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Abstra
tThe need for mosai
ing arises when we want to stit
h two or more images together so asto view them as a single 
ontinuous image. There are various ways to 
onstru
t mosai
sof images, one of them being Spheri
al Mosai
s. Several algorithms have been designed to
ompute spheri
al mosai
s. This report des
ribes an algorithm for 
onstru
ting spheri
almosai
s from a 
olle
tion of images taken from a 
ommon opti
al 
enter. It also 
omparestwo di�erent optimization te
hniques ( lo
al and global ) and shows why global optimiza-tion te
hnique is mu
h more superior to the lo
al one. Partially overlapping images, anadja
en
y map relating the images, initial estimates of the rotations relating ea
h imageto a spe
i�ed base image, and approximate internal 
alibration information for the 
am-era form the inputs for the algorithm. The algorithm's output is a rotation relating ea
himage to the base image and revised estimates of the 
amera's internal parameters.This algorithm, based on global optimization te
hnique, o�ers several advantages. First,image 
apture instrumentation provides both an adja
en
y map for the mosai
, and aninitial rotation estimate for ea
h image. Se
ond, it optimizes an obje
tive fun
tion basedon a global 
orrelation of overlapping image regions. Third, representation of rotationsas quaternions signi
antly in
reases the a

ura
y of the optimization.
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Chapter 1Introdu
tionThe need for mosai
ing arises when we want to stit
h two or more images together so asto view them as a single 
ontinuous image. There are various ways to 
onstru
t mosai
sof images, one of them being Spheri
al Mosai
s. As the name suggests, it allows anynumber of images to be merged into a single seamless view, simulating the image thatwould be a
quired by a 
amera with a spheri
al �eld of view. Images shown here des
ribesa somewhat hemispheri
al point of view but it 
an be easily extended to full spheri
alarrangements of images.

Figure 1.1: Two typi
al mosai
s shown as sphere and 
ylinder5



Figure 1.2: The roughly hemispheri
al tiling for a node of the dataset
The 
amera instrument used annotates ea
h a
quired image with an estimate of absolute6-DOF pose (exterior orientation) | 3 DOF of position, and 3 DOF of orientation forthe a
quiring 
amera. Thus the a
quisition system provides both an adja
en
y map forimages in the mosai
, and an initial estimate of the rotations relating ea
h image to itsneighbors. This forms one of the advantages of using this method. But these estimatesare not that a

urate and 
alls for some pose-re�nement algorithm. How to optimize andre�ne these estimates is what this report des
ribes.
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1.1 Organization of ReportIn 
hapter two we will see what is some of the work done related to this topi
 of dis
us-sion. Chapter three will brie
y tell us about some basi
 
on
epts of image formation viaperspe
tive proje
tion and give an introdu
tion to quaternions as a form of representationalong with some of its ni
e properties. We will also see how quaternions and its propertieshelp us in representing rotations in a very eÆ
ient way as dis
ussed in [5℄ and [2℄.Chapterfour reviews 2-D proje
tive transformations and methods to 
ompute them. Chapter �vepresents a 
losed-form method to de
ouple proje
tive transformations into two parts, onedes
ribing the intrinsi
 parameters of the 
amera, and another des
ribing the pure rota-tions to whi
h the 
amera has been subje
ted. While theoreti
ally elegant, this te
hniqueis sensitive to errors in image formation and generally yields poor results for real imagerydue to the usage of lo
al optimization te
hnique for re�ning the parameters. Solutionto the above problem is addressed in Chapter 6 whi
h des
ribes a global optimizationte
hnique that 
omputes revised rotations and 
amera internal parameters dire
tly from
orrelations among images. Constraining the optimization to manipulate pure rotationsprodu
es signi�
antly more a

urate mosai
s. Con
luding remarks are made in 
hapterseven.
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Chapter 2Related WorkMu
h work has been done related to this topi
 of dis
ussion. Of fundamental interestin mosai
 
