approach for objects whose surfaces are represented by point clouds. This approach is based on

casting rays and intersecting them withdisks around pointsor splats[LMR07].

Splats in their general form define a piece-wise constant surface. In particular, each splat has exactly one surface

normal assigned to it. Assuming that the point cloud was obtained by scanning a smooth surface, the application

of the rendering technique should result in the display of a smoothly varying surface. Since ray tracing is based

on casting rays, whose directions depend on the surface normals, there’s a need to define smoothly varying

normals over the entire surface, i.e., also within each splat. To do so, estimated normals at each point of the

point cloud are considered and splat radii are computed depending on local curvature properties. The generated

splats should cover several points of the point cloud. The normals at the covered points of each splat are used to

determine a smoothly varying normal field defined over a localparameter space of the splat. It can be beneficial

to consider further surrounding points and their normals for the normal field computations. Details on the splat

and normal field generation are described later in the Section 4.3.1.1.

The actual ray-tracing procedure is executed by sending outrays that intersect the splats, potentially being

reflected or refracted. Surface normals are interpolated from the normal fields. Care has to be taken where

splats overlap. The ray-splat intersection and the overallimage generation is described in subsection 4.3.2.

4.3.1.1 Splat Generation

Let P be a point cloud consisting ofn pointsp1, ..., pn ∈ ℜ
3. We generatem splatsS1, ..., Sm that cover the

entire surface represented by point cloudP . For each of these splats we are computing its radiusri ∈ ℜ, i =

1, ...,m, and a normal fieldni(u, v), i = 1, ...,m, where(u, v) ∈ [−1, 1]x[−1, 1] with u2 + v2 ≤ 1 describes a

local parametrization of the splat.

Splat Radius: The radii of the m splatsS1, ..., Sm should vary with respect to the curvature of the surface cov-

ered by the splat. In regions of high curvature, a piece-wiseconstant surface representation via splats requires

us to use many splats with small radii to stay within a predefined error bound. In regions of low curvature, some

few large splats may suffice to represent the surface well. For the definition of the error bound, the maximum

distance of points ofP covered by the splat to their closest point on the splat is chosen.
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Let pi ∈ P be any of the points of point cloudP and letni be the respective surface normal of the surface

described byP at positionpi. If the normalni is unknown, we determine the normal by computing thek nearest

neighborsq1, ..., qk ∈ P of pi, fit a plane throughpi and its neighbors in the least-squares sense, and setni to

the normal of the fitting plane.

Let the neighbors ofpi be sorted in the order of increasing distance topi. We initially define splatSj =

(cj , nj, rj) with centercj = pi, normalnj = ni, and radiusrj = 0. Next, the splat is grown iteratively, until

the error bound condition is violated.

At each iteration step, the radius is increased such that thesplat covers1 additional neighbor ofpi. The normal

remains unchanged, but centercj is moved along the surface normalni such that the splat position minimizes

its maximal distance to all covered points ofP. Figure 4.4(a) illustrates the optimal choice ofcj.

Figure 4.4: (a) Generation of splatSj starts with pointpi and grows the splat with radiusrj by iteratively
including neighborsql of pi until the approximation errorδǫ for the covered points exceeds a predefined error
bound. (b) Splat density criterion: Points whose distance from the splats centercj when projected onto splatSj

is smaller than a portionpercof the splats radiusrj are not considered as starting points for splat generation.
(c) Generation of linear normal field (green) over splatSj from normals at points covered by the splat. Normal
field is generated using local parameters(u, v) ∈ [1, 1]X[1, 1] over the splats plane spanned by vectorsuj and
vj orthogonal to normalnj = ni. The normal of the normal field at center pointcj may differ fromni.

Splat Density: Let Sj be the splat that covers the pointpi and itsk nearest neighborsq1, ..., qk, again

sorted by increasing distance topi. To not generate holes in the surface, thesek nearest neighbors should also

include all natural neighbors ofpi, when computing natural neighbors locally for points projected into a fitting

plane. If the natural neighbors of one of the pointsql, l ∈ 1, ..., k, are also among thek nearest neighbors ofpi,

no splat needs to be generated starting fromql . Obviously, the smaller the distance of a neighborql to point

pi is, the higher are the chances that the natural neighbors arealready among the neighbors ofpi.

This motivation led to the following criterion: If splatSj is generated starting from pointpi, then no splats need

to be generated starting from neighbored points within the projected distanceperc.rj from the splats centercj
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, whereperc ∈ [0, 1] is a factor that defines the percentage of the splats radius used for the criterion, see

Figure 4.4(b). The factorperc is defined globally forP, which is possible as it is multiplied with the locally

varying radiirj . The optimal choice forperc is a value such that the generated splats cover the entire surface

and have minimal overlap.

