0SC

| ntroduction to Perl

Science and Technology Support Group
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212-1163



| ntroduction to Perl

e Setting the Stage * Functions

« DataTypes  Exercises3

o QOperators » Fileand Directory Manipulation
o Exercisesl e External Processes

e Control Structures  References

« Basicl/O » Exercises4

o Exercises?2 e Some Other Topics of Interest
 Regular Expressions e For Further Information

2
Osc Introduction to Perl



Setting the Stage

e What is Perl?
e How to get Pel
 Basic Concepts

3
OSC Introduction to Perl



What is Pex|?

* Practical Extraction and Report Language
— Or: Pathologically Eclectic Rubbish Lister
o Created by Larry Wall
* A compiled/interpreted programming language
o Combines popular features of the shell, sed, awk and C
o Useful for manipulating files, text and processes
— Also for sysadmins and CGil

o Latest official version is5.005

— Perl 4.036 still in widespread use
— Useperl| -v toseetheversion

 Pelisportable
o Perl isfreel

4
OSC Introduction to Perl



How to Get Perl

o Perl’smost natural “habitat” is UNIX
» Hasbeen ported to most other systems as well
— MS Windows, Macintosh, VMS, OS2, Amiga...

 Avallablefor free under the GNU Public License

— Basically says you can only distribute binaries of Perl if you also make the source
code available, including the source to any modifications you may have made

» Can download source code (C) and compile yourself (unlikely to be necessary)
* Pre-compiled binaries also available for most systems

e Support availablevia

— Perl man page
— perl doc command

— TheUsenet group conp. | ang. per|

5
OSC Introduction to Perl



Basic Concepts

A shell script isjust atext file containing a sequence of shell commands

To run the script, first make it executable and then type its name:

< 6
Osc Introduction to Perl



Basic Concepts

o Similarly, aPerl script is atext file containing Perl statements
e Toindicatethat it'saPerl program, include

#! [ usr/ 1 ocal / bi n/ perl

asthefirst line of thefile
— Notethat the location of Perl on your system may vary!
« Torun, make the script executable and then type its name at the shell prompt

$ chnod +x nyscript. pl

$ nyscript. pl
[ out put of script.]
$

7
OSC Introduction to Perl



Basic Concepts

I 8
Osc Introduction to Perl



Basic Concepts

« Statements executed in “top-down” order; each is executed in succession
e Syntax —and hence style—similar to that of C

0SC

Free formatting

Case sengitive

Statements must end with asemicolon (; )

Groups of statements can be combined into blocks using curly braces({. . . })
Control structures generally analogous to thosein C

But no mai n()

Also no variable declarations!

* Introduce and use any type of variable at any time, including growing/shrinking arrays on
thefly...

Lazy memory “ management”

9

Introduction to Perl



Basic Concepts

* Perl isboth an interpreted and a compiled language

* When run, the program isfirst read and “compiled” in memory
— Not atrue compilation to native machine instructions
— Similar to creation of Java“bytecode”

— Some optimizations are performed, e.g.
» eliminating unreachable code
* reducing constant expressions
» loading library definitions

» Second stage is execution via an interpreter (analogous to JavaVM)
* Much faster than fully interpreted languages, such as the shell
* No object code

10
OSC Introduction to Perl



Data Types

e Scdlar data
 Arrays

e Associative arrays, or “hashes’

11
Osc Introduction to Perl



Scalar Data

* A single number or string, depending on context
* Referencesto scalars always begin with $

» Variable names may contain characters, numbers and underscores
e Assignment isdone using the = operator

 Examples:
$pi = 3.14159;
$color = 'red’;
$ol d_color = "was $col or before”;
$host = " hostnane ; # conmand substitution

# (nore on this later)

* Ingenerd if you refer to avariable before assigning it avalue, it will contain
the value undef

— Auto-convertsto the null string (“ ) or zero, depending on context

12
OSC Introduction to Perl



Numeric Vaues

* Nodistinct “types’ — conversion handled automatically
* Internally, Perl treats all numbersasdoubl es

e Decimd:

$pi = 3.14159;
 Hexadecimadl:

$y = Oxle; ($y hasthehex valuele, or decimal 30)
e QOctdl:

$y = 075; ($y isnow octal 75 = 61 decimal)

o Scientific notation:
$z = 3e+2; ($z getsthe value 300)
$z = 5e-3; ($z getsthe value 0.005)

13
OSC Introduction to Perl



Strings

e Seqguences of characters
* No end of string character asin C
e Single-quoted (note: ' not )
— no variable interpolation or backslash escape handling, e.g.