omputations is the warp relating a pair of overlapping images. The simplestmethod to 
ompute this warp uses four point 
orresponden
es between the two images.However, identifying suitable features and 
orresponden
es is a diÆ
ult problem, andknown methods yield good results only for images with signi�
ant overlap and minimalproje
tive distortion.An alternative method would use 
orrelation of 
olor or luminan
e information presentin images to 
ompute the warp by nonlinear optimization (e.g., [4℄). Although su
hte
hniques avoid the need for feature dete
tion and 
orresponden
e, they do not guaranteethat a series of pairwise warps will produ
e a globally 
onsistent set of relative orientationsas they use the lo
al optimization te
hnique. The example for the same is des
ribed in
hapter �ve.The 
hoi
e of rotation also plays an important role. Various methods are available torepresent rotations. Some of them are� The Axis-angle representation for estimating small rotations [4℄� The Quaternion representation be
ause of its 
onvenien
e and 
ompa
tness [5℄This algorithm makes use of the quaternion representation.Full view spheri
al panoramas have been 
omputed by [3℄. However, their global alignmentalgorithm requires a 
ombination of both 
orrelation-based and feature-based optimiza-tion. In 
ontrast, the algorithm des
ribed here optimizes 
orrelation dire
tly to performglobal alignment, avoiding both the need to identify and 
orrespond suitable features.
8



Chapter 3A Brief Review of the Basi
Con
epts
3.1 Image formation by perspe
tive proje
tion

R

Y’

X

Y

Z

C=[Cx Cy]

S=[X’ Y’]

S=[xc yc zc] (camera)

S = [X Y Z](world)

X’

Z’

P = [Px Py Pz]Figure 3.1: Overview of Perspe
tive Proje
tionAbove �gure shows the pro
ess of image formation by perspe
tive proje
tion, illustratedfor a point s = [x y z℄ as viewed by a 
amera at world-spa
e position p = [px py pz℄.The rotation from the global 
oordinate system XYZ to the 
amera 
oordinate systemX 0Y 0Z 0 is spe
i�ed by a 3� 3 rotation matrix R.Now, s
 = R(s� p)where s
 = [x y z℄ are the 
oordinates of s in the 
amera's 
oordinate system. Now wes
ale the x and y 
o-ordinates by depth as 9



xI = x
z
 yI = y
z
After s
aling it, we now apply the intrinsi
 
amera parameters to 
omplete the transfor-mation. The �nal values are: x0 = fxI + 
x y0 = fyI + 
yThus, the entire transformation 
an be represented in a matrix form as :264 x0y0z0 375 �= KM " R �Rp0 1 #264 xyz 375 (3.1)where Kthe 3� 3 (upper-triangular) internal 
amera parameter matrix:264 f 0 
x0 f 
y0 0 1 375and M is the 3� 4 
anoni
al perspe
tive proje
tion matrix:264 1 0 0 00 1 0 00 0 1 0 3753.2 Introdu
tion to Quaternions3.2.1 Why Quaternions ?A 
ommon problem in 
omputer vision is solving for rigid body motions or poses 
on-sisting of a rotation and translation in 3D spa
e. For example, given a set of points xiand 
orresponden
es pi, it is often of interest to 
ompute the 3� 3 rotation matrix R and3-ve
tor translation t su
h that Rxi + t = piAlthough this system of equations is essentially linear, a number of problems arise whenformulating solutions that a

ount for the non-linear 
onstraints on the 
omponents ofR. The 
onstraints arise from using nine values of rotation matrix R to represent threeindependent variables of 3D rotation. The rotation matrix is 
onstrained to be orthogonalwhi
h is satis�ed when RTR = I (i.e., the rows and 
olumns are orthonormal). Also, therotation must not be a re
e
tion; this is satis�ed when the determinant is 1 (j R j = 1).A number of te
hniques have been developed to deal with this added 
omplexity. One ofthe most 
onvenient is the quaternions representation.10



