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Abstract

The need for mosaicing arises when we want to stitch two or more images together so as
to view them as a single continuous image. There are various ways to construct mosaics
of images, one of them being Spherical Mosaics. Several algorithms have been designed to
compute spherical mosaics. This report describes an algorithm for constructing spherical
mosaics from a collection of images taken from a common optical center. It also compares
two different optimization techniques ( local and global ) and shows why global optimiza-
tion technique is much more superior to the local one. Partially overlapping images, an
adjacency map relating the images, initial estimates of the rotations relating each image
to a specified base image, and approximate internal calibration information for the cam-
era form the inputs for the algorithm. The algorithm’s output is a rotation relating each

image to the base image and revised estimates of the camera’s internal parameters.

This algorithm, based on global optimization technique, offers several advantages. First,
image capture instrumentation provides both an adjacency map for the mosaic, and an
initial rotation estimate for each image. Second, it optimizes an objective function based
on a global correlation of overlapping image regions. Third, representation of rotations

as quaternions signicantly increases the accuracy of the optimization.
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Chapter 1

Introduction

The need for mosaicing arises when we want to stitch two or more images together so as
to view them as a single continuous image. There are various ways to construct mosaics
of images, one of them being Spherical Mosaics. As the name suggests, it allows any
number of images to be merged into a single seamless view, simulating the image that
would be acquired by a camera with a spherical field of view. Images shown here describes
a somewhat hemispherical point of view but it can be easily extended to full spherical

arrangements of images.

Figure 1.1: Two typical mosaics shown as sphere and cylinder



Figure 1.2: The roughly hemispherical tiling for a node of the dataset

The camera instrument used annotates each acquired image with an estimate of absolute
6-DOF pose (exterior orientation) — 3 DOF of position, and 3 DOF of orientation for
the acquiring camera. Thus the acquisition system provides both an adjacency map for
images in the mosaic, and an initial estimate of the rotations relating each image to its
neighbors. This forms one of the advantages of using this method. But these estimates
are not that accurate and calls for some pose-refinement algorithm. How to optimize and

refine these estimates is what this report describes.



1.1 Organization of Report

In chapter two we will see what is some of the work done related to this topic of discus-
sion. Chapter three will briefly tell us about some basic concepts of image formation via
perspective projection and give an introduction to quaternions as a form of representation
along with some of its nice properties. We will also see how quaternions and its properties
help us in representing rotations in a very efficient way as discussed in [5] and [2].Chapter
four reviews 2-D projective transformations and methods to compute them. Chapter five
presents a closed-form method to decouple projective transformations into two parts, one
describing the intrinsic parameters of the camera, and another describing the pure rota-
tions to which the camera has been subjected. While theoretically elegant, this technique
is sensitive to errors in image formation and generally yields poor results for real imagery
due to the usage of local optimization technique for refining the parameters. Solution
to the above problem is addressed in Chapter 6 which describes a global optimization
technique that computes revised rotations and camera internal parameters directly from
correlations among images. Constraining the optimization to manipulate pure rotations
produces significantly more accurate mosaics. Concluding remarks are made in chapter

severl.



Chapter 2

Related Work

Much work has been done related to this topic of discussion. Of fundamental interest
in mosaic computations is the warp relating a pair of overlapping images. The simplest
method to compute this warp uses four point correspondences between the two images.
However, identifying suitable features and correspondences is a difficult problem, and
known methods yield good results only for images with significant overlap and minimal

projective distortion.

An alternative method would use correlation of color or luminance information present
in images to compute the warp by nonlinear optimization (e.g., [4]). Although such
techniques avoid the need for feature detection and correspondence, they do not guarantee
that a series of pairwise warps will produce a globally consistent set of relative orientations
as they use the local optimization technique. The example for the same is described in
chapter five.

The choice of rotation also plays an important role. Various methods are available to

represent rotations. Some of them are
e The Axis-angle representation for estimating small rotations [4]
e The Quaternion representation because of its convenience and compactness [5]

This algorithm makes use of the quaternion representation.

