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Chapter 1

Introduction to Scilab

1.1 Introduction

These exercises are intended to introduce you to the computer environment that
you will be using in this course.

By the end of this tutorial you should have checked that your computer ac-
count is working and you will have practiced using an editor and Scilab.

One way or another you should try to get though all of this tutorial before the
next tutorial starts, as it will require some programming work, so do not hesitate
to ask for help.

In this session you will mostly gain some experience with the Scilab package.
We will consider some simple Scilab expressions and use them to consider some
problems related to the use of floating point arithmetic.

Along the way, questions will be asked. You should provide answers to these
questions in your lab book. Marks for the tutorial will be awarded based on the
work presented in your lab book.

1.2 Login

The startup procedure for Scilab is a little different depending on what type
of machine you are on and how it has been setup. But essentially you need to
startup a Scilab session, as well as an editor. For small calculations you can
just use the Scilab interactive command line, i.e. just type commands straight
into Scilab. For anything more complicated it is much more efficient to type
your commands into a file (using your favorite text editor), save the file and then
execute the commands from the file using the exec filename command from the
Scilab command line.

I will go through the procedure in a little more detail for Windows and Mac
machines. So choose your system:
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1.2.1 Windows Login

The integration of Scilab into Windows is quite good. For this operating system
Scilab has an integrated editor. Scilab is simply run from the application
menu off the start menu. At the ANU, Scilab can be found under Mathematics
Software menu item.

Once Scilab is running you are met with the command window. Startup
the editor (from the menu bar) and you are ready to start playing with Scilab,
either from the command line or from the editor.

1.2.2 Mac Login

Unfortunately the integration of Scilab into the Mac world is still quite primi-
tive. An editor is not integrated into Scilab. You must choose your own. And
Scilab itself needs the Xserver running.

At ANU we have setup a text editor, “text commander” in the application
folder to help with the integration. If you use this application, you can edit
files, and also startup a Scilab session. This is not as good as the windows
environment, but it is a start.

If you don’t have access to the ANU system, the procedure for starting Scilab

is a little more complicated. You will first need to ensure that an Xserver is
running. This will depend on how you have setup your system. Once you have
your Xserver running you will be able to start up an xterm. From the xterm
command line, type scilab&. This will startup Scilab. Startup your favorite
editor and you are ready to go.

1.3 Talking between Scilab and the Editor

From the Scilab command window you can run Scilab commands. In par-
ticular the command pwd will tell you the directory you are present working in.
This is were Scilab will look for files to execute. You can change this using
Change Directory item under the file menu or from the command line using
the command chdir directory.

From your text editor create some Scilab commands such as

A = [ 1 2 3 ; 4 5 6 ; 7 8 9]

and then save the file (say into file test-01.sce) into the same directory in which
Scilab is looking (as shown by the pwd command).

Now we can run the commands in the file via the command at the Scilab

prompt

exec test-01.sce
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As you make changes to your file, you will need to save those changes and
then run the exec command again (you can save typing by using the up arrow
to recall previous commands).

If you are using the editor integrated into Scilab on the windows system,
then the editor automatically asks to save the file you are working on, and auto-
matically executes the file.

1.4 Basic Commands

Now let us play with Scilab.
Move the pointer to the Scilab window and select the window (press the

left mouse button). Now you should be able to type commands into the Scilab

window. Scilab is made to easily work with vectors and matrices. First input a
vector

x = [ 0 ; 2 ; 5]

and then a matrix

A =





1 3 4
−1 2 5

4 −3 5





via the command

A = [ 1 3 4 ; -1 2 5 ; 4 -3 5 ]

The semi-colons may be replaced by returns.
Scilab is case sensitive so that for example a and A will represent different

variables. All the built-in functions in Scilab like the rank or the eigenvalues
for a matrix, are denoted by lower-case names, as in rank(A) or spec(A). If
you cannot remember how to use a particular Scilab command try the help

command in Scilab. Try

help spec

Scilab provides many vector and matrix operations. For instance we can mul-
tiply matrices and vectors. Try the simple commands

A*x

A*A

Lab Book: Record the results of these calculations.

Scilab does all its calculation in double precision but formats the output
using a short format. The format can be changed to show full precision with the
Scilab command



Computational Science, Scilab Tutorials 8

format(20,’e’)

Try some calculations to see the different format.
The format can be changed back using

format(10,’v’)

A semi-colon at the end of a line will stop Scilab output for that line. This is
useful if you are working with large vectors or matrices. Try

y = A*x ;

Note that the answer is not printed out. To see y just type

y

Let’s make some larger vectors. It is easy to produce vectors that have compo-
nents which increment nicely. Try

w = 0:0.1:7

This will produce a vector starting at 0 and increasing by 0.1 until 7 is reached.
Note that a semi-colon at the end of the line would be helpful here.

We can take functions of vectors (or matrices). For instance try

z = sin(w)

Now we have two vectors w and z of the same length. We can plot the values of
w versus the values of z. Try

plot2d(w,z)

A plot of w versus z should be produced. You can save the graph to a file by
using the file—export menu item on the graphics window.

Lab Book: Print this plot and paste into your lab book

1.5 Linear Algebra

We can also solve matrix problems. Try

y = A \ x
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The vector y should solve the linear equation x = A*y (check this). The inverse
of a matrix can also be calculated using the inv command. Use the inv command
to solve the matrix equation Ay = x.

Lab Book: Compare the results of A\x and inv(A)*x. Are they equal? Why?

The Scilab command rand(n,m) produces a random n×m matrix. Redefine
A to be a random 5 × 5 matrix and x a random 5 × 1 vector.

The \ command is more general and can be used to solve over-determined
systems (systems with more equations than unknowns) by finding a “least squares
solution”. In fact under-determined systems can also be accommodated.

Lab Book: Try solving an under-determined system (Matrix has less rows than
columns). Try an over-determined system (more rows than columns). Document
your experiments.

1.6 Loops and Conditionals

Scilab provides for, while and if statements to control flow within a program.
Consider the example program for calculating ex.

ans = 0; n = 1; term = 1;

while( ans + term ~= ans )

ans = ans + term;

term = term*x/n;

n = n + 1;

end

ans

Here ~= means “not equal to”.
We can avoid retyping by saving the program in a file. Open up a text editor.

Type in the program. Save to a file using the file menu. You will be prompted
for a file name. Use the name ex.sci, the .sci is a standard extension for Scilab

function files. Go back to the Scilab window and test your program ex. Type
in a value for x and then issue the command exec(’ex.sci’). For instance try

x = 1.0

exec(’ex.sci’)

to let Scilab run your program with x = 1.0.

Lab Book: Using your program, what is the approximation to e1, e10 and e−10.

We can make our program into a function. Return to the editing window and
change the program as follows:
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function x = ex(x)

// EX A simple function to calculate exp(x)

ans = 0; n = 1; term = 1; while( ans + term ~= ans )

ans = ans + term;

term = term*x/n;

n = n + 1;

end x = ans

// end of ex

endfunction

The lines starting with // are comment lines.
Save your changes. Now you can use the command ex(x). But you must load

in your changes. Try

exec(’ex.sci’)

ex(1.0)

This algorithm is useless for large negative values of x. On the other hand, as
in the lectures we can use this algorithm as a basis for a more robust algorithm.
First though we need to become familiar with the if statement. The Scilab if

statement has the simple form

if expression then

Scilab statements

else

Scilab statements

end

Use your function ex and the if statement to produce a new function newex

which produces reasonable approximations of e^x for x positive or negative (as
demonstrated in the lectures). You can use the same file to define both the ex

and the newex functions, but you will have to use exec again to load in the new
function newex.

Lab Book: Produce a table of the results of the ex, and newex functions compared
to the inbuilt exp Scilab function. Do the table for a range of large negative
through to large positive numbers.

1.7 Help in Scilab

1.7.1 The Help Command

The help command is the easiest way to find out more about specific Scilab
commands. If you have forgotten small details, for example. The command help

name gives information about the Scilab command name.
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help sin // Information about sin. help + // Gives links

to help on Scilab operator names help log // This is enough

information about log

// to show log means log to the base e .

Note that often the help information provides an example of how the command is
used. This can be particularly useful when experimenting with a new command.
You can use cutting and pasting to run the example commands.

In Scilab the apropos command can also be used to search for relevant infor-
mation.

apropos logarithm // Provides a list of

// functions related to logarithms

1.7.2 The Help Window

It is also possible to get help by clicking on the help menu above the command
window. From the help menu, select the help dialog item and the list of
help topics is displayed. The advantage of this method is that it is possible to
navigate around different topics and zero in on useful commands. For example,
in the help dialog window click on the chapter ’Linear Algebra’. Then find the
item ’linsolve’. Once found you click on ’show’ to see the relevant help page.
Note that double clicking doesn’t work in windows Scilab version 2.6 and there
is a slight bug when you change chapters and scroll to new items. Choosing the
item a second time seems to work.

Generally the help window is a good way to explore Scilab’s commands.

Exercise 1.

1. Is the inverse sine function one of Scilab’s elementary functions? (The
inverse sine is also known as sin−1, arcsin, or asin.)

(a) How do you find sin−1(.5) in Scilab? Use help to find out.

(b) If x = .5, is sin(sin−1(x)) − x exactly zero in Scilab?

(c) If x = π/3, is sin−1(sin(x)) − x exactly zeros in Scilab? What about
x = 5π/11?

2. Does Scilab have a function to convert numbers to base 16, i.e. to hex-
adecimal form? (Hint: Use apropos to find a way to convert a decimal

number to hexadecimal.) What is 61453 in base 16? Computers almost
always represent numbers internally as hexadecimals.

3. Look for information about logarithms. Note that searching for logarithms
fails where as logarithm succeeds. There are 8 entries, including the com-
mand, logm, for calculating the log of a matrix!
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4. To wind down, use the Scilab menu command demos. This brings a menu
of demonstrations and examples to explore.

(a) Visit the graphics to see a number of attractive images.

(b) I also like the car and trailer parking demo.

Lab Book: Record your results in your lab book.

1.8 Summary

We have tried to give a very quick idea of the facilities available in Scilab and
to the give an idea of using the Scilab program in conjunction with a text editor
to efficiently experiment with matrix problems. To gain more experience with
Scilab I suggest that you go through the “Scilab Primer” (available online
from the home page of the course). Also the demos available from the menu
gives some good ideas.

But now see if you can tackle the following problem.

1.9 Exercises

Exercise 2. Write a Scilab program quadroots to compute and print the roots
of a quadratic equation ax2 + bx + c = 0 using the quadratic formula

x =
−b ±

√
b2 − 4ac

2a
.

It should run with a command like

quadroots(1,3,2)

for the case of x2 + 3x + 2 = 0. This program can be made to return both roots
in a vector by calling them, for example, root1 and root2 in the function file and
starting the function definition with the line

function [root1, root2] = quadroots(a,b,c)

These can then be stored into two variables such as r1 and r2 by running the
function with the command

[r1 r2] = quadroots(1,3,2)

The program should avoid division by zero, printing an appropriate message in
that case. Make your own decision about what to do in the case of complex roots,
since Scilab can compute and print complex values. Test quadroots on the
following examples, checking the results in each case, and pay particular attention
to the last example.

http://www.maths.anu.edu.au/DoM/secondyear/MATH2501/primer.pdf
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1. x2 + 1 = 0

2. 0x2 + 2x + 1 = 0

3. x2 + 3x + 2 = 0

4. 4x2 + 24x + 36 = 0

5. 1018x2 − x − 1 = 0

6. 10−18x2 − x + 1 = 0 (The roots are approximately 1 + 10−18 and 1018 − 1),
which you can check by hand.)

The last example above illustrates the problem of catastrophic cancellation. Ex-
plain why it makes one root highly inaccurate but not the other, and devise a
better algorithm for computing both roots accurately.

You can use the fact that the roots x1 and x2 of ax2 +bx+c = 0 always satisfy
x1x2 = c/a.

Write a modified program quadroots2 using this improved method, and test
it on the same cases as above.

It is very useful to write a test program which will test a program against
known results. Write a program testQuadroots which takes a quadroots function
(quadroots and quadroots2) and tests that programs with the examples given
above. This is known as unit testing.