Here are some of the advantages and mathemati
al ni
eties of the quaternion representa-tion of rotation.� Quaternions 
an be 
omposed/multiplied in a straightforward manner to a

umulatethe e�e
ts of 
omposed rotations.� The inverse of a quaternion (spe
ifying the inverse rotation) is obtained by simplynegating 3 
omponents of the quaternion ve
tor.� The rotation between two rotations 
an be 
omputed by multiplying one quaternionwith the inverse of the other.� One 
an easily transform a quaternion into an axis-and-angle representation. Usingthis and the previous item, one 
an 
ompute a rotational distan
e metri
 betweentwo rotations | the angle of rotation between them.� Quaternions 
an be easily transformed to a 3� 3 rotation matrix for eÆ
ient 
om-putation when rotating ve
tors.� With the quaternion representation, the rotation 
an be solved for in 
losed formwhen 
orresponden
es between three-dimensional point sets are available.� Maintaining the 
onstraints (orthogonal with unit determinant) of rotation is madesimple with quaternions by standard ve
tor normalization.� The unit quaternion representing the best rotation is the eigenve
tor asso
iatedwith the most positive eigenvalue of a symmetri
 4�4 matrix. The elements of thismatrix are 
ombinations of sums of produ
ts of 
orresponding 
oordinates of thepoints.� Suppose that we are given the 
oordinates of a number of points as measured in twodi�erent Cartesian 
oordinate systems. The photogrammetri
 problem of re
overingthe transformation between the two systems from these measurements is referredto as that of absolute orientation. Let us 
all the two 
oordinate systems "left"and "right." A desirable property of a solution method is that, when applied tothe problem of �nding the best transformation from the right to the left system, itgives the exa
t inverse of the best transformation from the left to the right system.Symmetry is guaranteed when one uses unit quaternions to represent rotation.� It is mu
h simpler to enfor
e the 
onstraint that a quaternion have unit magnitudethan it is to ensure that a matrix is orthonormal.
11



3.2.2 What are Quaternions ?The quaternion q is a four ve
tor [qx; qy; qz; q0℄T whi
h is often 
onsidered as a three-ve
tor u = [qx; qy; qz℄T and a s
alar s = q0. Also it has the property that q02 + qx2 +qy2 + qz2 = 1. Quaternion q is generally referred to as [u; s℄T for notational simpli
ity.The dot produ
t and ve
tor norm for quaternions is de�ned as usualq1 � q2 = u1 � u2 + s1s2j q j= (q � q)� 12Multipli
ation is de�ned over quaternions asq1q2 = [[s1u2 + s2u1 + u1 � u2℄; s1s2 � u1 � u2℄The 
omplex 
onjugate of a quaternion is de�ned by negating the ve
tor 
omponent and isdenoted q = [�u; s℄T . The 
omplex 
onjugate of a unit quaternion, jqj = 1, is the inverseof the quaternion with respe
t to multipli
ation, i.e., qq = qI , where qI = [0; 0; 0; 1℄T . AlsoqqI = qIq = q whi
h is why qI is referred as the identity quaternion.3.2.3 Rotations as QuaternionsA unit quaternion q 
an be used to perform a rigid rotation of a ve
tor x = [x; y; z℄T bytwo quaternion multipli
ations x0 = q 26664 xyz0 37775 q;where the s
alar 
omponent of x is simply set to zero. Observe that quaternion multipli-
ation is not 
ommutative; this is 
onsistent with the fa
t that general three-dimensionalrotations do not 
ommute; however, quaternion multipli
ation is asso
iative and distribu-tive.Working from this de�nition of quaternion rotation, one 
an derive a formula for the
orresponding orthogonal (Eu
lidean) 3� 3 rotation matrix from a unit quaternionRu(q) = 264 (q02 + qx2 � qy2 � qz2) 2(qxqy � q0qz) 2(qxqz + q0qy)2(qyqx + q0qz) (q02 � qx2 + qy2 � qz2) 2(qyqz � q0qx)2(qzqx � q0qy) 2(qzqy + q0qx) (q02 � qx2 � qy2 + qz2) 375The subs
ript u in Ru is used to denote that this is the rotation matrix when given a unitquaternion. Given an arbitrary quaternion, Ru would no longer be unitary but rather as
aled rotation matrix. 12