Full view spherical panoramas have been computed by [3]. However, their global alignment
algorithm requires a combination of both correlation-based and feature-based optimiza-
tion. In contrast, the algorithm described here optimizes correlation directly to perform
global alignment, avoiding both the need to identify and correspond suitable features.



Chapter 3

A Brief Review of the Basic
Concepts

3.1 Image formation by perspective projection

S=[XY Z](world)

S=[xc yc zc] (camera)

X P=[Px Py P

Figure 3.1: Overview of Perspective Projection

Above figure shows the process of image formation by perspective projection, illustrated
for a point s = [z y 2] as viewed by a camera at world-space position p = [p, p, p.].
The rotation from the global coordinate system XYZ to the camera coordinate system
X'Y'Z" is specified by a 3 x 3 rotation matrix R.

Now,
se = R(s —p)

where s, = [z y z] are the coordinates of s in the camera’s coordinate system. Now we
scale the  and y co-ordinates by depth as



rr=0 Y=o

After scaling it, we now apply the intrinsic camera parameters to complete the transfor-

mation. The final values are:

o= frr+e Y= fy+e

Thus, the entire transformation can be represented in a matrix form as :
!

y' = KM

Z’

R —R,
0 1

z

where Kthe 3 x 3 (upper-triangular) internal camera parameter matrix:

[0 ¢
0 f ¢
0 0 1

and M is the 3 x 4 canonical perspective projection matrix:

1000
0100
0010

3.2 Introduction to Quaternions

3.2.1 Why Quaternions 7

A common problem in computer vision is solving for rigid body motions or poses con-
sisting of a rotation and translation in 3D space. For example, given a set of points z;
and correspondences p;, it is often of interest to compute the 3 x 3 rotation matrix R and
3-vector translation ¢ such that

Rﬂ?i—i—t:pi

Although this system of equations is essentially linear, a number of problems arise when
formulating solutions that account for the non-linear constraints on the components of
R. The constraints arise from using nine values of rotation matrix R to represent three
independent variables of 3D rotation. The rotation matrix is constrained to be orthogonal
which is satisfied when RTR = I (i.e., the rows and columns are orthonormal). Also, the

rotation must not be a reflection; this is satisfied when the determinant is 1 (| R | = 1).

A number of techniques have been developed to deal with this added complexity. One of

the most convenient is the quaternions representation.

10



Here are some of the advantages and mathematical niceties of the quaternion representa-

tion of rotation.

e Quaternions can be composed /multiplied in a straightforward manner to accumulate

the effects of composed rotations.

e The inverse of a quaternion (specifying the inverse rotation) is obtained by simply

negating 3 components of the quaternion vector.

e The rotation between two rotations can be computed by multiplying one quaternion

with the inverse of the other.

e One can easily transform a quaternion into an axis-and-angle representation. Using
this and the previous item, one can compute a rotational distance metric between

two rotations  the angle of rotation between them.

e Quaternions can be easily transformed to a 3 x 3 rotation matrix for efficient com-

putation when rotating vectors.

e With the quaternion representation, the rotation can be solved for in closed form

when correspondences between three-dimensional point sets are available.

e Maintaining the constraints (orthogonal with unit determinant) of rotation is made

simple with quaternions by standard vector normalization.

e The unit quaternion representing the best rotation is the eigenvector associated
with the most positive eigenvalue of a symmetric 4 x 4 matrix. The elements of this
matrix are combinations of sums of products of corresponding coordinates of the
points.

e Suppose that we are given the coordinates of a number of points as measured in two
different Cartesian coordinate systems. The photogrammetric problem of recovering
the transformation between the two systems from these measurements is referred
to as that of absolute orientation. Let us call the two coordinate systems ”left”
and "right.” A desirable property of a solution method is that, when applied to
the problem of finding the best transformation from the right to the left system, it
gives the exact inverse of the best transformation from the left to the right system.

Symmetry is guaranteed when one uses unit quaternions to represent rotation.

e It is much simpler to enforce the constraint that a quaternion have unit magnitude

than it is to ensure that a matrix is orthonormal.