Lab Book: Copy your commented final code, with the functions quadroots,
quadroots2 and test function testQuadroots into your lab book. Present a
table of the results of your codes tested on the examples indicated above, which
test both of your functions against the suite of known solutions.



Chapter 2

Matrix Calculations

2.1 Introduction

This tute is designed to familiarise you with matrix calculations in Scilab.

2.2 Matrices and Vectors

Although Scilab is a useful calculator, its main power is that it gives a simple way
of working with matrices and vectors. Indeed we have already seen how vectors
are used in graphs.

Remember to keep typing in the commands as they appear here, and observe
and understand the Scilab response. If you mistype, it is easy to correct using the
arrows and the [Del] key. Try to use the help facility to find out about unfamiliar
commands. Otherwise ask another student or a tutor.

2.2.1 Solving Equations.

Most people will have seen systems of equations from school. For example, we
may need to find x1, x2, and x3 so that

x1 + 2x2 − x3 = 1

−2x1 − 6x2 + 4x3 = −2

−x1 − 3x2 + 3x3 = 1

Although these problems can be solved manually by eliminating unknowns, this
is unpleasant. Besides errors usually occur.

In first year Mathematics the problem is rewritten in matrix-vector notation.
We introduce a matrix A and a vector b by

A =





1 2 −1
−2 −6 4
−1 −3 3



 , b =





1
−2
1



 .
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Now we want to find the solution vector x = [x1, x2, x3] so that

Ax = b.

In spite of the new notation, it is still just as unpleasant to find the solution.
In Scilab, we can set up the equations and find the solution x using simple
commands.

// Set up a system

A = [ 1 2 -1; -2 -6 4 ; -1 -3 3 ] // of equations.

b = [ 1; -2; 1 ]

x = A\b // Find x with A x = b.

Scilab should give the solution





x1

x2

x3



 =





−1
2
2



 .

A sound idea from manual computations is to substitute the computed solu-
tion back into the system, and make sure all equations are indeed satisfied. In
Scilab we can do this by checking that the matrix vector product Ax gives the
vector b, or better still, we check that b − Ax is exactly the zero vector.

A*x // Check that Ax and b are the same.

b

b - A*x ; // So that we do not miss small differences,

// it is better to check that b - A x = 0 .

The vector b − Ax is known as the residual.

Exercise 3.

1. Change the middle element of A from -6 to 5 (i.e. a22 = 5.) What is the
solution to this new system? What is the new residual? Why is the residual
not exactly 0?

Hint: In Scilab the number 1.23 × 10−5 is displayed as 1.23e-05. The
column vector [1.23 × 10−5; 4.44 × 10−6] could be displayed as

1.0e-004 *

1.2300e-05

0.1234 or 4.4400e-06

0.0444
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The user can control which form is used by using the command format.
Essentially the full accuracy can be seen using format(’e’,20).

2. Suppose the middle element is changed from -6 to -5. Can Scilab solve this
third system? Explain what has happened.

Lab Book: Record your results.

2.2.2 Matrices and Vectors.

Much scientific computation involves solving very large systems of equations with
many millions of unknowns. This section gives practice with the commands that
are needed to work larger matrices.

The following code sets up a 4 × 4 matrix, A, and then finds some of its
important properties. When [ ] is used to set up matrices, either blanks or
commas (,) can be used to separate entries in a row. Semicolons (;) are used to
begin a new row.

A = [1 2 3 4 ; 1 4 9 16 ; 1 8 27 64 ; 1 16 81 256 ]

A’

det(A)

spec(A)

[D, X] = bdiag(A)

inv(A)

Even in the simple 4×4 case, it is tedious to evaluate determinants and inverses.
But in Scilab they can be quickly calculated and used.

Indices can be used to show parts of a larger matrix. For example try

A(2,3), A(1:2,2:4), A(:,2), A(3,:), A(2:$,$)

In general A( i:j, k:l ) means the square sub–block of A between rows i to j
and columns k to l . The ranges can be replaced by just ‘:’ if all rows or columns
are to be included. The last row or column is designated $.

Exercise 4.

1. How would you display the bottom left 2 × 3 corner of A? How would you
find the determinant of the upper left 3 × 3 block of A?

2. Find the Scilab command to calculate the row echelon form of a matrix. The
row echelon form is never useful in practice, but it is handy for checking
homework in other subjects!!
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2.2.3 Creating Matrices

Scilab also provides quick ways to create special matrices and vectors.

c = ones(4,3)

d = zeros(20,1)

I = eye(5,5)

D = diag( [2 1 0 -1 -2] )

L = diag( [1 2 3 4], -1 )

U = rand(5,5) // U is a 5 x 5 matrix

// of uniformly distributed random numbers.

R = rand(5,5,’normal’); // R is a 5 x 5 matrix

// of normally distributed random numbers.

(More information on each of these commands can be found with help.)
Matrix-matrix and matrix-vector multiplication work as expected, provided

the dimensions agree. Matrices and vectors can both be multiplied by scalars. In
the next example, B is another 4× 4 matrix and c is a column vector of length 4
(i.e. a 4 × 1 matrix).

B = [1 1 0 0

0 2 1 0

0 0 3 1

0 0 0 4 ] // Rows can be separated by

// making a new line as well as using ‘;‘.

c = [1; 0; 0; -1]

5*B // Multiply scalars and matrices.

B*c // Multiply matrices and vectors.

A*B // Matrix by matrix multiplication.

B*A // Note: AB is not the same as BA !

Some of the following commands do not work. There is no harm in trying
them.

c*c // Wrong dimensions for matrix multiplication.

c*A // Wrong dimensions for matrix multiplication.

c’ // The transpose of c, i.e. a row vector.

c’*A // Now matrix multiplication is permitted.

c*c’ // This multiplies a 4 x 1 by a 1 x 4 matrix.

c’*c // What is this quantity usually called?

Exercise 5.

1. Calculate inv(A)*A and A*inv(A). Do they give the expected result? (Use
the help command if you can’t guess what the inv command does.)
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2. Verify for the matrices A and B above that (AB)−1 = B−1A−1.

3. Verify that the Scilab command A^(-1) can also be used to form the inverse
of A.

2.2.4 Systems of Equations

Consider again the problem of solving the system of equations Ax = b. One
obvious way that appeals to Mathematicians is to calculate A−1b. As in the
previous 3x3 case, we should also check that the solution is correct. We do this
by calculating the residual Ax − b, for our computed solution x. Because of
roundoff errors this residual may not be exactly zero, but all its components
should be small; say less than 1 × 10−15.

x = A^(-1)*b // Solve the equation A x = b A*x , b

// Check x is correct by making

// sure it satisfies the equations.

resid = b - A*x // Check the residual is zero,

// at least to within roundoff.

In fact it is far quicker, and usually more accurate, to solve equations using
the backslash operator ( \ ) introduced in the first section; rather than calculating
with the inverse A−1. The next lines use the backslash command to the solve the
equations Ax = b, and check that it gives the same answers as those that were
calculated using A−1.

x1 = A \ b // This is the fastest way to solve A x = b

x - x1 // Here both answers are the same (up to roundoff error).

Exercise 6.

1. Solve the system of equations




1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5



x =





1/4
1/5
1/6





using \. Check that the computed solution does actually satisfy the equations
(i.e. check that b − Ax = 0, apart from rounding errors).

2. Use rand(n,m,’normal’) to generate a 700 x 700 matrix, A, and a col-
umn vector b of length 700. Solve the system of equations Ax = b using
the commands x = A\b and x = inv(A)*b, timing each command with the
timer() command. Which command is the faster and why?

Hint: Before working with these large matrices use the clear command to
remove all variables from Scilab’s memory. This frees up enough memory to
squeeze in this largish problem. If you have problems, try a smaller system
of equations that fits onto the computer you are using.
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3. Set up the 10×10 Hilbert matrix. The ij component is given by 1/(i+j−1).
You can use feval to produce the matrix given the function

function z=f(x,y)

z=1.0/(x+y-1)

endfunction

Create a right hand side vector b which is the first column of A, b = A(:,1).
We are now going to solve the equations Ax = b. This is a common test
problem in linear algebra. (What is the true solution x to the equations
Ax = b?)

(a) Solve the equations Ax = b using the backslash command, and then
check that the computed solution satisfies the equations by calculating
the residual, b − Ax.

(b) Now solve the equations by the command A^(-1)*b and calculate the
residual for this second solution.

(c) Which gives the better (i.e. smaller) residual?

(d) Which method gives the smaller error?

Explanation: As b is the first column of A, you can work out the true value
of x without computation. (Explain this briefly.) The error is the difference
between Scilab’s computed solution and the true solution. (The true solu-
tion, the one you work out by abstract thought, can be typed directly into
Scilab.) The size of the error is the largest absolute value of the components
of the error vector.)? (Also Scilab provides the exact inverse of the Hilbert
matrix with the command testmatrix(’hilb’,n).



Chapter 3

Data and Function Plots

3.1 Introduction

This tutorial is designed to familiarise you with plotting data and graphing func-
tions in Scilab.

3.2 Plotting Lines and Data

This section shows how to produce simple plots of lines and data.
Suppose we wish to plot some points. For example we are given the following

table of experimental results.

xk .5 .7 .9 1.3 1.7 1.8
yk .1 .2 .75 1.5 2.1 2.4

To work with the data in Scilab set up two column vectors x and y.

x = [.5 .7 .9 1.3 1.7 1.8 ]’

y = [.1 .2 .75 1.5 2.1 2.4 ]’

(Vectors are discussed in detail in the next lesson; but we can use them to draw
graphs without knowing all the details.) To graph y against x use the plot
command.

plot2d(x,y, style=-1)

The graph should now appear. (If not, it may be hidden behind other windows.
Click on the icon ‘Figure No. 1’ on the Windows task bar to bring the graph to
the front.)

This graph marks the points with an ‘+’. Other types of points can be used
by changing the style=-1 in the plot2d command. (Use help plot2d to find
out the details.)
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0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.1

0.5

0.9

1.3

1.7

2.1

2.5

+ +

+

+

+

+

Plot showing data points

Exercise 7. Experiment with different values for the style. Negative values give
markers, positive values coloured lines. As you experiment you should erase the
previous plot. Use the command

xbasc()

Commands starting with x generally are associated with graphics commands (This
comes from the X window system used on Unix machines). So xbasc(), is a basic
graphix command which clears the graphics window.

From the graph it is clear that the data is approximately linear, whereas this
is not so obvious just from the numbers. Good graphs quickly show what is going
on!

When you have finished looking at the graph, just click on any visible part of
the command window. More commands can then be typed in.

Exercise 8.

1. Plot the above data with the points shown as circles.

2. Plot the above data with the points joined by lines (use help plot2d).

3. Find out how to add a title to the plot. (Hint: Use the command apropos title.)

Plot data as points

Often people use the very simplest command to plot data and automatically type
just

plot2d( x, y ) // The simplest plot command
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This simple command does not present the data here very well. It is hard to see
how many points were in the original data. It is really better to plot just the
points, as the lines between points have no significance; they just help us follow
the set of measurements if there are several data sets on the one graph. If we
insist on joining the points it is important to mark the individual points as well.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.1

0.5

0.9

1.3

1.7

2.1

2.5

Simple plot2d command.

3.2.1 Adding a Line

From the graph it is clear that the points almost lie on a straight line. Perhaps the
points are off the line because of experimental errors. A course in statistics will
show how to calculate a ‘line of best fit’ for the data. But even without statistics,
the line between the points (.5, 0) and (2, 3) is a good candidate for ‘a line fitting
the data’. Lets add this line to the plot and see how well it approximates the
data. We do this by asking Scilab to plot the points (.5, 0) and (2, 2.7) joined by
a line.

x = [.5 .7 .9 1.3 1.7 1.8 ]’;

y = [.1 .2 .75 1.5 2.1 2.4 ]’;

plot2d(x,y,style=-1)

x_vals = [ .5 2]’; // The X-coords of the endpoints.

y_vals = [ 0 2.7 ]’; // The Y-coordinates

plot2d(x_vals,y_vals)

legends([’Line of Best Fit’;’Data’],[1,-1],5)

xtitle( ’Data Analysis’)

Note that x_vals contains the x–coordinates, y_vals contains the y–coordinates,
and the two points are joined by a line because we don’t specify a style (default
style is a line).
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0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

+ +

+

+

+
+

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
0

0.4

0.8

1.2

1.6

2.0

2.4

2.8
Line of Best Fit+ Data

Data Analysis

The line of best fit can be found using the datafit function (we will come back
to this later in the course).