Chapter 42-D Proje
tive Transformations

Figure 4.1: Transforming pixels from image 1 to spa
e of image 2Figure illustrates the relationship between two images taken from a �xed opti
al 
enter,but with di�ering orientations. In su
h 
ases, pixels in one image 
an be mapped to theother image by a 2-D proje
tive transformation [1℄. As stated in [1℄, Given a pair ofimages taken by 
ameras with the same internal parameters from the same lo
ation, thenthere is a proje
tive transformation P taking one image from the other. Furthermore,P is of the form P = KRK�1 where R is a rotation matrix and K is the 
alibrationmatrix. Unlike simpler 2-D transformations (translation, rotation, aÆne), the proje
tivetransformation does not preserve parallel lines. This is evident in the above �gure, wherethe lines bounding image 1 interse
t after transformation.As depth e�e
ts do not o

ur a
ross two images taken from the same opti
al 
enter [1, 4℄,the general perspe
tive proje
tion (Equation 3.1) simpli�es to:13



264 x0y01 375 �= KR264 xyz 375 (4.1)Inverting Equation 4.1 yields: 264 xyz 375 �= R�1K�1 264 x0y01 375 (4.2)Above equation 
onverts image 
o-ordinates to 3-D. Thus pixel 
oordinates in image 2
an be obtained by proje
ting ba
k into image 2's spa
e using Equation 4.1:264 x2y21 375 �= KR2R�11 K�1 264 x1y11 375 (4.3)Thus the 2-D proje
tive transformation that maps pixel (x1; y1) of image 1 to pixel (x2; y2)of image 2 is :
P = KR2R�11 K�1 (4.4)As a 
onsequen
e, only eight parameters are needed to des
ribe the matrix P. Thus 2-Dproje
tive transformations are also known as 8-parameter warps.
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Chapter 5Computing Warps and OrientationEstimates with Lo
al Optimization
5.1 Computing WarpsThis se
tion presents a novel idea to 
ompute the warps [4℄. The idea is to 
omputea warp that (lo
ally) minimizes image-spa
e error by using nonlinear optimization afterhaving the initial estimates. The error fun
tion for this optimization simply measures thedi�eren
e in brightness between two images 1 and 2 (in the overlap region), after pixelsin image 1 are mapped to image 2's spa
e. The di�eren
e in brightness is measured by asum-of-squared di�eren
e (SSD) error metri
 using the luminan
es L1 and L2 of images1 and 2, respe
tively: E12 =Px1;y1(L1(x1; y1)� L2(P (x1; y1)))The SSD form is well suited for numeri
al optimization, as only �rst order derivatives arerequired to 
ompute updated values for the iteration.We de�ne a single error term ase2x1;y1 = (L1(x1; y1)� L2(x2; y2))2The optimization 
onsists of analyti
ally determining derivatives of the above term withrespe
t to P. It use Levenberg-Marquardt (LM) non-linear optimization te
hnique for thesame. The derivative �ex1;y1�P is expressed as an 8-
omponent ve
tor 
onsisting of derivativesw.r.t ea
h entry of P.
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The steps are:� Initialise the warp with value that is 
losed to optimum. Several te
hniques havebeen proposed for this step. In this algorithm, the initial rotation estimates are pro-vided by the a
quisition instrumentation itself and we also know the approximate
amera 
alibration. It is thus straightforward to 
ompute a good initial estimateusing Equation 4.4 with the internal parameter matrix determined by 
amera 
ali-bration and rotations supplied by physi
al instrumentation.� The overall gradient term G is 
omputed by a

umulating over all error terms:G = �Px1;y1 ex1;y1 �ex1;y1�P� Similarly, the Hessian term 
orresponding to two adja
ent images 1 and 2 is:H = �Px1;y1 �ex1;y1�P (�ex1;y1�P )T� Thus, the optimization pro
eeds by in
rementing the value of P by�P = �(H + �I)�1Gwhere � is a stabilization parameter set initially to a high value, and redu
ed to 0 as theoptimization 
onverges.The following �gures shows images in whi
h the �rst image represents image after theinitial estimates of the warp.Note that in
orre
t transformations arising from ina

urateestimates of 
amera pose result in mismat
hes between pixels, 
ausing the blurring andghosting as seen. The se
ond image is the image after optimization.