Normal Field: In order to generate a smooth-looking visualization of a surface with a piece-wise constant

representation, there is a need to smoothly (e. g. linearly)interpolate the normals over the surface before locally

applying the light and shading model. Since we do not have connectivity information for our splats, we cannot

interpolate between the normals of neighbored splats. Instead, we need to generate a linearly changing normal

field within each splat. The normal fields of adjacent points should approximately have the same interpolated

normal where the splats meet or intersect.

Let Sj = (cj , nj, rj) be one of the splats generated as described above. In order todefine a linearly changing

normal field over the splat, we use a local parametrization onthe splat. Letuj be a vector orthogonal to the

normal vectornj andvj be defined asvj = njxuj . Moreover, let‖uj‖ = ‖vj‖ = rj . The orthogonal vectors

uj andvj span the plane that contains splatSj . A local parametrization of the splat is given by

(u, v) 7→ cj + uuj + vvj

with (u, v) ∈ ℜ2 andu2 + v2 ≤ 1. The origin of the local 2D coordinate system is the center ofthe splatSj.

Using this local parametrization, a linearly changing normal fieldnj(u, v) for splat is definedSj by

nj(u, v) = −→n j + uνjuj + vωjvj

The vector−→n j describes the normal direction in the splats center. It is tilted along the splat with respect to the

yet to be determined factorsνj , ωj ∈ ℜ. Figure 4.4(c) illustrates the idea.

To determine the tilting factorsνj andωj is exploited the fact that the normal directions are known atthe points

of point cloudP that are covered by the splat. Letpl be one of these points.pl is projected onto the splat, local

coordinates (ul, vl) of pl are determined, and the following equation is derived

nl = −→n j + ulνjuj + vlωjvj

wherenl denotes the surface normal inpl. Proceeding analogously for all other points out ofP covered by

splat Sj, a system of linear equations is obtained with unknown variables νj and ωj. Since the system is

overdetermined, it can only be solved approximately.

4.3.2 Ray Tracing

4.3.2.1 Main Approach

The input of the ray-tracing procedure are the m splatsS1, ..., Sm generated from point cloudP. Each splatSj

is given by its centercj , its radiusrj , and its normal fieldnj(u, v) using local parameters(u, v) over the local
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coordinate system(uj , vj).

The standard ray-tracing method that is applied sends out primary rays from the camera position through the

center of each pixel of the resulting image onto the scene. The intersection of the primary rays with the objects

of the scene using ray-splat intersections is computed. From the intersection points are sent out secondary rays,

i.e., shadow rays towards all light sources, reflection raysin case of reflective surfaces, and refraction rays in

case of transmissive surfaces. In the latter two cases, we enter the recursion until the ray-trace depth is met.

4.3.2.2 Octree Generation

In order to process computations of ray-splat intersections efficiently, an octree for storing the splats is used.

The generation of the octree and the insertion of the splats is done in two steps.

The first step is the dynamic phase, where the octree is generated. Starting with an empty octree represented by

the root that describes the bounding box of the entire scene,each splat is iteratively inserted into that leaf cell

that contains the center of the splat. As soon as one leaf cellwould contain more than a given small numbercs

of splat entries, the leaf cell gets subdivided into eight equally-sized subcells. The splats that were stored in the

former leaf cell get adequately distributed among its children, which are the new leaf cells. This first phase is

as simple as generating an octree for points. The iteration stops once all splats have been inserted.

The second step is the static phase. Further splat insertions are made, but the structure of the octree does not

change anymore, i.e., no further cell subdivisions are executed. The additional splat insertions are necessary,

as splats have an expansion and may stretch over various cells. Thus, in this second phase, we want to insert

the splats into all leaf cells they intersect, see Figure 4.5(a). Since such an exact cell-splat intersection is

computationally rather expensive, the splats are insertedinto leaf cells that potentially intersect the splat.

For each splatSj, the tree is traversed top-down applying a nested test for each traversed cell. The first test

checks for splatSj whether the axes-aligned box with centercj and side length2.rj intersects the cell. If the

test fails, tree traversal for that branch stops. For all leaf cells, for which the first test was positive, a second

test is performed. The second test uses the local parametrization of the splat. The local parameters (0,0), (0,1),

(1,0), and (1,1) define a 2D square that bounds the splat. The position of these four points is checked against

the leaf cell. If all four points lie on one side of one of the six planes that bound the leaf cell, the splat cannot

intersect the leaf cell, see Figure 4.5(c). Otherwise, the splat is inserted into the leaf cell, see Figure 4.5(b).