11



3.2.2 What are Quaternions ?

The quaternion q is a four vector [g,, ¢y, G, qo)T which is often considered as a three-
vector  u = (¢, Gy, q.]" and a scalar s = qg. Also it has the property that q? + ¢,° +

¢,°> + ¢.> = 1. Quaternion q is generally referred to as [u, s|” for notational simplicity.
The dot product and vector norm for quaternions is defined as usual

q1 G2 = Uy - Uy + S1S9

_1
2

lal=1(q-q)
Multiplication is defined over quaternions as
q1q2 = [[s1u2 + soup 4 up X ug), s15p — Uy - Uy

The complex conjugate of a quaternion is defined by negating the vector component and is
denoted § = [—u, s]. The complex conjugate of a unit quaternion, |¢| = 1, is the inverse
of the quaternion with respect to multiplication, i.e., qg = q;, where ¢; = [0,0,0,1]". Also
qq; = q;q = q which is why ¢, is referred as the identity quaternion.

3.2.3 Rotations as Quaternions

A unit quaternion q can be used to perform a rigid rotation of a vector x = [x, vy, z]” by

two quaternion multiplications
x

' Yy |-
z

0

where the scalar component of x is simply set to zero. Observe that quaternion multipli-
cation is not commutative; this is consistent with the fact that general three-dimensional
rotations do not commute; however, quaternion multiplication is associative and distribu-

tive.

Working from this definition of quaternion rotation, one can derive a formula for the

corresponding orthogonal (Euclidean) 3 x 3 rotation matrix from a unit quaternion

(q0® + ¢.° — q,° — ¢.%) 2(4:0, — 904.) 2(q:9. + q0q,)
R.(q) = 2(qyqs + 904.) (90° — @.° + ¢,° — ¢.%) 2(qyq. — 904x)
2(¢24x — q0qy) 2.9y + 0042) (@0 — &> — ¢,° + ¢.7)

The subscript « in R, is used to denote that this is the rotation matrix when given a unit
quaternion. Given an arbitrary quaternion, R, would no longer be unitary but rather a

scaled rotation matrix.

12



Chapter 4

2-D Projective Transformations

e

Image 2
Figure 4.1: Transforming pixels from image 1 to space of image 2

Figure illustrates the relationship between two images taken from a fixed optical center,
but with differing orientations. In such cases, pixels in one image can be mapped to the
other image by a 2-D projective transformation [1]. As stated in [1], Given a pair of
images taken by cameras with the same internal parameters from the same location, then
there 1s a projective transformation P taking one image from the other. Furthermore,
P is of the form P = KRK ™' where R is a rotation matriz and K is the calibration
matriz. Unlike simpler 2-D transformations (translation, rotation, affine), the projective
transformation does not preserve parallel lines. This is evident in the above figure, where

the lines bounding image 1 intersect after transformation.

As depth effects do not occur across two images taken from the same optical center [1, 4],

the general perspective projection (Equation 3.1) simplifies to:

13



y | 2 KR (4.1)
1 z
Inverting Equation 4.1 yields:
x !
~*RIK| Y (4.2)
z 1

Above equation converts image co-ordinates to 3-D. Thus pixel coordinates in image 2

can be obtained by projecting back into image 2’s space using Equation 4.1:

T T
y | @ KRyRT'K ™' | oy (4.3)
1 1

Thus the 2-D projective transformation that maps pixel (x1,y;) of image 1 to pixel (3, ys)
of image 2 is :

P = KRyR'K™' (4.4)

As a consequence, only eight parameters are needed to describe the matrix P. Thus 2-D
projective transformations are also known as 8-parameter warps.