Figure 5.1: Part(a) shows one image of a hemispheri
al tiling blended with its adja
entimages. Part(b) illustrates blurring due to in
orre
t pose estimates. Part(
) shows thesame view after optimization.
16



Figure 5.2: The proje
tive warp between two images before and after optimization5.2 Orientation Estimates from WarpsAfter having 
al
ulated and optimized the warps we now 
an re
over rotation from warpsusing Equation 4.4 if the 
amera 
alibration is known a

urately. If not, the following
losed-form solution 
an be used to derive 
amera 
alibration from the warp itself.5.2.1 Closed-Form Solution for Internal ParametersWe have the following equation with us:P = KR2R�11 K�1Let R = R2R�11 . Therefore the equation be
omesR = K�1PKif we solve for R. Sin
e R = R�T (the orthonormality 
ondition for rotations), we have,17



K�1PK = KTP�TK�TLet C = KKT . Therefore we get, PC = CP�Twere C = 264 f 2 + 
2x 
x
y 
x
x
y f 2 + 
2y 
y
x 
y 1 375But how do we obtain matrix C ?Now, the solution forC 
an be expressed in terms of eigen-ve
tors of the proje
tive matrixP. The eigen-values of P are the same as that of R, sin
e they are related by a similaritytransform. We know the eigen-values of the rotation R are 1; ei�; and e�i�, where � isthe angel of rotation. Let e0; e1 and e2 be the eigen-ve
tors of P 
orresponding to thesethree eigen-values, respe
tively. Therefore the most general symmetri
 solution to C isC = 
0e0eT0 + 
1(e1eT2 + e2eT1 )The 
oeÆ
ients 
0 and 
1 are solved by enfor
ing the 
onstraints that the C33 = 1 andC12 = C13C23.After having known C we 
an now easily estimate internal 
amera parameter matrix Kand then the re�ned and optimized rotation matrix R.
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5.3 Demerits of above dis
ussed Te
hniqueFrom emperi
al eviden
es it has been seen that this te
hnique of estimatingrotations seems to be ina

urate. This 
an be observed in form of large gaps betweenimage borders although within the region of overlap, the two warps appear identi
al.

Figure 5.3: Image after lo
al optimization
At �rst glan
e, it might appear that the problem is due to in
orre
tly re
overed inter-nal parameters. However, even though a di�erent set of internal parameters might yieldother rotations, the angle of rotation is 
ompletely determined by the eigen-values of theproje
tive warp P. As this is una�e
ted by the method by whi
h internal parameters are
omputed, this problem is inherent in the warp solution itself. This 
alls for impos-ing a rotational 
onstraint during the optimization to obtain quantitatively 
orre
t resultsand remove the gaps found in the image resulting from the above dis
ussed te
hnique.Also, more fundamentally, relying on lo
al pairwise warps to 
ompute global quantities
an lead to in
onsisten
ies in the 
omputed internal parameters and rotations, and moregaps in the mosai
ed images. Thus, we need to go for a global optimization pro
edure.
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Chapter 6Computing Warps and OrientationEstimates with Global OptimizationThe optimization des
ribed in this 
hapter produ
es the best possible rotations for ea
himage, given initial estimates. The advantage of this approa
h is that global 
onsisten
y isguaranteed by 
omputing a unique rotation for ea
h image. That is, the pairwise rotationsinferred from this representation have the property that the aggregate rotation along any
y
le in the image adja
en
y map is the identity. In this manner, our representationavoids the possibility of gaps arising from in
onsistent pairwise estimates.The approa
h followed is to optimize a global 
orrelation fun
tion de�ned for adja
entimages with respe
t to all orientations (represented as quaternions). As a by-produ
t,the algorithm 
omputes a spheri
al mosai
, a 
omposite of all images 
orresponding to asingle node.6.1 OptimizationThe algorithm minimizes a Global Error Fun
tion:E =Pi;j Eij + Ejiwhere Eij is the SSD error between luminan
e values of adja
ent images i and j.Eij =Pxi;yi(Li(xi; yi)� Lj(Pij(xi; yi)))2and Pij maps 
oordinates of image i to those of image j. This 
orrelation fun
tion is
omputed only for pairs of adja
ent images in the spheri
al tiling, and only for pixelsof image i that map to a valid pixel of image j. As in the pairwise warp estimation,this fun
tion is minimized by 
omputing derivatives w.r.t ea
h orientation and using LMNonlinear Optimization starting from the initial orientations.20