$x = "dog”;
print 'bob $x’; # displays bob $x

* Double-quoted
— variable interpolation and escape handling are performed, so

$x = "dog”;
print "bob $x”; # displays bob dog

14
OSC Introduction to Perl



0SC

Double-Quoted Backslash Escapes

Sequence

\'n
\r
\ t
\ f
\b
\ a
\ 001
\ x20
\cD
\\
\

Description

newline (form feed + carriage return)
carriage return

tab

formfeed

backspace

bell

octal ASCII value (herectrl| - A)
hex ASCII value (here space)
control character (herect r| - D)
backslash

double quote

15

Introduction to Perl



0SC

$0
$$
$!
$7
3|

$]
$<
$>

Some Specialy Defined Variables

Name of currently executing script

default variable for many operations

the current process ID

the current system error message fromer r no
exit status of last command substitution or pipe
whether output is buffered

the current line number of last input

the current Perl version

thereal ui d of the process

the effective ui d of the process

16

Introduction to Perl



The Default Variable

$ _isageneric default variable for many operations
Many functions are assumed to act on $__ if no argument is specified

print; # same as print ("$");
chop; # sane as chop ($);

$_ isdsoadefault for pattern matching, implicit 1/O and other operations
—  Will see examples aswe go...

If you see Perl code that appears to be missing argument(s), chances are that
$_isinvolved

17
OSC Introduction to Perl



OSC Introduction to Perl

Conversion Between Numbers and Strings

If astring is used as though it were a number, it is converted to a number
automatically

Examples:

" 3. 145f 00” convertsto 3. 145
"fo00” convertsto 0 (without warning!)

If anumber is used in aplace where a string is expected (for example, if you
concatenate a number and a string), it is automatically converted to the string
that would have been printed for that number

Examples:

27.123 convertsto " 27. 123"
le+4 convertsto ” 10000~

18



Some Useful String Functions

e chop () [seedso chonmp ()]

Takes a string as argument and removes the last character

Return value is the removed character

Most often used to strip newlines from strings

If passed alist of strings, chop removes the last character from each

print “Enter your nane: “,;

$nane = <STDI N>;

chop ($nane); # renove the trailing newine
print “Hello $nane, how are you?\n”;

 length ()

0SC

Returns the number of charactersin the string
$a = “hello worl d\n”;
print | ength($a) # prints 12

19

Introduction to Perl



Arrays (aka“Lists’)

o Ordered lists of scalar data items, indexed by an integer
* Array variable names start witha @

* Thereisaseparate namespace for scalar and array variables
— $f 0o and @ 00 are unrelated

» Arrays are subscripted using square brackets
e Indexing beginsat O
 The(scaar) variable $#arry isthe highest assigned index of the array
@rry
« Arraysneed not be declared; they come into existence when used
— Size can also change dynamically
* Individual array elements can be any mixture of numbers or strings

20
OSC Introduction to Perl



Arrays

Examples.

= 21
Osc Introduction to Perl



Some Useful Array Functions

 push/pop

— Add/remove an element to/from the end of an array
— Either ascalar or alist can be added

e shift/unshift

— Add/remove element(s) at the beginning of alist
— Either ascalar or alist can be aded

m 22
Osc Introduction to Perl




Some Useful Array Functions

e reverse

— Reversesthe elements of alist

e sort
— Returnsalist sorted according to ASCII string value

= 23
Osc Introduction to Perl



Some Useful Array Functions

e split ()
— Given adelimiter and a string, splits the string into pieces.