14



Chapter 5

Computing Warps and Orientation
Estimates with Local Optimization

5.1 Computing Warps

This section presents a novel idea to compute the warps [4]. The idea is to compute
a warp that (locally) minimizes image-space error by using nonlinear optimization after
having the initial estimates. The error function for this optimization simply measures the
difference in brightness between two images 1 and 2 (in the overlap region), after pixels
in image 1 are mapped to image 2’s space. The difference in brightness is measured by a
sum-of-squared difference (SSD) error metric using the luminances L1 and L2 of images

1 and 2, respectively:

By =3, (Li(@y,y1) — La(P(z1, 1))

The SSD form is well suited for numerical optimization, as only first order derivatives are
required to compute updated values for the iteration.
We define a single error term as

6331,y1 = (L](.T],y]) - LZ(mQayQ)y

The optimization consists of analytically determining derivatives of the above term with
respect to P. It use Levenberg-Marquardt (I.LM) non-linear optimization technique for the
same. The derivative 88{;—1,;’“ is expressed as an 8-component vector consisting of derivatives
w.r.t each entry of P.

15



The steps are:

e Initialise the warp with value that is closed to optimum. Several techniques have
been proposed for this step. In this algorithm, the initial rotation estimates are pro-
vided by the acquisition instrumentation itself and we also know the approximate
camera calibration. It is thus straightforward to compute a good initial estimate
using Equation 4.4 with the internal parameter matrix determined by camera cali-

bration and rotations supplied by physical instrumentation.

e The overall gradient term G is computed by accumulating over all error terms:

Oe
- 191
G — ZQZ] »Y1 exl Y1 8P

e Similarly, the Hessian term corresponding to two adjacent images 1 and 2 is:

0esy .y, (0€s,,
H=— Zwuzn P@llDyl ( P@llDyl )T

e Thus, the optimization proceeds by incrementing the value of P by

AP =—(H+XI)'G

where A is a stabilization parameter set initially to a high value, and reduced to 0 as the

optimization converges.

The following figures shows images in which the first image represents image after the
initial estimates of the warp.Note that incorrect transformations arising from inaccurate
estimates of camera pose result in mismatches between pixels, causing the blurring and

ghosting as seen. The second image is the image after optimization.

{b) ()

Figure 5.1: Part(a) shows one image of a hemispherical tiling blended with its adjacent
images. Part(b) illustrates blurring due to incorrect pose estimates. Part(c) shows the

same view after optimization.

16



Figure 5.2: The projective warp between two images before and after optimization

5.2 Orientation Estimates from Warps

After having calculated and optimized the warps we now can recover rotation from warps
using Equation 4.4 if the camera calibration is known accurately. If not, the following

closed-form solution can be used to derive camera calibration from the warp itself.

5.2.1 Closed-Form Solution for Internal Parameters

We have the following equation with us:
P=KRR 'K
Let R = RyR;". Therefore the equation becomes
R=K'PK

if we solve for R. Since R = R~ (the orthonormality condition for rotations), we have,

17



K 'PK=KTpP TK-T

Let C' = KKT. Therefore we get,

\PCc=cpP "
were
2+ CaCy  Cy
C = CaCy 12+ CZ Cy
Cy cy 1

But how do we obtain matrix C ?

Now, the solution for C can be expressed in terms of eigen-vectors of the projective matrix
P. The eigen-values of P are the same as that of R, since they are related by a similarity
transform. We know the eigen-values of the rotation R are 1, €, and e ", where 0 is
the angel of rotation. Let ey, e; and ey be the eigen-vectors of P corresponding to these

three eigen-values, respectively. Therefore the most general symmetric solution to C is

_ T T T
C = cpegey + cr(erey + egey)

The coefficients ¢y and ¢; are solved by enforcing the constraints that the C33 = 1 and

C'12 - C’136'23-

After having known C we can now easily estimate internal camera parameter matrix K

and then the refined and optimized rotation matrix R.

18



5.3 Demerits of above discussed Technique

From emperical evidences it has been seen that this technique of estimating
rotations seems to be inaccurate. This can be observed in form of large gaps between
image borders although within the region of overlap, the two warps appear identical.