3.2.2 Hints for Good Graphs

There are many opinions on what makes a good graph. From the scientific
viewpoint a simple test is to see whether we can recover the original data easily
from the graph. A graph is supposed to add something, not remove information.
For example if our data runs from 1 to 1.5 it is a bad idea to use an axis running
from 0 to 10, as we will not be able to see the differences between the values. We
give two more subtle recommendations.

Exercise 9. Change the above plot commands to show the data more clearly by
plotting the data points as small circles joined by dotted lines. Use help plot2d

to see the possible arguments.

Choose a good scale

In the example in this section, it was easy to see the relationship between x and
y from the simple plot of x against y. In more complicated situations, it may
be necessary to use different scales to show the data more clearly. Consider the
following model results

n 3 5 9 17 33 65
sn .257 .0646 .0151 3.96×10−3 9.78×10−4 2.45×10−4 .

A plot of n against sn directly shows no obvious pattern. (Note the dots, ‘...’,
in the next example mean the current line continues on the next line. Do not
type these dots if you want to put the whole command on the one line.

n = [ 3 5 9 17 33 65 ]’;

s = [ 2.57e-1 6.46e-2 1.51e-2 ...
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3.96e-3 9.78e-4 2.45e-4 ]’ ;

xbasc() // clear the previous plot

plot2d( n, s, style=-1 ) // This is a poor plot!!

In fact it is hard to read the values of sn back from the graph. However a plot of
log(n) against log(sn) is much clearer. To produce a plot on a log scale we can
use either of the commands

xbasc(); plot2d( log10(n), log10(s), style=-1)

xbasc(); plot2d( n, s, style=-1 , logflag = ’ll’)

0
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0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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−2.1

−1.7

−1.3

−0.9
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+

+

+

+

+

These plots reveal that there is almost a linear relationship between the logs of
the two quantities.

Exercise 10.

1. Using help plot2d find a command which will use a log scale only for the
sn data. Is this better or worse than the log-log plot?

2. Add a title to the last plot above and label the X and Y axes.

3.3 Graphs

Consider the problem of graphing functions, for example the function

f(x) = x|x|/(1 + x2)

over the interval [−5, 5].
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3.3.1 Function Plotting

Scilab provides a simple method for defining functions. For simple functions, the
definition can be written at the interactive prompt “on line”. For instance to
define the function

f(x) = x|x|/(1 + x2)

we would write

function [y]=f(x)

y = x*abs(x)/(1+x^2);

endfunction

This will define a Scilab function with the name f. We can then evaluate the
function as such

f(3)

To produce a plot of this function we can use the fplot2d command. For
instance to plot the function f in the interval [0, 1] we use

x = (-5:0.1:5)’;

fplot2d(x,f)

The first command produces a column vector of x values from 0 to 1 in steps of
.1. The second produces the plot of the function f.

3.3.2 Component Arithmetic

we would like to be able to do componentwise arithmetic. This is how we do it.

x = (-5:.1:5)’ ;

y = x .* abs(x) ./ ( 1 + x.^2) ;

plot2d( x , y )

The first command produces a vector of x values from -5 to 5 in steps of .1. That
is the column vector x = [−5,−4.9, · · · , 0, · · · 4.9, 5]′. The vector y contains the
values of f at these x values. As there are so many points the graph of x against
y looks like a smooth curve.

The novelties here are the operators .* , ./ and .^ in the second command.
These are the so called component–wise operators. In the above example x is a
column vector of length 101 and abs(x) is the column vector whose ith entry is
|xi|. The formula x*abs(x) would be wrong, as this tries to multiply the 1× 101
matrix x by the 1 × 101 matrix abs(x). However the component-wise operation
x.*abs(x) forms another vector of length 101 with entries xi|xi|. Continuing to
evaluate the expression using component-wise arithmetic, we get the vector y of
length 101 whose entries are xi|xi|/(1 + x2

i ). (Of course we should not become
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overconfident. This rule for dividing by vectors cannot be used in Mathematics
proper.)

Note that p.*q and p*q are entirely different. Even if p and q are matrices
of the same size and both products can be legitimately formed, the results will
be different.

Exercise 11.

1. (Easy) Find two 2×2 matrices p and q such that p.*q 6= p*q.

2. (Hard) Find all 2×2 matrices p and q such that p.*q=p*q.

Before more exercises, we show how to add further curves to the graph above.
Suppose we want to compare the function we have already drawn, with the func-
tions x|x|/(5+x2) and x|x|/(1

5
+x2). This is done by the following three additional

commands. (Remember x already contains the x–values used in the plot. These
new commands are most easily entered by editing previous lines.)

y2 = x .* abs(x) ./ (5 + x.^2) ;

y3 = x .* abs(x) ./ ( 1/5 + x.^2) ;

plot2d(x,[y y2 y3])

Note that x needs to be a column vector for this to work.

Exercise 12.

1. Use Scilab to graph the functions cos(x), 1/(1 + cos2(x)), and 1/(3 +
cos(1/(1 + x2)) on separate graphs.

2. Graph 1/(1 + eαx), for −4 ≤ x ≤ 4 and α = .5, 1, 2, on the one plot.

3. Use plot2d to draw a graph that shows

lim
x→0

sin(x)

x
= 1.

(Hint: Select a suitable range and a set of x values and plot sin(x)/x. If you
get messages about dividing by zero, it means you tried to evaluate sin(x)/x
when x is exactly 0.)

3.3.3 Printing Graphs

When the graph has been correctly drawn we will usually want to print it. As
many graphs come out on the printer, it is a good idea to label the graph with
your name. To do this use the xtitle command.
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\\ Be sure to put quotes

xtitle(’Exercise 3.4 Kim Lee.’) \\ around the title.

Bring the plot window to the front. The title should appear on the graph. If
everything is okay, click on the ‘file’ menu → ‘print scilab’ item in the graph
window. If everything is set up correctly, the graph will appear on the printer
attached to your computer.

After printing a graph, it is useful to take a pen and label the axes (if that
was not done in Scilab), and perhaps explain the various points or curves in
the space underneath. Alternatively before printing the graph, use the Scilab

command xtitle with two optional arguments and the legend argument of the
plot2d command for a more professional appearance. For instance

xbasc()

plot2d(x,[y y2 y3],leg=’function y@function y2@function y3’)

xtitle(’Plot of three functions’,’x label’,’y label’)

Another option is to use the graphics window file menu item, export, or the
xbasimp command to print the current graph to a file so that it can be printed
later. For example to produce a postscript file use the command

xbasimp(0,’mygraph.eps’)

This will write the current graph (associated with graphics window 0) to the file
mygraph.eps. This file can be stored and printed out later.

3.3.4 Saving Graphs

The easiest way to save a graph is to save the Scilab command you used to create
the graph. These are usually only one or two lines. If the commands are more
than one or two lines long, they should probably be saved in a file (see later
chapters.)



Chapter 4

Sparse Matrices and Direct
Solvers

4.1 Introduction

This tute is designed to familiarise you with sparse matrix calculations in Scilab.

4.2 Sparse Matrices

Scilab allows you to work with sparse matrices almost as easily as full matrices.
Let us make some sparse matrices.

4.3 Convert full to sparse matrices

We can use the diag command to create a tridiagonal matrix. Try

A = diag(ones(20,1),-1) -2*diag(ones(21,1)) + diag(ones(20,1),1);

This should produce a 21 × 21 tridiagonal full matrix. You can convert to
sparse storage using the sparse command.

A = sparse(A);

With sparse matrices it is useful to look at the non-zero structure of the matrix.
The book “Engineering and Scientific Computing with Scilab” edited by

Claude Gomez provides some very helpful hints on working with Scilab. In
particular they have produced some code which mimic the spy command form
Matlab. Here I have reproduced the code, encapsulated in a function.

//-------------------------------------------------------

function spy(A)



Computational Science, Scilab Tutorials 29

// Mimic the Matlab spy command

// Draw the non zero components of a matrix

// Taken from Engineering and Scientific Computing with Scilab’’

// edited by Claude Gomez

[i,j] = find(A~=0)

[N,M] = size(A)

xsetech([0,0,1,1],[1,0,M+1,N])

xrects([j;N-i+1;ones(i);ones(i)],ones(i));

xrect(1,N,M,N);

endfunction

//-------------------------------------------------------

Copy this code into your Scilab workspace and execute it on the matrix A.

xbasc();spy(A)

The xbasc() is there just to clear the graphics window if you have already used
it.

Lab Book: Explain the plot you obtain

4.4 Sparse Creation

When we created A we first created a full matrix and then converted to a
sparse matrix. Obviously we should avoid the full matrix. Use the whos() or
whos -name A to see the storage requirements of A before and after the conver-
sion to sparse storage format.

Now let us create the matrix as a sparse matrix without using full storage.
We can use diag again but with an argument which is sparse. The following
command will do the trick.

n=21; B = diag(sparse(ones(n-1,1)),-1) ...

- 2*diag(sparse(ones(n,1))) + diag(sparse(ones(n-1,1)),1);

Check out the matrix by printing out its entries or even printing out a full rep-
resentation of B.

B full(B)
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Don’t do this with large matrices! Also use spy to check out the structure.
The sparse storage format is essentially a list of ij entries and corresponding

matrix values v of the non-zero entries in the matrix.
For instance try out

//-------------------------------------------------------

dij = [(1:n)’, (1:n)’]; // i j coordinates of diagonal

dv = [-2*ones(n,1)]; // value of -2 down diagonal

udij = [ (1:n-1)’,(2:n)’]; // i j coordinates of upper diagonal

udv = [ ones(n-1,1) ]; // value of 1 for upper and lower diagonals

ldij = [ (2:n)’,(1:n-1)’]; // i j coordinates of lower diagonal

ij = [dij ; udij ; ldij ]; // concatenate all the i, j coordinates

v = [dv ; udv ; udv ]; // concatenate all the values

C=sparse(ij,v) // create sparse matrix

full(C)

//-------------------------------------------------------

Make sure you know what this code is doing. Try a smaller value of n and
printout each step.

Lab Book: Compare the matrices A, B, C. Describe how each version has been
created. Comment on the efficiency of each method (speed and storage).

4.5 Matrix, Graph example

The help file for the mesh2d function provides some very interesting matrices
associated with triangulating a circular region. Here is a reproduction of the
example given in the help file. Copy this code into your Scilab workspace.