4.3.2.3 Ray-splat Intersection

The intersection of rays with splats is computed using the octree partitioning of the three-dimensional scene.

For primary rays starting from the camera position (or eye point), the intersection of the ray with the bounding

box of the octree is computed, i.e., with the cell represented by the octrees root. The leaf cell to which the

intersection point belongs is determined, and then algorithm continues from there. From then on, primary and
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Figure 4.5: (a) Octree generation: In the first phase, the octree is generated while inserting splatsSj into the
cells containing their centerscj (red cell). In the second phase, splatSj is inserted into all additional cells it
intersects (yellow cells). (b)(c) The second test checks whether the edges of the bounding square of splatSj

intersect the planesE that bound the octree leaf cell. (b)Sj is inserted into the cell. (c)Sj is not inserted into
the cell. This second test is only performed if the first test (bounding box test) was positive.

secondary rays can be treated equally.

If the rays hits a (leaf) cell of the octree, intersection of the ray with all splats stored within that cell is checked

for. If the ray does not intersect any of the splats stored in that cell or if the cell is empty, the algorithm pro-

ceeds with the adjacent cell in the direction of the ray. If itends up leaving the bounding box of the octree, the

respective background color is reported back. If the ray intersects a splat stored in the current cell, it computes

the precise intersection point and applies the shading, reflection, and refraction model possibly using recursive

calls to compute the color, which is reported back. If the rayhits multiple splats stored in the current cell, the

algorithm computes the intersection points and pick the most appropriate one.

After having a look at theSplat-Based Ray Tracingtechnique, we know how to incorporate Photon Mapping

for point models (replacing the ray-tracer). But, Photon Mapping by itself still takes a lot of time to generate

visually pleasingresults. Hence, next, we try to optimize the traditional Photon Mapping algorithm to work

faster (and possibly at interactive rates). Photon mapping, if divided, works in three stages:

• Photon Generation

• Photon Traversing and performing intersection tests

• Photon retrieval usingkNN queries while ray-trace rendering
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We target each of the three stages of Photon Mapping one by oneand try to optimize them as much as possible

in the following sections.

4.3.3 Optimizing Photon Generation and Sampling

Recall that we generate only caustic photon maps as we already have a pre-computed diffuse global illumination

solution. Thus, the obvious candidate for optimization is the time required for generating caustic photons.

Looking at the Photon Mapping algorithm reveals that some ofthe cost factors for photon generation can not be

improved on. For example, rays will be incoherent during photon generation, and each light path will require

several surface interactions (for reflection and refraction) in order to generate a caustic photon. However, the

number of paths that actually yield caustic photons can be influenced, and should be maximized.

4.3.3.1 Sampling Caustics using Selective Photon Tracing

We use a method similar to Wald [GWS04] which uses,Selective Photon Tracing (SPT)[DBMS02]. Like [GWS04]

we do not consider the temporal domain, but rather useSelective Photon Tracingfor adaptively sampling path

space: In a first step, a set of “pilot photons” is traced into the scene in order to detect paths that generate

caustics. For those pilot paths, periodicity properties ofthe Halton sequence [Nie92] are exploited to generate

similar photons.

By usingSelective Photon Tracingthe increase in the yield of caustic photons is roughly by a factor of four.

Essentially, this means that the same number of caustic photons can be generated with only one fourth of all

rays. As the improvement depends significantly on the (projected) size of the caustic generator, the results for

smaller caustic generators are likely to be more significantthan large ones.

This approach also handles indirect caustics , as the photons of one group also stay together after diffuse

bounces. Most importantly, however, this method does not require any preprocessing and maintains the photon

map’s property of being independent of scene geometry and thus well-suited for both complex scenes and in-

teractive setups.

More details of this algorithm can be found in [GWS04] and [DBMS02].

We thus, previously, had a ray-tracer (Splat-Based Ray Tracing) which is capable of generating specular ef-

fects (sans caustics) on point models. Combining this ray-tracer with the new faster caustic-map generation

technique (usingSelective Photon tracing) gives us quite a bit of speedup.

4.3.4 Optimized Photon Traversal and Intersection tests

The intersection tests performed for generating caustic photon map is similar to those performed while doing

Splat-Based Ray-Tracing(ray-splat intersections), and thereby we need not worry about designing a new algo-

rithm for the same. Further,Splat-Based Ray-TracingusesOctree data-structurefor traversal of the primary
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and secondary rays during ray-tracing. The use of Octree data structure provides us with quite a few advantages:

• We already have Octree data structure generated for input point model while doing diffuse illumination.