The various steps of 
omputation are:� The single error term for images i and j is given by:e2x;y = (Li(x; y)� Lj(x"; y"))2 with x" = x0z0 y" = y0z0and 264 x0y0z0 375 = v0 = P 264 xy1 375 = KR0R�1K�1 264 xy1 375� The derivatives for the above error term are 
al
ulated as follows:�v0�q = KR0(�R�1�q )vwhere
v = K�1 264 xy1 375� Then, the derivative of the term ex;y w.r.t the quaternion q is given by:�x"�q = �x0�q �x"�z0�qz0 �y"�q = �y0�q �y"�z0�qz0� and �nally we have . . . �ex;y�q = �Lj�x" �x"�q + �Lj�y" �y"�q� These derivatives �Lj�x" and �Lj�y" are approximated using the following 
onvolutionmatri
es applied at (x"; y")264 �1 0 1�2 0 2�1 0 1 375264 1 2 10 0 0�1 �2 �1 37521



The Gradient term 
orresponding to the quaternion qi is 
omputed over all terms thatdepend on qi: Gi =Pxi;yi exi;yi �exi;yi�qiIt is 
omputed in the 
oordinates of image i, w.r.t the quaternion qi.Similarly, theHessianterm 
orresponding to two adja
ent images i and j is:Hij =Pxi;yi �exi;yi�qi (�exi;yi�qi )TNow, in an un
onstrained optimization, the in
rements would be 
omputed as �H�1G.Applying these in
rements dire
tly to the qi, however, would produ
eNon-Unit Quater-nions whi
h do not 
orrespond to pure rotations !!To 
onstrain the updated quaternions to be unit ve
tors, we enfor
e the following addi-tional 
onstraints on the in
rementsÆqi : 8i : qi � Æqi = 0Using Lagrange multipliers �i to enfor
e these 
onstraints, the equation for 
omputingthe in
rements be
omes: " H QQT 0 #" �Q� # = �" G0 #where
Q = 266664 q1 0 : : : 00 q2 : : : 0... ... ... ...0 0 : : : qn

377775 ;�Q = 266664 Æq1Æq2...Æqn
377775 ;� = 266664 �1�2...�4n

377775The optimization solves the above equation for �Q and �. Convergen
e is dete
ted whenthe value of the obje
tive fun
tion 
hanges by less than some threshold.
22



6.2 Optimization of Internal Camera ParametersIn addition to estimating orientations, the algorithm also performs an optimization onthe internal 
amera parameters. The overall optimization alternates between a step thatupdates all rotations, and a step that updates internal parameters of the 
amera. Thenew parameters are 
omputed using derivatives of v0 w.r.t the 
amera fo
al length f andimage prin
ipal point (
x; 
y) as shown:�v0�f = (264 1 1 00 1 00 0 0 375R0R�1K�1 +KR0R�1 264 � 1f2 1 
xf20 � 1f2 
yf20 0 0 375)264 xy1 375�v0�
x = (264 0 0 10 0 00 0 0 375R0R�1K�1 +KR0R�1 264 0 0 � 1f0 0 00 0 0 375)264 xy1 375�v0�
y = (264 0 0 00 0 10 0 0 375R0R�1K�1 +KR0R�1 264 0 0 00 0 � 1f0 0 0 375)264 xy1 375And here is the optimized image: : :