//-------------------------------------------------------

function [a1,a2,a3,g1,g2,g3]=mesh_examples()

//

// Code taken from the help file for mesh2d. Produces 3

// matrices and graphs associated with triangulating

// a circular region with a hole

//

// FIRST CASE

theta=0.025*[1:40]*2.*%pi;

x=1+cos(theta);

y=1.+sin(theta);

theta=0.05*[1:20]*2.*%pi;

x1=1.3+0.4*cos(theta);
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y1=1.+0.4*sin(theta);

theta=0.1*[1:10]*2.*%pi;

x2=0.5+0.2*cos(theta);

y2=1.+0.2*sin(theta);

x=[x x1 x2];

y=[y y1 y2];

[nu,a1]=mesh2d(x,y);

nbt=size(nu,2);

jj=[nu(1,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(1,:)’];

as=sparse(jj,ones(size(jj,1),1));

ast=tril(as+abs(as’-as));

[jj,v,mn]=spget(ast);

n=size(x,2);

g=make_graph(’foo’,0,n,jj(:,1)’,jj(:,2)’);

g(’node_x’)=300*x;

g(’node_y’)=300*y;

g(’default_node_diam’)=10;

g1 = g;

// SECOND CASE !!! NEEDS x,y FROM FIRST CASE

x3=2.*rand(1:200);

y3=2.*rand(1:200);

wai=((x3-1).*(x3-1)+(y3-1).*(y3-1));

ii=find(wai >= .94);

x3(ii)=[];y3(ii)=[];

wai=((x3-0.5).*(x3-0.5)+(y3-1).*(y3-1));

ii=find(wai <= 0.055);

x3(ii)=[];y3(ii)=[];

wai=((x3-1.3).*(x3-1.3)+(y3-1).*(y3-1));

ii=find(wai <= 0.21);

x3(ii)=[];y3(ii)=[];

xnew=[x x3];ynew=[y y3];

fr1=[[1:40] 1];fr2=[[41:60] 41];fr2=fr2($:-1:1);

fr3=[[61:70] 61];fr3=fr3($:-1:1);

front=[fr1 fr2 fr3];

[nu,a2]=mesh2d(xnew,ynew,front);

nbt=size(nu,2);

jj=[nu(1,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(1,:)’];

as=sparse(jj,ones(size(jj,1),1));
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ast=tril(as+abs(as’-as));

[jj,v,mn]=spget(ast);

n=size(xnew,2);

g=make_graph(’foo’,0,n,jj(:,1)’,jj(:,2)’);

g(’node_x’)=300*xnew;

g(’node_y’)=300*ynew;

g(’default_node_diam’)=10;

g2=g;

// REGULAR CASE !!! NEEDS PREVIOUS CASES FOR x,y,front

xx=0.1*[1:20];

yy=xx.*.ones(1,20);

zz= ones(1,20).*.xx;

x3=yy;y3=zz;

wai=((x3-1).*(x3-1)+(y3-1).*(y3-1));

ii=find(wai >= .94);

x3(ii)=[];y3(ii)=[];

wai=((x3-0.5).*(x3-0.5)+(y3-1).*(y3-1));

ii=find(wai <= 0.055);

x3(ii)=[];y3(ii)=[];

wai=((x3-1.3).*(x3-1.3)+(y3-1).*(y3-1));

ii=find(wai <= 0.21);

x3(ii)=[];y3(ii)=[];

xnew=[x x3];ynew=[y y3];

[nu,a3]=mesh2d(xnew,ynew,front);

nbt=size(nu,2);

jj=[nu(1,:)’ nu(2,:)’;nu(2,:)’ nu(3,:)’;nu(3,:)’ nu(1,:)’];

as=sparse(jj,ones(size(jj,1),1));

ast=tril(as+abs(as’-as));

[jj,v,mn]=spget(ast);

n=size(xnew,2);

g=make_graph(’foo’,0,n,jj(:,1)’,jj(:,2)’);

g.node_x=300*xnew;

g(’node_y’)=300*ynew;

g(’default_node_diam’)=3;

g3=g;

endfunction
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//--------------------------------------

// Now run the function to produce the

// example matrices and associated graphs

//--------------------------------------

[A1,A2,A3,g1,g2,g3] = mesh_examples();

//-------------------------------------------------------

If you have loaded the previous snippet of code into Scilab there should
now be 3 new matrices A1, A2, A3 defined in your workspace. Try spy on these
matrices.

I obtained the following spy plot of the matrix A3

Spy plot of A3.

Lab Book: Printout the spy plot of the A2 matrix. Can you make any sense of
this spy plot.

Now the previous code has also produced 3 graph objects associated with each
sparse matrix.

Lets look at the graphs using the show_graph command. (If you want to do
this on a windows machine and are using an earlier version (2.6) of Scilab you
will have to load in the scigraph package and use the show_scigraph command
instead).

xbasc(); show_graph(g1);

Actually I think the g2 and g3 are more interesting. You can use the options
submenu of the graph menu to number the nodes. This can help to understand
the strange structure of the corresponding sparse matrix.

I obtained the following plot of the graph associated with matrix A3
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Graph associated with matrix A3.

Lab Book: Printout the graph plot corresponding to the matrix A2 matrix. Have
a look at the first column of the matrix A2. Reconcile this with the graph g2

4.6 Sparse matrix Operations

Most of the standard matrix operations have been implemented for sparse ma-
trices. You can add, multiply, transform, invert and solve matrix equations.

For instance, you can find the inverse of A1 the matrix created by the mesh_examples
function.

A1inv = inv(A1);

Look at the A1inv with the spy function. The inverse is nearly full. This is
typical, the inverse of a random sparse matrix is invariably nearly full. The
moral, avoid calculating the inverse of sparse matrices!

4.7 Solving Matrix Equations

There are basically 3 methods available for solving matrix equations

• The backslash operator \

• The combination of the lufact and lusolve

• And for positive definite matrices, the combination of the functions chfact
and chsolve
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• There is also a function spchol, but the chfact function seems to be more
efficient.

Setup a test problem

[n,m]=size(A1);

x = ones(n,1);

b = A1*x;

So you have a right hand side b together with a solution vector x. Now lets see
how well each of the solution methods work. Use the help command to see how
to call the different factorisation commands. Use the timer() command to time
each calculation. For instance

timer(); x1 = A1\b ; t1 =timer()

err1 = norm(x1-x)

4.8 Extensions

The chfact, chsolve combination of commands is quite efficient for positive
definite matrices as it uses minimum degree reordering (the lufact and spchol

do not reorder). Unfortunately the matrix A1 is not positive definite!
Lets see if we can improve the efficiency of the lufact command by reordering

the matrix A1. The command bandwr will try to reorder a symmetric matrix to
create a reordered matrix with smaller bandwidth. Applying this to A1 (which
is symmetric) try

[iperm,mrepi]=bandwr(triu(A1));

RA1 = A1(mrepi,mrepi);

xbasc();spy(A1)

xbasc();spy(RA1)

Note that the reordered matrix has a much smaller bandwidth. Determine
whether the solution methods work better on the reordered matrix.



Chapter 5

Iterative Methods Applied to
Membrane Problem

5.1 Introduction

In this tutorial we will investigate the solution of matrix problems which are
commonly found in the modelling of membranes, equilibrium temperature distri-
butions and flow of fluids through porous media.

We will first define the problem and solve it using standard the Scilab sparse
linear equation solver. We will then investigate means of speeding up our method.
In particular we will see that the iterative method, the conjugate gradient method
provides a good method for solving larger problems. The tutorial will also give
you some experience with plotting functions of 2 variables (surface graphs).

There is a lot of code in this tutorial as we will be using quite sophisticated
methods. I suggest you cut and paste the code into Scilab run it from there.

5.2 Setup Matrix

We will first setup a problem which models a membrane with loading, such as
mass loads or pressure. The membrane will be approximated by a 2 dimensional
grid.

Let’s setup the grid

n = 10; m = 15;

x = 0:1/(n-1):1;

y = 0:1/(m-1):1;

u = x’*y;

You can plot the value of u using the plot3d command. Namely

xbasc(); xselect();

plot3d(x,y,u)
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Rotate the plot (using the rotate button on the figure window) to get a better
idea of the shape of the surface.

You might want to try a shaded plot using the plot3d1 command.

xbasc(); xselect();

plot3d1(x,y,u)

The default colour map does not produce a very nice plot. Scilab 3.0 has
three in built colour maps, jetcolormap, hotcolormap and graycolormap. In
Scilab version 2.7 it seems that the function jetcolormap is not available.
Follow this link to find the code for jetcolormap and if you are using Scilab

2.7 or earlier, load this function into Scilab.
You can set the new color map using the xset command. Try

xset("colormap",jetcolormap(64))

xbasc(); xselect();

plot3d1(x,y,u)

Lab Book: Change the colour map. Produce a plot using the gray scale colour
map, rotated to give a good view of the surface.

5.3 Setting Boundary values

We want to model the situation in which our membrane is fixed around the edge.
We will specify the height of the edge nodes using a function. In the first instance
lets set the boundary to have a saddle shape given by the function

function u = saddle_function(x,y)

//

// Saddle point function to be used as

// boundary and exact solution

//

u = (x-0.5)^2 - (y-0.5)^2

endfunction

Load this function into Scilab.
The boundary nodes correspond to the i, j values i = 1, i = n, j = 1

and j = m. So lets set those nodes to have the value given by the function
saddle function.

for i=1:n

for j=1:m

// If statement to determine boundary nodes

if( i==1 | i==n | j==1 | j==m) then

file:jetcolormap.html
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u(i,j) = saddle_function(x(i),y(j));

else

u(i,j) = 1.0;

end

end

end

Lab Book: Can you explain what the for loop is doing?

Lab Book: Plot the grid function u.

I obtained the following plot using the plot3d command.
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5.4 Applying Tension

We want to apply a tension force to the membrane. We do this by specifying
that

fij =
nm

4
[ui+1j + ui−1j + uij+1 + uij−1] − uij

Here fij is representing a vertical force applied to node i, j. The vertical force is
most commonly interpreted as a gravitational force or a pressure force.

So we have a system of linear equations

ui+1j + ui−1j − 4uij + uij+1 + uij−1 =
4fij

nm

The number of nodes is nm, and so the corresponding matrix will be nm by
nm.

Lets set up a sparse matrix which encodes all these equations. For the bound-
ary nodes we will set the corresponding row of the matrix to have only a diagonal
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equal to one and set a right had side to be the boundary value. Initially we need
to set up the sparse matrix using the following create matrix function.

//--------------------------------------------

// Define Functions

//--------------------------------------------

function [A,b] = create_matrix(n,m)

//

// Create a matrix associated with a grid

// nodes with x and y coordinates given as

// input, connected by springs with nodes

// on the boundary set the function boundary

//

x = 0:1/(n-1):1;

y = 0:1/(m-1):1;

A = speye(n*m,n*m);

b = zeros(n*m,1);

for i=1:n

for j=1:m

index = i + (j-1)*n;

if( i==1 | i==n | j==1 | j==m) then // Boundary nodes

b(index) = saddle_function(x(i),y(j));

A(index,index) = 1.0;

else // Interior Nodes

b(index) = 4*force/(n*m);

A(index,index) = -4.0;

A(index,index+1) = 1.0;

A(index,index-1) = 1.0;

A(index,index+n) = 1.0;

A(index,index-n) = 1.0;

end

end

end

endfunction

Load this function into Scilab, and create the matrix A and right hand side b
corresponding to a 5 by 5 grid by using the command

[A,b]=create_matrix(5,5)

This will produce an error since the create matrix function needs the variable
force set. Lets set it to 0 and try the command
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force = 0.0;

[A,b]=create_matrix(5,5)

How large is the matrix A. What is its’ structure. Here is the code for the
spy function which is useful to view the structure of the matrix.

function spy(A)

// Mimic the Matlab spy command

// Draw the non zero components of a matrix

[i,j] = find(A~=0)

[N,M] = size(A)

// wrect=[x,y,w,h] frect=[xmin,ymin,xmax,ymax]

xsetech([0,0,1,1],[1,0,M+1,N])

xrects([j;N-i+1;ones(i);ones(i)],ones(i));

// [x,y,w,h]

xrect(1,N,M,N);

endfunction

Lab Book: Explain what this code is doing, in particular how index is being
used. Produce a plot of the structure of the matrix A using the spy function.

5.5 Solving the Problem

So now we have a way of producing a matrix and a right hand side, so now we
only have to solve the equation.

Here is some code to setup and solve the problem. I have added some extra
code which times the code and also sets up a wrapper for the solver so that we
can change the solver later in the tutorial.

Load in the following code.

function [U] = solve_equation(A,b)

//

// Wrapper for linear solver

//

U = A\b

endfunction

function run_problem(n,m)

//
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// Setup a problem, create matrix,

// solve and then plot result.

//

// Input:

// n,m, number of grid points in x and y direction.

//

x = 0:1/(n-1):1;

y = 0:1/(m-1):1;

printf(’Create Matrix:’)

timer()

[A,b] = create_matrix(n,m);

printf(’ time = %g\n’,timer())

printf(’Solve Matrix problem:’)

timer()

U = solve_equation(A,b)

printf(’ time = %g\n’,timer())

u = matrix(U,n,m);

// Plot the solution

xset("colormap",jetcolormap(64))

xbasc(); xselect();

plot3d1(x,y,u)

endfunction

Now we should run our code. We just have to run the run problem function.
For instance to run the code for a 10 by 15 grid use the command

run_problem(10,15)

When running the previous fragment of code I obtained the following plot.
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This is good, as you can now see that the membrane is fixed to the boundary
and in the interior the membrane seems to be pulling evenly in each direction.