Hence same structure can bere-used.

• The same traversal algorithm whichSplat-Based Ray Tracinguses on Octrees can be used for photon

traversal as well.

• Further more, we can go for an even more optimized algorithm for Octree Traversal using neighbor

finding [Sam89]. Here we traverse the octreehorizontally via neighbor finding instead of traversing

vertically starting from the root to the desired node.

Thus, we already have a well-established data structure (Octree) and algorithm (ray-splat intersection) for

performing optimal photon traversal and intersection tests of rays and splats around points.

4.3.5 Fast Photon Retrieval using OptimizedkNN Query Algorithm

We now have an optimized caustic photon generation code, an optimized photon traversal and ray-splat inter-

section code, a good ray-tracer capable of handling specular effects on point models. All it remains is to have

an optimizedkNN query algorithm for fast photon retrieval while rendering.

Although,kd-trees provides for fastkNN queries, they are still slow for interactive settings we desire. Also,

its difficult to extendkd-trees to hardware, and would account for high latency or would require a large cache

to avoid this latency on average.

The algorithm discussed here avoids the above mentioned issues ofkd-trees and provides for low-latency and

has sub-linear access time, there by providing for fast photon retrieval and optimizedkNN query algorithm.

We just provide a brief overview. Details of this algorithm can be found in Ma [MM02].

4.3.5.1 Low Latency Photon Retrieval Using Block Hashing

Jensen [Jen96] uses the kd-tree data structure to find these nearest photons. However, solving the kNN problem

via kd-trees requires a search that traverses the tree. Evenif the tree is stored as a heap, traversal still requires

random-order memory access and memory to store a stack. Moreimportantly, a search-path pruning algorithm,

based on the data already examined, is required to avoid accessing all data in the tree. This introduces serial

dependencies between one memory look up and the next, consequently slowing down the retrieval process.

We present here a hashing-basedAkNN (ApproximatekNN ) solution for fast retrieval of photons. This algo-

rithm has bounded query time, bounded memory usage, and highpotential for fine-scale parallelism. Moreover,

the algorithm results in coherent, non-redundant accessesto block-oriented memory. The results of one mem-

ory look up do not affect subsequent memory lookups, so accesses can take place in parallel within a pipelined
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memory system. The algorithm is based on array access, and ismore compatible with current texture-mapping

capabilities than tree-based algorithms.

A novel technique calledBlock Hashing(BH) is used to solve the approximatekNN (AkNN ) problem in pho-

ton mapping. The algorithm uses hash functions to categorise photons by their positions. Then, akNN query

proceeds by deciding which hash bucket is matched to the query point and retrieving the photons contained

inside the hash bucket for rendering purposes. One attraction of the hashing approach is that evaluation of hash

functions takes constant time. In addition, once we have thehash value, accessing data we want in the hash

table takes only a single access. These advantages permit usto avoid operations that are serially dependent on

one another, such as those required by kd-trees, and hepls towards a low-latency implementation.

The technique is designed under two assumptions on the behavior of memory systems.

• Its assumed that memory is allocated in fixed-sized blocks.

• Its assumed that access to memory is via burst transfer of blocks that are then cached.

Thus if any part of a fixed-sized memory block is touched, access to the rest of this block will be virtually

zero-cost. Therefore, in BH all memory used to store photon data is broken into fixed-sized blocks.

Locality-Sensitive Hashing: Since our goal is to solve thekNN problem as efficiently as possible in a

block-oriented cache-based context, our hashing technique requires hash functions that preserve spatial neigh-

borhoods. These hash functions take points that are close toeach other in the domain space and hash them

close to each other in hash space. By using such hash functions, photons within the same hash bucket as a

query point can be assumed to be close to the query point in theoriginal domain space. Consequently, these

photons are good candidates for thekNN search. The algorithm uses the Locality-Sensitive Hashing(LSH)

algorithm proposed by [GIM99] for the same.

The hash function in LSH groups one-dimensional real numbers in hash space by their spatial location. It

does so by partitioning the domain space and assigning a unique hash value to each partition. To deal with

n-dimensional points, each hash table will have one hash function per dimension. Each hash function generates

one hash value per coordinate of the point and the final hash value is calculated by
∑n−1

i=0
hiP

i wherehi are

the hash values and P is the number of thresholds. Thus each photon gets mapped to three hash tables corre-

sponding to itsx, y, z location co-ordinates. Details on how the thresholds for partitions are selected, how hash

tables are created and what is an optimal bucket size can be referred from Ma [MM02].