Figure 5.3: Image after local optimization

At first glance, it might appear that the problem is due to incorrectly recovered inter-
nal parameters. However, even though a different set of internal parameters might yield
other rotations, the angle of rotation is completely determined by the eigen-values of the
projective warp P. As this is unaffected by the method by which internal parameters are
computed, this problem is inherent in the warp solution itself. This calls for impos-
ing a rotational constraint during the optimization to obtain quantitatively correct results

and remove the gaps found in the image resulting from the above discussed technique.

Also, more fundamentally, relying on local pairwise warps to compute global quantities
can lead to inconsistencies in the computed internal parameters and rotations, and more

gaps in the mosaiced images. Thus, we need to go for a global optimization procedure.

19



Chapter 6

Computing Warps and Orientation
Estimates with Global Optimization

The optimization described in this chapter produces the best possible rotations for each
image, given initial estimates. The advantage of this approach is that global consistency is
guaranteed by computing a unique rotation for each image. That is, the pairwise rotations
inferred from this representation have the property that the aggregate rotation along any
cycle in the image adjacency map is the identity. In this manner, our representation

avoids the possibility of gaps arising from inconsistent pairwise estimates.

The approach followed is to optimize a global correlation function defined for adjacent
images with respect to all orientations (represented as quaternions). As a by-product,
the algorithm computes a spherical mosaic, a composite of all images corresponding to a

single node.

6.1 Optimization

The algorithm minimizes a Global Error Function:

E=2,E;+Ej

where Fj; is the SSD error between luminance values of adjacent images ¢ and 3.

Eij =3, 5 (Li(mi yi) — Li(Py(i, 9i)))?

and P;; maps coordinates of image 4 to those of image j. This correlation function is
computed only for pairs of adjacent images in the spherical tiling, and only for pixels
of image 7 that map to a valid pixel of image j. As in the pairwise warp estimation,
this function is minimized by computing derivatives w.r.t each orientation and using LM

Nonlinear Optimization starting from the initial orientations.

20



The various steps of computation are:

e The single error term for images ¢ and j is given by:

62 - (Ll(aj:y) - Lj(xnay”))Q with Jj’ =T y’ — %

Ty

and

x! x -| x
y | =v'=P|y|=KRR'K'|y
K ]

e The derivatives for the above error term are calculated as follows:

o' OR1!
o = KR(% =)

where

v=K!

e Then, the derwative of the term e,, w.r.t the quaternion q is given by:

aﬂfl ’ azl ay’ ’ azl
0" __ 9¢ " g 0y _ g Y aq
og Z! dg Z!

e and finally we have ...

86;5:3! . aLJ ax” 8LJ ay”
dqg 02" 0Oq oy” dq

e These derivatives % and gi;{ are approximated using the following convolution
matrices applied at (z”,y”)
-1 0 1 1 2 1
-2 0 2 0 0 0
-1 0 1 -1 -2 -1

21



The Gradient term corresponding to the quaternion ¢; is computed over all terms that
depend on ¢;:

Oex, .y,
o 7/7y7,

It is computed in the coordinates of image i, w.r.t the quaternion ¢;.Similarly, the Hessian

term corresponding to two adjacent images ¢ and j is:

Oeg, y: 10z, y
Hij; = Zﬂ?zﬂ/z gf;quz( g(;iyz)T

Now, in an unconstrained optimization, the increments would be computed as —H 'G.
Applying these increments directly to the ¢;, however, would produce Non-Unit Quater-

nions which do not correspond to pure rotations !!

To constrain the updated quaternions to be unit vectors, we enforce the following addi-

tional constraints on the increments
0gi : Vi:q;-0g; =0

Using Lagrange multipliers ); to enforce these constraints, the equation for computing

the increments becomes:

[H Qllae]_ |
QT 0 A 0
where
¢ 0 0 oq1 M
o= " Y ag= | Az
00 ... 4 San A

The optimization solves the above equation for AQ) and A. Convergence is detected when

the value of the objective function changes by less than some threshold.