Lab Book: Produce a plot of a membrane with the same saddle boundary, but
with a force of 5 is applied

Lab Book: Produce a plot of a membrane with a zero boundary condition, and
force of 5 is applied. You will have to change the create matrix function.

Now lets try some larger grids. Try solving the problem for say a 40 by 40
grid or 50 by 50.

Lab Book: How long does it take to create the matrix associated with a 50 by
50 grid. How long does it take to solve the associated equation. How big is the
associated matrix.

5.6 Faster Creation of Matrix

So it is taking longer to create the matrix than to solve the matrix equation.
Surely we are doing something wrong! Well individual sparse matrix updates is
very time consuming. In the next implementation of the create matrix function
we are using the diag(sparse) functions to setup the matrix.

Load in the following new implementation of the create matrix function into
Scilab

function [A,b] = create_matrix(n,m)

//

// Create a matrix associated with a grid

// nodes with x and y coordinates given as

// input, connected by springs with nodes
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// on the boundary set the function boundary

//

x = 0:1/(n-1):1

y = 0:1/(m-1):1

//-----------------------

// Setup Matrix

//----------------------

A = spzeros(n*m,n*m);

//

// Setup interior problem

//

d0 = -4*ones(n*m,1);

dmn = ones((m-1)*n,1)

dpn = ones((m-1)*n,1)

dm1 = ones(n*m-1,1)

dp1 = ones(n*m-1,1)

//

// Apply Boundary condition

//

d0(n:n:n*m) = 1

d0(1:n:n*m) = 1

d0(1:n) = 1;

d0(n*(m-1):n*m) = 1

dmn(1:n:n*(m-1)) = 0

dmn(n:n:n*(m-1)) = 0

dmn(n*(m-2):n*(m-1)) = 0

dpn(1:n:n*(m-1)) = 0

dpn(n:n:n*(m-1)) = 0

dpn(1:n) = 0

dm1(n-1:n:n*m-1) = 0

dm1(n:n:n*m-1) = 0

dm1(1:n-1) = 0

dm1(n*(m-1):n*m-1) = 0

dp1(n+1:n:n*m-1) = 0

dp1(n:n:n*m-1) = 0
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dp1(1:n-1) = 0

dp1(n*(m-1):n*m-1) = 0

A = diag(sparse(d0)) + diag(sparse(dm1),-1) + diag(sparse(dp1),1) + ...

diag(sparse(dmn),-n) + diag(sparse(dpn),n)

//----------------

// Setup rhs

//----------------

b = 4*force/(n*m)*ones(n*m,1);

//

// Apply boundary condition

//

b(1:n) = feval(x,y(1),saddle_function);

b(n*(m-1)+1:n*m) = feval(x,y(m),saddle_function);

b(1:n:n*(m-1)+1) = feval(x(1),y,saddle_function)’;

b(n:n:n*m) = feval(x(n),y,saddle_function)’;

endfunction

Convince yourself that this code is doing the same as the previous implemetation.

Lab Book: Run the problem on a 50 by 50 grid. Compare the speed of this new
implementation with the previous implementation. Is the code running quicker?

You can see that now the solution of the linear system is now dominating the
execution time.

5.7 Conjugate Gradient Method

We introduced iterative methods in the lectures. The conjugate method works
very well for matrices such as A. The matrix A is not actually symmetric, but
as long as we ensure that the initial guess satisfies the boundary conditions, then
the matrix is essentially symmetric with respect to the “interior” grid points.

The conjugate gradient method is not available in Scilab by default, but it
is a simple algorithm and we can implement it via the following code (taken from
“An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain”, by Jonathan Richard Shewchuk)

function [x,i] = conjugate_gradient(A,b,x0,imax,tol,iprint)
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//

// Try to solve linear equation Ax = b using

// conjugate gradient method

//

// Input

// A: matrix or function which applies a matrix, assumed symmetric

// b: right hand side

// x0: inital guess

// imax: max number of iterations

// tol: tolerance used for residual

//

// Output

// x: approximate solution

// i: number of iterations

//

//------------------------------

// Check and set input arguments

//------------------------------

nargin = argn(2)

if nargin<2

error(’need at least 2 input arguments’)

end

if nargin<3

x0 = zeros(b);

end

if nargin<4

imax = 2000;

end

if nargin<5

tol = 1e-8

end

if nargin<6

iprint = 0

end

function y = apply_A(x)

if (typeof(A)==’function’) then

y = A(x)

else

y = A*x

end

endfunction

//-------------------------------
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i=0

x = x0

r = b - apply_A(x)

d = r

rTr = r’*r

rTr0 = rTr

while (i<imax & rTr>tol^2*rTr0),

q = apply_A(d)

alpha = rTr/(d’*q)

x = x + alpha*d

if modulo(i,50)==0 then

r = b - apply_A(x)

else

r = r - alpha*q

end

rTrOld = rTr

rTr = r’*r

bt = rTr/rTrOld

d = r + bt*d

i = i+1

if modulo(i,iprint)==0 then

printf(’i = %g rTr = %20.15e \n’,i,rTr )

end

end

if i==imax then

warning(’max number of iterations attained’)

end

endfunction

Load this function into Scilab and try on a small matrix and rhs such as

n=21;

B = diag(sparse(ones(n-1,1)),-1) - 2*diag(sparse(ones(n,1))) + ...

diag(sparse(ones(n-1,1)),1);

c = ones(n,1);

by using the command

x = conjugate_gradient(B,c)
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Well that is nice, but we can see a little more detail if we use a few more argu-
ments,

x = conjugate_gradient(B,c,zeros(c),50,1e-9,1)

The 3rd argument provides an initial guess for the iterative scheme, the 4th gives
provides a limit on the number of iterations, the 5th a tolerance on the termi-
nating relative residual, and the 6th argument give the regularity of diagnostic
output. The results show that the square of the residual rTr decreases (slowly)
until the 11th iteration which drops to zero. This is typical of the method.

So finally we can use the conjugate gradient method to try to solve our mem-
brane problem. Our run problem function calls the solve equation function.
To use the conjugate gradient method we need to re-implement solve equation.

function [U] = solve_equation(A,b)

//

// Get good initial guess. well at least one that

// satisfies BC

//

x0 = b

U = conjugate_gradient(A,b,x0,length(x0),1e-9,0)

endfunction

Lab Book: Run the membrane problem for a 50 by 50 grid, using the new
solve equation function. Comment on the relative speed of the new imple-
mentation of the code. Is it better than the previous implementation. Find ap-
proximately how large a problem you can solve in 20 seconds on your computer
using the final implementation.

5.8 Faster Matrix Vector Multiplication

This actually is not the end of the story. First we can implement better methods
for calculating the matrix vector multiplication (the most expensive part of the
conjugate gradient algorithm). Indeed if we are using an iterative method like
the conjugate gradient method, we only need to provide a procedure for calcu-
lating the matrix vector multiplication. So here is yet another implementation of
create matrix procedure.

function [A,b] = create_matrix(n,m)

//

// Create a matrix operator associated with a grid
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// nodes with x and y coordinates given as

// input, connected by springs with nodes

// on the boundary set the function boundary

//

x = 0:1/(n-1):1

y = 0:1/(m-1):1

//-----------------------

// Setup Matrix

// A function is being created

// which will be returned

// instead of a matrix

//----------------------

function y = A(x)

//

// Setup finite difference operator for Laplacian

//

x = matrix(x,n,m)

y = x

J = 2:m-1

I = 2:n-1

y(I,J) = -4.0*x(I,J) + x(I+1,J) + x(I-1,J) + x(I,J+1) + x(I,J-1)

y = y(:)

endfunction

//----------------

// Setup rhs

//----------------

b = 4*force/(n*m)*ones(n*m,1);

//

// Apply boundary condition

//

b(1:n) = feval(x,y(1),saddle_function);

b(n*(m-1)+1:n*m) = feval(x,y(m),saddle_function);

b(1:n:n*(m-1)+1) = feval(x(1),y,saddle_function)’;

b(n:n:n*m) = feval(x(n),y,saddle_function)’;
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endfunction

In this case the procedure returns not a sparse matrix A but a procedure for
apply A to a vector.

Lab Book: Look at the new code for the create matrix procedure. Explain what
the procedure is doing. In particular explain the lines

J = 2:m-1

I = 2:n-1

y(I,J) = -4.0*x(I,J) + x(I+1,J) + x(I-1,J) + x(I,J+1) + x(I,J-1)

Lab Book: Try this new method. How large a problem can you now solve in 20
second

5.9 Conclusion

Even now there is room for improvement. The iterative method can be improved
using what is called preconditioning. With these improvements it is possible to
solve a 1000 by 1000 grid problem (1,000,000 unknowns) in ten seconds on a
normal PC!

By the way, you might question why we need to solve 1000 by 1000 grid
problems. For instance, in geophysical situations there are often cases where we
need to resolve flows over a few metres (through faults) over regions over many
kilometres, ie a range of scale over a thousand.



Chapter 6

Polynomials

6.1 Introduction

This tutorial is designed to familiarise you with polynomial evaluation and inter-
polation and with least squares fitting of data with polynomials.

6.2 Evaluation of Polynomials

Use Scilab to calculate the following functions in the obvious manner without
rearranging or factoring

f(x) = x8 − 8 x7 + 28 x6 − 56 x5 + 70 x4 − 56 x3 + 28 x2 − 8 x + 1
g(x) = (((((((x − 8) x + 28) x − 56) x + 70) x − 56) x + 28) x − 8) x + 1
h(x) = (x − 1)8

at the points 0.975:0.0001:1.025. Plot these points using Scilab.
Observe that the three functions are identical mathematically but that the

numerical results are quite different. Can you account for this discrepancy.
Scilab Hint: You might want to create a file where the three functions, f ,

g and h are defined. In Scilab the command x^4 will try to raise the ma-
trix x to the 4th power (using matrix multiplication). On the other hand the
“dot” operator x.^4 will apply the operation ^ to each entry of the matrix x. It
is recommended that you always use the “dot” notation when you define such
functions.

6.3 Polynomials

We can use Scilab procedures to deal with polynomials. The polynomial a1 +
a2x + · · · + amxm−1 can be represented in Scilab symbolically.
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In the following example, −4 − 3x + x2 is represented by the vector of co-
efficients [−4 − 3 1] and by a polynomial p We setup the polynomial with the
command

v = [-4,-3,1]

p = poly(v,’x’,’coeff’)

We can also build up a polynomial in a more natural way.

x = poly(0,’x’) // Seed a Polynomial using variable ’x’

p = x^2 - 3*x - 4 // Represents x^2 - 3 x -4

There are many useful functions that can be applied to polynomials. We can
find the roots (numerically) of a polynomial, evaluate a polynomial or find its
derivative.

z = roots( p )

z(1)^2 -3*z(1) -4 // Two ways to evaluate the poly.

horner(p,z(1)) // at the first root.

derivat(p) // Calculate the derivative of the polynomial

The Scilab polynomial methods generalise to rational functions. For instance

x = poly(0,’x’) // Seed a Polynomial using variable ’x’

p = x^2 - 3*x - 4 // Represents x^2 - 3 x -4

r = x/p // Represents the rational

// function x/(x^2 - 3 x -4)

horner(r,1.0) // Evaluate r at x=1

6.4 Linear Least Squares (Heath Computer Prob-

lem 3.6)

This question is part of assignment 2. This gives you a chance to try out the
problem with a tutor to help you over the “bumps”.