Further, each of these photons occupies exactly six32-bit words in memory and are stored in fixed size memory

blocks of64 32-bit words (10 photons per block).

Block Hashing: It, thus, contains a preprocessing phase and a query phase. The preprocessing phase consists

of three steps after the photons have been traced in the scene.
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• Organizing the photons into fixed-sized memory blocks

• Creation of a set of hash tables

• Inserting photon blocks into the hash tables.

Details of the pre-processing phase can be looked in Ma [MM02]. In the second phase, the hash tables will be

queried for a set of candidate photons from which thek nearest photons will be selected for each point in space

to be shaded by the renderer.

Querying: A query into the BH data structure proceeds by delegating thequery to each of theL hash tables.

These parallel accesses will yield as candidates all photonblocks represented by buckets that matched the

query. The final approximate nearest neighbor set comes fromscanning the unified candidate set for the nearest

neighbors to the query point (see Figure 4.6.) Note that unlike kNN algorithms based on hierarchical data

structures, where candidates for thekNN set trickle in as the traversal progresses, in BH all candidates are

available once the parallel queries are completed. Therefore, BH can use algorithms likeselection(instead of a

priority queue) when selecting thek nearest photons.

Figure 4.6: Merging the results from multiple hash tables. (a) the query point retrieves different candidates
sets from different hash tables, (b) the union set of candidates after merging, and (c) the two closest neighbors
selected.

Thus, this completes the whole set-up of making Photon Mapping work for point models and optimizing

every stage of the algorithm. However, issues like how to handle specular objects while computing purely

diffuse global illumination using FMM is still a question. This is just a starting point and many issues need to

be tackled while actual implementation.
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Chapter 5

Conclusion and Future Work

Point-sampled geometry has gained significant interest dueto their simplicity. The lack of connectivity touted

as a plus, however, creates difficulties in many operations like generating global illumination effects. This

becomes especially true when we have a complex scene consisting of several models, the data for which is

available as hard to segment aggregated point-based models. Inter-reflections in such complex scenes requires

knowledge of visibility between point pairs. Computing visibility for point models becomes all the more diffi-

cult, than for polygonal models, since we do not have any surface or object information.

Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction be-

tween two primitives depends on the rest of the scene. One wayto reduce the difficulty is to consider clustering

of regions such that their mutual visibility is resolved at agroup level. Most scenes admit clustering, and the

Visibility Map data structure we propose enables efficient answer to commonrendering queries. In this report,

we have given a novel, provably efficient, hierarchical, visibility determination scheme for point based models.

By viewing this visibility map as a ‘preprocessing’ step, photo-realistic global illumination rendering of com-

plex point-based models have been shown.

Further, we have used theFast Multipole Method (FMM)as the light transport kernel for inter-reflections, in

point models, to compute a description –illumination maps– of the diffuse illumination. Parallel implementa-

tion of FMM is a difficult task with load balancing, data decomposition and communication efficiency being the

major challenges. In Sec. 3.3 we have discussed one such algorithm which uses only a static data decomposi-

tion using parallel compressed octrees, offers communication efficiency and guaranteed load balancing within

a small constant factor. We now aim to exploit the parallel computing power of GPUs for implementation of the

Fast Multipole Methodbased radiosity kernel as well as the point-pair visibilitydetermination algorithm using

Visibility Maps to provide an efficient,fast inter-visibility and global illumination solution for point models.

Necessaryhintswere given for the same in the report.

A complete global illumination solution for point models should coverbothdiffuse and specular (reflections,

refractions, and caustics) effects. Diffuse global illumination is handled by generatingillumination maps. We,
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thus, further saw in the report how various algorithms from the literature were combined under a single domain

to get us atime-efficientsystem designed to generate the desired specular effects for point models. We now aim

to implement these algorithms, merge them together and get the specular effects solution for point models.

We, thus, will have atwo–pass global illumination solver for point models. The input to the system will be a

scene consisting of both diffuse and specular point models.First pass will calculate the diffuse illumination

maps, followed by the second pass for specular effects. Finally, the scene will be rendered using splat-based

ray-tracing technique. However, a question remains that since we are parting the diffuse and specular effect

calculations for the scene, how would we handle specular objects (and their effects on diffuse objects) while

calculatingonly diffuse global illumination (This issue is very well handled in Photon Mapping [Jen96]) in the

first pass of the global illumination solver.This important issue needs to be investigated thoroughly.
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