
Scilab Tutorial 7 for Computational Science

1 Introduction

This tutorial is designed to familiarise you with interpolation.

2 Interpolating Runge’s Function

Consider the function

f(t) =
1

1 + 25t2
.

This function is known as Runge’s function.
Define a Scilab function to calculate Runge’s function.

function y=runge(t)

//

// Runge’s Function

// Standard example of polynomial interpolation

// creating oscillations

//

y=(1.0)./(1+25*t.^2)

endfunction

Note we have put parentheses around the (1.0) to ensure that the ./ command
is used. An expression of the form 1./(..) would actually use the / matrix
operator!

Consider a polynomial

pn(t) =
n∑

j=1

xjt
j−1

which interpolates (coincides with) Runge’s function at n evenly spaced points
between −1 and 1 (i.e. at the points -1:2/(n-1):1|. We have n unknowns xi

for the coefficients of the polynomial and n data points. This will provide us
with a linear equation for the polynomial coefficients given the values of the data
points.

Create a function called polyfit, with calling sequence pp=polyfit(tdata,

ydata), that fits a polynomial of degree n − 1 to n data points t, y and returns
a polynomial pp. You can easily add an extra argument to calculate the least
square fit of an m < n degree polynomial to the n data points. The result of
polyfit should then be able to be evaluated using the command



Computational Science, Scilab Tutorial 7 2

tt = -1:0.01:1;

yy = horner(pp,tt)

Hint: You can use the standard backslash operator to solve for the coefficients
once you have the Vandermonde matrix. The feval command together with an
appropriately defined function

function z=vandermonde(t,q)

z=t.^q;

endfunction

may be of help in producing the associated Vandermonde matrix.
You might like to use deff to define your function

deff(’z=vandermonde(t,q)’,’z=t.^q’)

This is useful for short functions.
Use your polyfit function to calculate the coefficients of the degree 5 and

degree 10 polynomials which interpolate Runge’s function at 6 and 11 evenly
spaced points in the interval [−1, 1].

How successful are the polynomial approximations about zero and the end
points?

3 Taylor Polynomials

Note that the expression 1/(1 + t) = 1 − t + t2 − t3... easily gives the Taylor
polynomials centred about the origin of the Runge function to have the form

1 − 25t2 + (25t2)2
− (25t2)3...

Use this to plot the Taylor polynomial of degree four centred at zero for the
Runge function, over the interval [-1,1]. You should also plot the Runge function
and the Taylor polynomial over a smaller interval, say [-0.2,0.2]. Try to explain
its accuracy, and what you would expect the accuracy of the degree eight Taylor
polynomial to be like.

4 Chebyshev Interpolation

Let us compute and graph polynomial approximations to the Runge function of
degree four and eight using interpolation at the Chebyshev points: for the case
of degree four, the Scilab expression to compute the five points needed is



Computational Science, Scilab Tutorial 7 3

tdata = cos((1:2:(2*5-1))*%pi/(2*5))

ydata = runge(tdata)

chebp = polyfit(tdata,ydata)

tt = -1:.01:1;

rr = runge(tt);

yy = horner(chebp,tt);

xbasc();

plot(tt,yy,style=1);

plot2d(tt,rr,style=2);

plot2d(tdata,ydata,style=-1)

The results are more accurate than with equally spaced points or Taylor polyno-
mials but still not very good: try to explain these observations.

Try higher order Chebyshev interpolants.

5 Spline Interpolation

The following Scilab commands use the command splin to compute the natural
spline interpolate through the points specified by the vectors x and y. You use
interp to evaluate the spline at the points xx.

tdata = -1:.5:1;

ydata = runge(xs);

ddata = splin(tdata,ydata);

tt = -1:.01:1;

rr = runge(tt);

ss = interp(tt,tdata,ydata,ddata);

Thus the spline approximation can then be graphed using

xbasc();

plot2d(tt,ss,style=1)

plot2d(tt,rr,style=2);

plot2d(tdata,ydata,style=-1);

Change the code to plot the cubic spline approximations of the Runge function
using a set of nine equally spaced points, interpolating the Runge function.

6 Monotonic Cubic Interpolation

From the previous example we see that cubic spline interpolation can still in-
troduce unwanted oscillations. There are many techniques, for instance a fairly
common method is that of Fritsch and Carlson (SIAM J. Numer. Anal. 17,



Computational Science, Scilab Tutorial 7 4

pp 238-246 1980). Scilab implements a monotonic interpolation method as an
option to the splin function.

Here is some data

tdata = 0:1:10;

ydata = [0 0 0 0 0.1 1.8 1.9 2.0 2.0 2.0 2.1];

Lab Book: Fit an ordinary spline function to this data set. Produce a plot

I obtained the following:

0 1 2 3 4 5 6 7 8 9 10
-0.2

0.2

0.6

1.0

1.4

1.8

2.2

+ + + +
+

+
+

+ + +
+

The result is quite oscillatory, maybe not really what we want.
Now re do the spline interpolation of this data, but use the extra argument

’monotone’. I.e. use

ddata = splin(tdata,ydata, ’monotone’);

Now you can use tdata and ydata values together with the new derivative
values to produce an interpolant using the interp function.

Lab Book: Plot the data points, together with plots of the ordinary spline and
monocubic interpolant. Comment on the respective interpolants.

Hopefully you can see that in some cases it is useful to try to maintain the
shape implicit in your data sets. This is particularly true for coarse data sets.


	Introduction
	Interpolating Runge's Function
	Taylor Polynomials
	Chebyshev Interpolation
	Spline Interpolation
	Monotonic Cubic Interpolation