To demonstrate the numerical difference between the normal equations method
and the QR factorisation for linear least squares, we need a problem that is ill-
conditioned and also has a small residual. We can generate such a problem as
follows. We will fit a polynomial of degree n − 1,

pn−1(t) = x1 + x2t + x3t
2 + · · · + xntn−1

to m data points (ti, yi), with m > n. We choose ti = (i−1)/(m−1), i = 1, ...,m,
so that the data points are equally spaced on the interval [0, 1].
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Generate some synthetic y data. The values of yi are generated by first
choosing values of xj, say, xj = 1, j = 1, ..., n, and evaluating the resultant
polynomial to obtain yi = pn−1(ti), i = 1, ...,m.

We want to see if we can recover the xj that we used to generate the yi, but to
make it more interesting, we first randomly perturb the yi values to simulate the
data error typical of least squares problems. Specifically, we take yi = pn−1(ti) +
(2ui − 1) ∗ ǫ, i = 1, ...,m, where ui is a random number uniformly distributed on
[0, 1] and ǫ is a small positive number that determines the maximum perturbation.
With IEEE double precision, reasonable parameters for the problem are m = 21,
n = 12, and ǫ = 10−10.

We will now compare two methods for computing least square solution to this
polynomial data-fitting problem.

1. Generate the data set (ti, yi), as just outlined. Use the rand function to
generate the random errors.

2. Form the Vandermonde matrix A for general m and n.

3. Form the right hand side data vector b consisting of y data values.

4. Solve the least squares system using the normal equations for this problem.
I.e. solve (AT A)x = ATb for x.

5. Solve the least squares system using the orthogonal factorisation method.
(Form the QR factorisation using the Scilab command qr.)

6. The Scilab backslash command can also be used for the over-determined
system Ax ≈ b. Use this method and compare the results with the normal
equation method and the QR method. What method do you think the
Scilab backslash command is using for over-determined systems?

7. Compare the three resulting solution vectors x. For which method is the
solution more sensitive to the perturbation we introduced into the data?
Which method comes closer to recovering the x used to generate the data?

8. By measuring the magnitude of the errors in the solutions, provide a lower
bound for the conditioning of each of the methods.

9. Investigate whether the difference in solutions affect our ability to fit data
points (ti, yi) closely by the polynomial? Why?



Chapter 7

Interpolation

7.1 Introduction

This tutorial is designed to familiarise you with interpolation.

7.2 Interpolating Runge’s Function

Consider the function

f(t) =
1

1 + 25t2
.

This function is known as Runge’s function.
Define a Scilab function to calculate Runge’s function.

function y=runge(t)

//

// Runge’s Function

// Standard example of polynomial interpolation

// creating oscillations

//

y=(1.0)./(1+25*t.^2)

endfunction

Note we have put parentheses around the (1.0) to ensure that the ./ command
is used. An expression of the form 1./(..) would actually use the / matrix
operator!

Consider a polynomial

pn(t) =
n

∑

j=1

xjt
j−1

which interpolates (coincides with) Runge’s function at n evenly spaced points
between −1 and 1 (i.e. at the points -1:2/(n-1):1|. We have n unknowns xi
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for the coefficients of the polynomial and n data points. This will provide us
with a linear equation for the polynomial coefficients given the values of the data
points.

Create a function called polyfit, with calling sequence pp=polyfit(tdata,

ydata), that fits a polynomial of degree n − 1 to n data points t, y and returns
a polynomial pp. You can easily add an extra argument to calculate the least
square fit of an m < n degree polynomial to the n data points. The result of
polyfit should then be able to be evaluated using the command

tt = -1:0.01:1;

yy = horner(pp,tt)

Hint: You can use the standard backslash operator to solve for the coefficients
once you have the Vandermonde matrix. The feval command together with an
appropriately defined function

function z=vandermonde(t,q)

z=t.^q;

endfunction

may be of help in producing the associated Vandermonde matrix.
You might like to use deff to define your function

deff(’z=vandermonde(t,q)’,’z=t.^q’)

This is useful for short functions.
Use your polyfit function to calculate the coefficients of the degree 5 and

degree 10 polynomials which interpolate Runge’s function at 6 and 11 evenly
spaced points in the interval [−1, 1].

How successful are the polynomial approximations about zero and the end
points?

7.3 Taylor Polynomials

Note that the expression 1/(1 + t) = 1 − t + t2 − t3... easily gives the Taylor
polynomials centred about the origin of the Runge function to have the form

1 − 25t2 + (25t2)2 − (25t2)3...

Use this to plot the Taylor polynomial of degree four centred at zero for the
Runge function, over the interval [-1,1]. You should also plot the Runge function
and the Taylor polynomial over a smaller interval, say [-0.2,0.2]. Try to explain
its accuracy, and what you would expect the accuracy of the degree eight Taylor
polynomial to be like.
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7.4 Chebyshev Interpolation

Let us compute and graph polynomial approximations to the Runge function of
degree four and eight using interpolation at the Chebyshev points: for the case
of degree four, the Scilab expression to compute the five points needed is

tdata = cos((1:2:(2*5-1))*%pi/(2*5))

ydata = runge(tdata)

chebp = polyfit(tdata,ydata)

tt = -1:.01:1;

rr = runge(tt);

yy = horner(chebp,tt);

xbasc();

plot(tt,yy,style=1);

plot2d(tt,rr,style=2);

plot2d(tdata,ydata,style=-1)

The results are more accurate than with equally spaced points or Taylor polyno-
mials but still not very good: try to explain these observations.

Try higher order Chebyshev interpolants.

7.5 Spline Interpolation

The following Scilab commands use the command splin to compute the natural
spline interpolate through the points specified by the vectors x and y. You use
interp to evaluate the spline at the points xx.

tdata = -1:.5:1;

ydata = runge(xs);

ddata = splin(tdata,ydata);

tt = -1:.01:1;

rr = runge(tt);

ss = interp(tt,tdata,ydata,ddata);

Thus the spline approximation can then be graphed using

xbasc();

plot2d(tt,ss,style=1)

plot2d(tt,rr,style=2);

plot2d(tdata,ydata,style=-1);

Change the code to plot the cubic spline approximations of the Runge function
using a set of nine equally spaced points, interpolating the Runge function.
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7.6 Monotonic Cubic Interpolation

From the previous example we see that cubic spline interpolation can still in-
troduce unwanted oscillations. There are many techniques, for instance a fairly
common method is that of Fritsch and Carlson (SIAM J. Numer. Anal. 17,
pp 238-246 1980). Scilab implements a monotonic interpolation method as an
option to the splin function.

Here is some data

tdata = 0:1:10;

ydata = [0 0 0 0 0.1 1.8 1.9 2.0 2.0 2.0 2.1];

Lab Book: Fit an ordinary spline function to this data set. Produce a plot

I obtained the following:
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The result is quite oscillatory, maybe not really what we want.
Now re do the spline interpolation of this data, but use the extra argument

’monotone’. I.e. use

ddata = splin(tdata,ydata, ’monotone’);

Now you can use tdata and ydata values together with the new derivative
values to produce an interpolant using the interp function.

Lab Book: Plot the data points, together with plots of the ordinary spline and
monocubic interpolant. Comment on the respective interpolants.

Hopefully you can see that in some cases it is useful to try to maintain the
shape implicit in your data sets. This is particularly true for coarse data sets.



Chapter 8

Solving Differential Equations

8.1 Introduction

This tutorial is designed to familiarise you with solving ordinary differential equa-
tions using the Scilab procedure ode.

8.2 Differential Equations.

8.2.1 Scalar ODE’s

Suppose we want to find the solution u(t) of the ordinary differential equation

du

dt
= k u(t) (1 − u(t)), t ≥ 0. (8.1)

This equation is a simple model for the spread of a disease. Consider a herd of
P animals, and let u(t) be the proportion of animals infected by the disease after
t days. Thus 1 − u(t) is the proportion of uninfected animals. New infections
occur when infected and uninfected animals meet. The number of such meetings
is proportional to u(t) (1 − u(t)). Thus a simple model for the spread of the
disease is that the new infections per day, du/dt, is proportional u(t) (1 − u(t)).
That is we obtain equation (9.1), where the constant k depends on the density of
the animals and the infectiousness of the disease. For definiteness, suppose here
P = 10000 animals and k = .2. Initially at time t = 0 there is just one infectious
animal, and so we add the initial condition

u(0) = 1/10000. (8.2)

We want to find how many individuals will be infected over the next 100 days,
that is to plot u(t) from t = 0 to t = 100. To solve this problem we need to define
a function to calculate the right hand side of (9.1), and then use the Scilab

program ode.
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Create a Scilab function which specifies the right hand side of the differential
equation. Make sure you get the calling sequence correct. For instance

function udot=f(t,u)

udot = k * u * ( 1 - u );

endfunction

(Although t is not used in calculating udot, the Scilab function ode requires
the function f to be passed to ode must have two input arguments (in the correct
order). Use help ode for more information.)

Having set up the problem, the differential equation is solved in just one
Scilab line using ode!

t=0:100;

k = 0.2;

u = ode( 1/10000, 0.0, t, f );

xbasc(); plot2d( t,u)

Note that the value of k is available to ode and to f.
The function ode also has parameters which can be adjusted to control the

accuracy of the computation. Mostly, these are not necessary for just plotting
the solution to ordinary problems. It is always a good idea to check our the
original solution by resolving the problem with higher accuracy requirements.
For example, we can use ode so that the estimated absolute and relative errors
are kept less than 1 × 10−9. This is done with the commands

uu = ode( 1/10000, 0.0, t, rtol=1e-9, atol=1e-9, f );

plot2d(t,uu,style=-1)

We immediately see that the solution computed in the first call to ode lies
on top of the more accurate solution curve. That is the two solutions coincide to
graphical accuracy.

For this simple model it is possible to find an analytic formula for u(t). In
fact

u(t) =
1

1 + c exp(−kt)
where c = P − 1. (8.3)

We can add this formula to the above graph as a final check.

t = 0:100 ;

c = 10000-1 ; k = .2 ;

function u=exactu(t)

u = 1 ./ ( 1 + c*exp(-k*t));

endfunction

xbasc(); plot2d(t,u); fplot2d(t,exactu,style=-1 )
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The exact formula gives a curve that is the same as the numerical solution.
In fact the difference between the two solutions is at most 2.5×10−7. So we can
be confident in using ode to solve the problems below.

Exercise 13.

1. Check that (8.3) is a solution to (9.1). That is, when we differentiate this
formula for u(t) we get the right side of (9.1). And this formula satisfies
(8.2)

2. From the graph of u(t), estimate how many days are needed for half the
population to be infected?

Hint: You can inspect the plot to get a solution up to the closest day. The
command xgrid will make this easier to answer. You could also create
a function using the result from the ode procedure, which returns the ode
solution minus 0.5 at any particular time t. Then use fsolve to solve the
problem.

3. Suppose now that after the infection is noted at day t = 0, an inoculation
program is started from day 5, and 200 of the uninfected animals are inoc-
ulated per day. After t days, the proportion of animals inoculated per day
is 200(t− 5)+/10000. Here (t− 5)+ means max(t− 5, 0). These inoculated
animals cannot be infected, an new infections occur when an uninfected,
un-inoculated animal meets an infected animal. Thus the rate of increase
of u is now modelled by the differential equation

du

dt
= k u(t) (1 − u(t) − .02 (t − 5)+)

+
;

Now, how many animals are uninfected after 100 days with the inoculation
program?

4. How many animals would be uninfected if only 100 animals could be inoc-
ulated each day from day 5? How many animals would have been saved if
100 animals per day were inoculated from day 0?