22



6.2 Optimization of Internal Camera Parameters

In addition to estimating orientations, the algorithm also performs an optimization on
the internal camera parameters. The overall optimization alternates between a step that
updates all rotations, and a step that updates internal parameters of the camera. The
new parameters are computed using derivatives of v' w.r.t the camera focal length f and

image principal point (¢, ¢,) as shown:

110 % 1 & x
ov' f f
8—f:( 01 0|RR'W'"+KRR" 0 —% % 1)|y
000 0 0 0 1
o [0 0 1] (00 — ]| [2]
v ’
> =(l000|RR'K'+KRR"' 00|y
000 00 0 [1]
o [0 0 0] o0 o] [a2]
v
o =(|0 0 1|RR'K'+KRR |00 —; )|y
Y 00 0 I 0] [ 1]

And here is the optimized image. . .

Figure 6.1: Projective warp between two images after direct optimization
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6.3 Relative Importance of Camera Parameters

Are all the internal parameters equally important for this optimization? A
simplified analysis shown below tells us that determining the focal length accurately is
more important than determining the coordinates of the image principal point.

Image2

Imagel N
cx |

!
|
i
fi
}
|
!
|

Figure 6.2: Rotation and camera parameters in 2-D

Figure shows two 1-D images rotated by an angle #.Here the transformation between pixel
z (with offset angle o from the center) in image 2 to pixel ' in image 1 is given by:

$/:Cx+ftan(9+a)zcm+fw

1-tanftan

Now tan ftan o < 1 for small angles.Thus

' ~c,+ ftanf +tana=c, + ftanf +v — ¢, = ftanf + x
' = ftanf +

Thus we see, to 1°* order, the mapping is insensitive to the principal point (c;,c,) and
more sensitive to the focal length f. Thus the image center can be used as an initial value

for optimization !!!

So we have seen how a global optimization function and representing rotations as quaternions
helps in reducing the gaps between images and gives a very much acceptable composite image

as its output.
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Chapter 7

Concluding Remarks

7.1 A Brief Review of the Paper

Two methods for optimization of the spherical mosaic formed from the initial estimates were
described. The first method use the local optimization technique while the second used the

global optimization technique.
Here are a few advantages the above reviewed algorithm provides:

e Global Optimisation technique provides better and accurate results than the local opti-

misation technique used previously.
e [t provides robust automatic estimation of internal camera parameters as a by-product.

e The results are quite independent of the errors in estimating the initial principal-point

estimate.

e It produces an image with an effectively super-hemispherical field of view, eliminating the
ambiguity between camera translation and camera rotation found in narrow field-of-view

images.

e The spherical mosaiced image formed can be of any desired effective resolution, subject

to the choice of optics and number of raw images that are composited.

e Spherical mosaicing allows the resulting mosaic to be treated as a rigid, composite image.

A few demerits of the above discussed technique are:

e Straightforward implementation of our algorithm will fail where there are large textureless

regions.

e High-pass filtering alone introduces many discontinuities into previously smooth image
regions, corrupting the derivative computations and preventing convergence. Thus their
implementation must filter the images to remove textureless regions, while simultaneously

preserving smoothness. Thus band-pass filtering is preferred.

25



e The traversing and mapping of pixels in each image and the accumulation of the global

derivatives increases the computational costs.

e The algorithm fails to converge for large errors in estimating focal lenght. Thus, fairly

good camera calibration is required to provide initial focal length estimates.

e The algorithm uses a gradient based approach for optimization and may get stuck with
the problem of local minima. Other optimization techniques like Simulated Annhealing

might just provide better results.
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7.2 Conclusion

This report described two methods to recover relative rotations and internal camera parameters

for the set of images acquired from a common optical center.

The first method is a closed-form solution using eigen-vectors of 8-parameter warps. This method
is theoretically elegant, but yields quantitatively inaccurate results as it just performs local
optimization. The second method solves this problem by computing rotations and internal

parameters directly from image-space correlation using a global optimization technique.

We saw that this method gives better and accurate results than the former one. Overall, spherical
mosaicing allows the resulting mosaic to be treated as a rigid, composite image and provides
a huge field of view. If proper optimization of the estimates is performed, better results are

delivered.
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