Figure 6.1: Proje
tive warp between two images after dire
t optimization23



6.3 Relative Importan
e of Camera ParametersAre all the internal parameters equally important for this optimization? Asimpli�ed analysis shown below tells us that determining the fo
al length a

urately ismore important than determining the 
oordinates of the image prin
ipal point.
Image1

Image2

x

cx
cx

f f

x’

Figure 6.2: Rotation and 
amera parameters in 2-DFigure shows two 1-D images rotated by an angle �.Here the transformation between pixelx (with o�set angle � from the 
enter) in image 2 to pixel x0 in image 1 is given by:x0 = 
x + f tan(� + �) = 
x + f tan �+tan�1�tan � tan�Now tan � tan�� 1 for small angles.Thusx0 � 
x + f tan � + tan� = 
x + f tan � + x� 
x = f tan � + xx0 = f tan � + xThus we see, to 1st order, the mapping is insensitive to the prin
ipal point (
x; 
y) andmore sensitive to the fo
al length f. Thus the image 
enter 
an be used as an initial valuefor optimization !!!So we have seen how a global optimization fun
tion and representing rotations as quaternionshelps in redu
ing the gaps between images and gives a very mu
h a

eptable 
omposite imageas its output.
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Chapter 7Con
luding Remarks
7.1 A Brief Review of the PaperTwo methods for optimization of the spheri
al mosai
 formed from the initial estimates weredes
ribed. The �rst method use the lo
al optimization te
hnique while the se
ond used theglobal optimization te
hnique.Here are a few advantages the above reviewed algorithm provides:� Global Optimisation te
hnique provides better and a

urate results than the lo
al opti-misation te
hnique used previously.� It provides robust automati
 estimation of internal 
amera parameters as a by-produ
t.� The results are quite independent of the errors in estimating the initial prin
ipal-pointestimate.� It produ
es an image with an e�e
tively super-hemispheri
al �eld of view, eliminating theambiguity between 
amera translation and 
amera rotation found in narrow �eld-of-viewimages.� The spheri
al mosai
ed image formed 
an be of any desired e�e
tive resolution, subje
tto the 
hoi
e of opti
s and number of raw images that are 
omposited.� Spheri
al mosai
ing allows the resulting mosai
 to be treated as a rigid, 
omposite image.A few demerits of the above dis
ussed te
hnique are:� Straightforward implementation of our algorithm will fail where there are large texturelessregions.� High-pass �ltering alone introdu
es many dis
ontinuities into previously smooth imageregions, 
orrupting the derivative 
omputations and preventing 
onvergen
e. Thus theirimplementation must �lter the images to remove textureless regions, while simultaneouslypreserving smoothness. Thus band-pass �ltering is preferred.25



� The traversing and mapping of pixels in ea
h image and the a

umulation of the globalderivatives in
reases the 
omputational 
osts.� The algorithm fails to 
onverge for large errors in estimating fo
al lenght. Thus, fairlygood 
amera 
alibration is required to provide initial fo
al length estimates.� The algorithm uses a gradient based approa
h for optimization and may get stu
k withthe problem of lo
al minima. Other optimization te
hniques like Simulated Annhealingmight just provide better results.
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7.2 Con
lusionThis report des
ribed two methods to re
over relative rotations and internal 
amera parametersfor the set of images a
quired from a 
ommon opti
al 
enter.The �rst method is a 
losed-form solution using eigen-ve
tors of 8-parameter warps. This methodis theoreti
ally elegant, but yields quantitatively ina

urate results as it just performs lo
aloptimization. The se
ond method solves this problem by 
omputing rotations and internalparameters dire
tly from image-spa
e 
orrelation using a global optimization te
hnique.We saw that this method gives better and a

urate results than the former one. Overall, spheri
almosai
ing allows the resulting mosai
 to be treated as a rigid, 
omposite image and providesa huge �eld of view. If proper optimization of the estimates is performed, better results aredelivered.
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