This simple model problem also has a formula for the exact solution. However
in Scilab it is very easy to get a numerical solution; and this can be done even
in complicated problems when there is no simple formulae for the solution. Using
Scilab we can simply explore the model by altering the parameters and plotting
the solutions!
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8.2.2 Order 2 ODE’s

As a second example, consider the ordinary differential equation

d2u

dt2
+ sin(u(t)) = 0 (8.4)

u(0) = π/4 ,
du

dt
(0) = 0 (8.5)

This is a more complicated example because the second derivative of u appears,
not just the first derivative. (This is called a second order ODE.) The Scilab

ODE solvers cannot use second derivatives directly as they only work with first
derivatives. However a sneaky trick can be used. If we keep track of both u(t)
and du/dt, then second derivatives of u(t) are just first derivatives of du/dt. More
formally, let v(t) denote the value of du/dt. Then (9.2) is equivalent to the two
equations

du

dt
= v(t) , and

dv

dt
= − sin(u(t))

Even more elegantly, we let x(t) be a vector with the two components

x(t) =

[

x1(t)
x2(t)

]

=

[

u(t)
v(t)

]

=

[

u(t)
du/dt(t)

]

,

and so
dx

dt
=

[

x2

− sin(x1)

]

=

[

v(t)
− sin(u(t))

]

This is now in the form
dx

dt
= F (t,x(t)),

where for any vector x, F (t,x) is defined by

F (t,x) =

[

x2

− sin(x1)

]

Thus to solve (9.2) and plot u(t) against t we start by first defining the function
F

function xdot = pendulum(t,x)

xdot = [ x(2) ; -sin(x(1))];

endfunction

Then we use the commands

t = 0:.25:20;

x=ode([%pi/4;0], 0.0, t, pendulum );

xbasc(); plot2d(t, x(1,:))
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to plot the first component of the solution. Note that ode stores the first and
second components of the solution in the first and second rows of the output.

Of course we can plot the second component of the solution and the phase
plane trajectory with the commands

xbasc(); plot2d(t, x(2,:))

xinit(); xbasc(); plot2d(x(1,:), x(2,:))

What does the xinit() command do?
The velocity field in the phase plane can be drawn using the fchamp command

fchamp(pendulum,0.0,-1:0.1:1,-1:0.1:1)

Exercise 14. In the equation (9.2) , u(t) is the angle a swinging pendulum makes
with the vertical axis at time t. If the pendulum is of length 1, the weight of the
pendulum is at (x, y) = (sin(u(t)),− cos(u(t)). (The pendulum is swinging from
the origin and is at position (0,−1) when it is at rest.)

1. From the graph, what is the period of the pendulum?

2. Often when the pendulum swings through small angles, the equation (9.2)
is approximated by

d2u

dt2
+ u(t) = 0,

u(0) = π/4 ,
du

dt
(0) = 0

How different is the solution to this linear approximation to the exact solu-
tion? Are the periods the same?

3. A forced pendulum can be modelled by the equation

d2u

dt2
+ sin(u(t)) = A cos(ωt) (8.6)

Produce solutions of this equation for ω = 1/2 and A = 0.2 and A = 1.5
with initial conditions u(0) = 100, u′(0) = 0 and u(0) = 101, u′(0) = 0.
Comment on the sensitivity of the solutions of the ode for the different
values of A.



Chapter 9

Chemical Reaction Example

9.1 Introduction

This tutorial is designed to familiarise you with solving stiff ODE’s using Scilab

procedure ode for chemical reaction equations.

9.2 Chemical Reaction Systems

Many interesting ODE’s can be constructed to describe the evolution of chemical
reactions. Suppose we have 4 chemical species A, B, C and D. These might
denote O2, H2, OH, H2O etc. We can write one reaction between these species
via a chemical equation

A + B
k1−→ C + D (9.1)

This reaction will not take place instantaneously, but will react at a rate
proportional to the concentration of the reactants A and B with a rate constant
k1. Suppose we have a second equation

A + A + C
k2−→ B (9.2)

and we suppose these two reaction equations fully specify the reactions taking
place in our system.

We can generate the evolution equations for the concentrations of chemical
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species as follows

d[A]

dt
= −k1[A][B] − 2k2[A][A][C]

d[B]

dt
= −k1[A][B] + k2[A][A][C]

d[C]

dt
= k1[A][B] − k2[A][A][C]

d[D]

dt
= k1[A][B]

where the square brackets denote concentrations.
Lets look at the first equation

d[A]

dt
= −k1[A][B] − 2k2[A][A][C]

The rate of reaction 9.1 will depend proportionally on [A] and [B], the constant
of proportionality given by k1. So the rate of reaction 1 will be given by k1[A][B].
Each instance of reaction 1 will use up one unit of A. So the rate of change
of concentration of A due to reaction 1 will be equal to −k1[A][B]. The minus
signifying one unit being used up. There are similar terms in the other ODE’s
corresponding to using up the species B and creating species C and D.

The rate of the second reaction will depend proportionally on [A], [A] again,
and [C] and so the rate of reaction 2 will be k2[A][A][C]. Each reaction 2 will
use up 2 units of A, so the rate of change of concentration of A due to reaction 2
will be equal to −2k1[A][A][C], with similar terms in the ODE’s denoting using
one unit of C and creating one unit of B.

The creation of the differential equations can be automated given the reaction
equations and the corresponding rates. We leave it to the Chemists to give up a
reasonable set of reaction equations with corresponding rates constants.

9.2.1 Robertson’s Example

An idealised chemical reaction system which is often used to generate a stiff
system of ODE’s is given by the reaction equations

A
0.04−→ B

B + B
3.0e7−→ B + C

B + C
1.0e4−→ A + C

There are 3 chemical species and so there will be a corresponding system of 3
ODE’s modelling the evolution of the concentrations of these chemicals. The
choice of rate constants tells us that the first reaction will evolve slowly, the
second reaction very fast, and the final reaction fast.
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Exercise 15.

1. Derive the system of ODE’s corresponding to Robertson’s example.

2. Use Scilab to solve these equations with initial concentrations [A] = 1,
[B] = [C] = 0 for t ∈ [0, 0.001]. Plot your results on the same graph using
the command of the form

xbasc();plot2d(t’,y’,leg=’A@B@C’)

I obtained the plot

0 1e−4 2e−4 3e−4 4e−4 5e−4 6e−4 7e−4 8e−4 9e−4 10e−4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

The concentrations of B and C are very small compared to A. It is sensible
to normalise these concentrations by the maximum value of each concentra-
tion. We can use the max function, using the ’c’ argument to produce a
column vector containing the maximum of each row. I.e

ymax = max(y,’c’);

The trick is now to scale each row of y by the corresponding entries of ymax.
I came up with
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yscaled = diag(1.0./ymax)*y;

Can you see what this is doing?

Now you can plot t versus yscaled with

xbasc();

plot2d(t’,yscaled’)

legends([’A’;’B’;’C’],[1;2;3])

I suggest producing a legend so that you can see which curve corresponds to
which variable. The format of the command associates a character string
(such as ’A’ with a line style 1.

I now obtained the plot
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3. Interesting things happen for very small times as well as for much larger
times. To see these things produce approximations of the concentrations at
times 2i, i = −20, ..., 10. Plot the scaled three concentrations on the same
plot using the previous scaled method. You should use a log scale for the
time axis. Use the ’ln’ argument which tells plot2d to plot the first axis
using log scale and the second axis using normal scale
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xbasc();

plot2d(’ln’, t’,yscaled’)

legends([’A’;’B’;’C’],[1;2;3])

Here is the plot now
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4. The concentrations are still in a transient state at time t = 1024. Run
the calculation to larger times to ascertain the long time behaviour of the
system. What concentrations do A B and C limit to?



Chapter 10

Boundary Value Problems

10.1 Introduction

This tutorial is designed to familiarise you with the shooting method for solving
boundary value problems. This is essentially a component of Heath’s computer
problem 10.1. But first we will have a look at a method for solving general
equations

10.2 Solving Equations

10.2.1 Plotting

Suppose we wanted to find the value of x = (x1, x2) such that

k(x2
1 + x2

2) − 2 = 0
k sin(x1x2) = 0

(10.1)

for some value of k.
Perhaps the first thing we should do is plot these functions. We need to

redefine the function so that we can use the standard Scilab plotting routines.
I suggest defining two functions for the two components of the function

function z = eqn1(x,y)

z = k*(x**2+y**2) - 2;

endfunction

function z = eqn2(x,y)

z = k*sin(x*y);

endfunction

We can plot the functions using the fplot3d or the fcontour2d functions.
Try
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k = 1;

x = -4:0.1:4;

y = x;

xbasc(); fplot3d(x,y,eqn2)

Notice that we have set the value of k and it is being passed through to the
function eqn1 implicitly.

Contour plots can sometimes be easier to work with. A contour plot for the
first function can be obtained via

xbasc(); fcontour2d(x,y,eqn1,[0 5 10 20 25]);

Not that we have asked for the contour lines for 0 up to 25 in steps of 5. Make
sure you have a look at the plot.

Now let us over plot with the contours of the second function.

fcontour2d(x,y,eqn2, [0,1]);

The overall plot is quite complicated (at least to me). Perhaps you might like to
plot both functions separately to get an idea of the “shape” of both. But with
both contour plots on the same graph, us the 2d zoom facility of Scilab to get
an approximate solution (3 sig figs) of equation (10.1) (for k = 1).

10.2.2 Equation Solver

It is useful to automate the solution of equations. We have studied the use of
Newton’e method earlier in the course. Scilab provides a procedure to solve
general equations. The procedure is called fsolve. This procedure requires an
initial guess and the equations written as a Scilab function. For our problem
we would produce a Scilab function as such

function y = f(x)

y(1) = eqn1(x(1),x(2));

y(2) = eqn2(x(1),x(2));

endfunction

where the functions eqn1 and eqn2 were defined in the last section. Of course
you could define the function without using eqn1 and eqn2. Unfortunately the
fsolve function expects a very particular form, which is different than the calling
form for the plotting routines.

We would store this in a file and use exec to load the function. We could
then solve the equation using fsolve, as such

k=1;

[x,y] = fsolve([0;0], f)
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Does the solution provided by fsolve match the one you discovered manually?
It might be useful to get some feedback about what fsolve is doing. One way

is to provide some output from the function. Redefine the function f as such:

function y = f(x)

y(1) = eqn1(x(1),x(2));

y(2) = eqn2(x(1),x(2));

printf(’x(1)=%15e x(2)=%15e y(1)=%15e y(2)=%15e\n’,x(1),x(2),y(1),y(2))

endfunction

Take note of the printf function. This is the formatted print command (like
the corresponding C procedure). The formatting is accomplished using the codes
like %15e which will produce a decimal number using 15 characters.

You might even want to produce graphical output from your f function.

10.3 Two Point Boundary Problem

Consider the two-point boundary value problem

y′′ = 10y3 + 3y + t2, 0 ≤ t ≤ 1,

with boundary conditions

y(0) = 0, y(1) = 1,

We will try to use the shooting method to solve this problem.
To use the shooting method we must first be able to solve the initial value

problem. Then we must be able to test many initial conditions to find our required
value.

• First setup a function which defines the differential equation using the call-
ing sequence

function udot = shootode(t,u)

• Check your function by solving the ode with initial conditions y(0) = 0,
y′(0) = 1.

• Plot the solution. Mine looks like the following
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fshoot(1)
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• What is the value of y at 1? (I got about 5.1).

• Take your ode solver (with your plotting routines) and produce a function
with calling sequence

function y = fshoot(s)

which takes an initial value for the slope at 0 and returns the value of
y(1) − 1. For instance you should approximately get fshoot(1.0) should
return approximately 4.1.

• Finally use the fsolve function to find an approximation to the boundary
value problem.

Here is the graphical result I obtained when running fsolve(1,fshoot).
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10.4 Exercise

Solve the two-point boundary value problem

y′′ = 8y3 + 3y − 10, 0 ≤ t ≤ 1,

with boundary conditions

y(0) = 0, y(1) = 2,

Hint: You might have to hunt for a good starting value for the slope, some-
where between 2 and 3.9.

What is the slope at 0 for the function which solve this boundary value prob-
lem?



Chapter 11

Heat and Wave Equations

11.1 Introduction

This tutorial is designed to familiarise you with some methods for solving time
dependent partial differential equations. In particular we will implement some of
the finite difference methods introduced in lectures to solve the Heat equation and
the Wave equation. In this tutorial I will take you through the development of a
series of Scilab functions which will implement the forward and backward Euler
method for the Heat equation and the leap frog method for the wave equation.

To save typing you can cut some of the code described in this tutorial into a
file on your machine which you can run with Scilab. I will assume that you use
a file named tute_10.sce into which you put all your code.

To recall the Heat equation is

ut = c uxx 0 ≤ x ≤ 1, t ≥ 0

u(0, x) = f(x) u(t, 0) = α u(t, 1) = β

and the Wave equation is

utt = c uxx 0 ≤ x ≤ 1, t ≥ 0

u(0, x) = f(x) ut(0, x) = g(x)

u(t, 0) = α u(t, 1) = β.

11.2 Heat Equation

We will first concentrate on the Heat equation. The simplest finite difference
method is based on Euler’s method and is given as

uk+1
j = uk

j +
c∆t

∆x2

(

uk
j+1 − 2 uk

j + uk
j−1

)



Computational Science, Scilab Tutorials 73

u0
j = f(xj) uk

0 = α uk
n = β

where uk
j represents an approximate of the solution u(k∆t, j∆x). Here we have

discretised the interval [0, 1] into n+1 points xj = j∆x where ∆x = 1/n and the
time interval into discrete times tk = k∆t.

To implement this time stepping method we need a vector to contain the u
values at any particular time. Indeed it is useful to have another vector for the
previous time. As input to our heat function we specify

1. the number of subintervals n in the x dimension,

2. the size of the time step dt,

3. a function f defining the initial conditions,

4. the left boundary value alpha and

5. the right boundary value beta.

Our Scilab function will have the following basic structure

//---------------------------------------------------------------

function [] = heat(n,dt,f,alpha,beta)

//--------------------------

// Setup parameters

//--------------------------

//--------------------------

// Setup initial conditions

//--------------------------

//--------------------------

// Setup Boundary conditions

//--------------------------

//--------------------------

// Plot the initial conditions

//--------------------------

//--------------------------

// The main time loop

//--------------------------

endfunction

//---------------------------------------------------------------
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Cut and paste this into your Scilab file heat.sce.
Now let us expand the code. First, let us look at setting up parameters, as

this allows us to define some variables for subsequent use. I chose the following
parameters

//--------------------------

// Setup parameters

//--------------------------

c = 1.0;

dx = 1/n;

lambda = dt/dx^2*c;

x = (0:dx:1)’;

t = 0;

Note that I am using the comment lines to help you place the code correctly.
I needed c to define the constant in the heat equation, dx is obvious, lambda

is a useful combination of parameters that occurs in the updating of the solution
vector (by the way, the dt is being passed in so that you can play with changing
it to test stability). I have created an x vector so that I can plot our result x
versus u. A variable for time t is useful for the main time loop. Cut and Paste
this code into your file tute_10.sce in the initial part of the function.

The initial condition will be given by the value of a function f at the x values.
It turns out that we also need a second u vector u1 which we create at this point.
We simply use

//--------------------------

// Setup initial conditions

//--------------------------

u0 = f(x);

u1 = zeros(u0);

We will need to define a function f . Lets do something simple like a sin curve.
I used

//---------------------------------------------------------------

function u=fsin(x)

k=1

u = sin(%pi*k*x)

endfunction

//---------------------------------------------------------------
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Put this in another file util.sce file. This file will hold extra functions which
can be used independently of the heat equation function.

The boundary conditions can be simply set to α at the left hand end of u0
and β at the right hand end.

//--------------------------

// Setup Boundary conditions

//--------------------------

u0(1) = alpha;

u0($) = beta;

In most simulations it is useful to plot out results. This is particularly useful
when coding up a method as it often points to errors in the code. So lets plot
the initial condition. I suggest something like

//--------------------------

// Plot the initial conditions

//--------------------------

xselect()

myplot(x,u0)

The xselect() will bring the graphics window to the front and the myplot

function is just a function to plot x versus u vectors. Copy this code to the
correct position within your file.

Now we also have to define our plotting routine. I used

//---------------------------------------------------------------

function []=myplot(x,u)

wait = 50000;

xbasc();

plot2d(x,u,rect=[0,-1,1,1]);

xpause(wait)

endfunction

//---------------------------------------------------------------

The main part of this function is just the standard plot2d command. I have
added the xpause to make the plots look nicer when we have our time evolution
working. The command leaves the plot up for at least the specified number of
microseconds. Put a copy of this function in your utility file util.sce.

Lets try our code. Save your file and in the Scilab command window load
in the functions and run the heat function.

exec heat.sce

exec util.sce

n=20; heat(n,0.5/n^2,fsin,0,-1)
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The right boundary condition doesn’t match up with the initial conditions.
We could run our method with this incompatibility, but let’s fix up the boundary
conditions. With new boundary conditions try

n=20; heat(n,0.5/n^2,fsin,0,0)

Nothing happens.
Now we can go back the code and add in the time evolution part. We need a

loop, we can use a for loop but I like using a while loop based on time. I.e. I
suggest using

//--------------------------

// The main time loop

//--------------------------

while t<1

t=t+dt

//--------------------------------

// Update the solution vector

//--------------------------------

myplot(x,u0)

end

This loop is a little incorrect, in that it may overshoot the final time by dt.
Not to worry. The main thing now is how to update the solution vector. The
most obvious way is to use a for loop to implement the finite difference update

uk+1
j = uk

j +
c∆t

∆x2

(

uk
j+1 − 2 uk

j + uk
j−1

)

The uk
j values will be stored in u0 and the new values uk+1

j in the vector u1.
Once the update is completed we will over write u0 with the new u1. The code
is

//--------------------------------

// Update the solution vector

//--------------------------------

for j=2:n

u1(j) = (1-2*lambda)*u0(j) ...

+ lambda*u0(j+1) + lambda*u0(j-1);

end

u0 = u1;
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It is always important to get the range of j correct. We only need to work
with the interior points. There are actually n + 1 entries in u0 and u1 and so the
range j=2:n corresponds to interior points.

An alternative method to the for loop is to use the array notation in Scilab

//--------------------------------

// Update the solution vector

//--------------------------------

u1(2:$-1) = (1-2*lambda)*u0(2:$-1) ...

+ lambda*u0(3:$) + lambda*u0(1:$-2);

u0 = u1;

This second method will be more efficient in Scilab though the for method
is closer to what you would use in C or Fortran.

Perhaps use the first method initially and change over to the second if the
evolution seems slow. As we will be plotting the solution for every iteration the
overall speed of the method will be slow anyway. The array method becomes
more important for higher dimensional problems.

Lets see if our method works. Add in the time loop code, load in the code
with exec and run the heat command again. You might like to increase the
number of grid points to say 100.

To stop the evolution you can use the Control menu with the pause, resume
and abort commands.

Lets try another initial condition. Go back to your code and add the following
function to your utility file.

//---------------------------------------------------------------

function u=fline(x)

u = 0.5-x;

endfunction

//---------------------------------------------------------------

This is a solution of the Heat equation with the boundary conditions α = 0.5
and β = −0.5. The exact solution to the heat equation with this set of boundary
conditions is the straight line between these two points. Let’s check how our
solver works.

exec heat.sce; exec util.sce

n=100;heat(n,0.5/n^2,fline,0.5,-0.5)

Why is the solution changing? Go back to your code and find the bug and
fix it so that the boundary condition is set properly.
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11.2.1 Stability

Our analysis of the method tells us that we need ∆t < ∆x2

2c
for stability. Let’s

see what happens if we go over this constraint. Try

n=100; heat(n,0.52/n^2,fsin,0.0,0.0)

After some time you should see instabilities arising.

11.3 Wave Equation

Let’s quickly produce an implementation of the leap frog method for the wave
equation. We need to implement the algorithm

uk+1
j = 2 uk

j − uk−1
j + c

∆t2

∆x2

(

uk
j+1 − uk

j + uk
j−1

)

We will use three vectors u2 to hold uk+1
j , u1 to hold uk

j and u0 to hold uk−1
j .

The structure is similar to that for the heat equation.

//---------------------------------------------------------------

function [] = wave(n,dt,f,g,alpha,beta)

//--------------------------

// Setup parameters

//--------------------------

c = 1.0;

dx = 1/n;

lambda = dt^2/dx^2*c;

x = (0:dx:1)’;

t=0;

//--------------------------

// Setup initial and

// boundary conditions

//--------------------------

u0 = f(x);

u0(1) = alpha; u0($) = beta;

u1 = zeros(u0);

if (g==1) then

u1(2:$-1) = u0(1:$-2);

elseif (g==-1) then
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u1(2:$-1) = u0(3:$);

else

u1(2:$-1) = 0.5*(u0(1:$-2)+u0(3:$));

end

u1(1) = alpha; u1($) = beta;

u2 = zeros(u0);

u2(1) = alpha; u2($) = beta;

//--------------------------

// Plot the initial conditions

//--------------------------

xselect()

myplot(x,u0)

myplot(x,u1)

//--------------------------

// The main time loop

//--------------------------

while t<20

t=t+dt;

//--------------------------------

// Update the solution vector

//--------------------------------

for j=2:n

u2(j) = (2-2*lambda)*u1(j) - u0(j) ...

+ lambda*u1(j+1) + lambda*u1(j-1);

end

u0=u1;

u1=u2;

myplot(x,u2)

end

endfunction

//---------------------------------------------------------------

11.3.1 Experimentation

We can use the initial conditions for u that we used for the heat equation.
Add in the code in the previous subsection to a wave.sce file. Load in the

new functions using exec. Now play around with the code. For instance try
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n=100; wave(n,1/n,fsin,0,0,0)

Hopefully you will see an “oscillating string”.
Lets try a different initial condition, A bump in the middle of the string.

//---------------------------------------------------------------

function u = fbump(x)

c = 0.5; w = 0.125;

cl = c-w;

cr = c+w;

u = bool2s(x>cl & x<=cr)

endfunction

//---------------------------------------------------------------

See how we can use comparisons to create interesting functions.
Now try out this initial condition

n=100; wave(n,1/n,fbump,0,0,0)

It looks cool as the disturbance reflects off the boundaries. It is amazing, we
are actually getting the exact solution.

You can get the bump to move either to the right or left using the g argument.
Try

n=100; wave(n,1/n,fbump,1,0,0)

and

n=100; wave(n,1/n,fbump,-1,0,0)

11.3.2 Stability

Try testing the stability of the method for slightly larger timesteps. For even
slightly larger timesteps than 1/n you should see growing modes in the solution,
especially if you use the bump as an initial condition. The effect is not seen so
quickly if you use smoother initial conditions.

11.4 Exercises

1. You might like to play with a solver for the heat equation which uses the
implicit Euler method. Here is the code
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//---------------------------------------------------------------

function [] = iheat(n,dt,f,alpha,beta)

//--------------------------

// Setup parameters

//--------------------------

c = 1.0;

dx = 1/n;

lambda = dt/dx^2*c;

x = (0:dx:1)’;

t=0;

//--------------------------

// Call f to setup initial

// conditions. u1 set to same

// size as u0

//--------------------------

u0 = f(x);

//--------------------------

// Setup the matrix A as a

// sparse matrix

//--------------------------

A = (1+2*lambda)*diag(sparse(ones(n-1,1))) ...

-lambda*diag(sparse(ones(n-2,1)),-1) ...

-lambda*diag(sparse(ones(n-2,1)),1);

//--------------------------

// Setup Boundary conditions

//--------------------------

u0(1) = alpha

u0($) = beta

//--------------------------

// Plot the initial conditions

//--------------------------

xselect()

myplot(x,u0)

//--------------------------

// The main time loop
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//--------------------------

while t<20

t = t+dt

u0(2:$-1) = A\(u0(2:$-1))

myplot(x,u0)

end

endfunction

//---------------------------------------------------------------

Try

n=100; iheat(n,1/n,fsin,0,0)

It evolves so quickly you might want to change the wait time in the myplot
function.

Try

n=100; iheat(n,1/n,fbump,0,0)

2. Use the code for heat and iheat to produce a program that solves the heat
equation using the Crank Nicolson method. Try a smooth initial condi-
tion like fsin and a rough initial condition like fbump. Something strange
happens with the rough initial condition.

You might like to experiment with Crank Nicolson using fsin, but with
progressively high frequencies. Can you make a conjecture about the rela-
tive efficiency of Crank Nicolson to damp out errors at different frequencies.
How does this explain the observed behaviour of Crank Nicolson method
on the fbump initial data.
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