— Thedelimiter can also be aregular expression as well asaliteral string

e join ()
— Given adelimiter and an array, joins the array elements together into asingle
string:

0SC 2
Introduction to Perl



Associative Arrays (aka “Hashes’)

 Anarray indexed by arbitrary scalars (not necessarily integers)
— Index values are called keys
e Associative array variable names begin with a %

o Separate namespace from scalars and ordinary arrays
— $f 00, @ 0o and % oo are dl different

e Subscripted using curly braces{ }
» Elements have no particular order

25
OSC Introduction to Perl



Examples.

Associative Arrays

0SC

26
Introduction to Perl



Some Useful Hash Functions

« keys
— Returnsalist (array) of the keysin an associative array

$ranks{” UCLA"} = 1;

$ranks{"CSU'} = 2;

@eans = keys (Wanks); # @eans is ("UCLA",”CsU")
# or possibly (”"0CsU, ” UCLA")

— Notethat the order of the elementsin ahash is undefined (it is under the internal
control of Perl)

e val ues

— Returnsalist of the valuesin an associative array
— Order matches that returned by keys

27
OSC Introduction to Perl



Some Useful Hash Functions

each

— Returns akey-value pair
— Subsequent calls return additional pairs, stepping through the entire array

del ete
— Removes a key-value pair from a hash, returning the value of the deleted element

0SC 28
Introduction to Perl



Some Specia Arrays and Hashes

@GARGV command line arguments
@ NC search path for files called with do, r equi r e, or use
@ default for spl i t and subroutine parameters
YENV the current environment (e.g., SENV{ " HOVE" } )
%5l G used to set signal handlers
Example:

$ script.pl argl arg2 ...argn

S \

$0 $ARGV] 0] $ARGV] $#ARGV]

29

OSC Introduction to Perl



A Note on Context

* Much of Perl’ s behavior is determined by the context in which objects
(including variables and function calls) appear

« For example, if alist appears where a scalar is expected, Perl automatically
Inserts the length of thelist

$len = @ oo; # $len is equal to the nunber
# of elenents in @oo

print "Length =", @ oo0; # legal, but wong

print "Length = ", scalar(@o0); # forces scal ar cont ext

e Ingenera,$#arry + 1 == @rry

» |f ascalar appears where an array is expected, it is promoted to a one-element
array
o We'll see other context rules later...

30
OSC Introduction to Perl



Operators

 Numeric operators
e String operators

e Comparisons

e Assignments

31

Osc Introduction to Perl



Numeric Operators

 Theseare mostly thesameasinC

e Als0é&& ||, ?:,
» Operator associativity and precedence isidentical to that in C

= 32
Osc Introduction to Perl



| ncrementation

» Like C, Perl provides a shorthand for incrementing or decrementing variables
o “Postfix” form:

$j ++; # the sane as 9;
$j--; # the sane as $;

$ + 1
$j - 1

— Inanexpression, $j isfirst used, and afterwards incremented
o “Prefix” form:

++$j; # the sane as $;
--$); # the sane as $;

$ + 1
$j - 1

— Inanexpression, $j isfirst incremented, and then used in the expression

 Examples:
$j = 10;
$x = $j++; # $x is 10, $ is 11
Sy = ++3j; # $y and $ both 12

33
OSC Introduction to Perl



String Operators

Concatenation: .

Repetition: X

0SC

34
Introduction to Perl



Comparisons

« Separate operators for numeric and string comparisons.

 Examples:

|
- . 35
Osc Introduction to Perl



Assignments

A scalar assignment itself has avalue, which is equal to the value assigned:
$b = 4 + ($a = 3);

Thisassigns 3 to $a, thenassigns4 + (3) or 7to$b
 AsinC, binary operators can be turned into assignment operators.

$a += 5; # sane as $a = $%a + 5;
$x *= 42; # sane as $x = $x * 42
$str .= " 7: # sanme as Pstr = Pstr .

o Likeall assgnments, these have avalue as well:

$a
$b

3,
($a += 4); # $a and $b are both 7 now

36
OSC Introduction to Perl



Exercises 1

1. Write aprogram that computes the area of acircle of radius 12.5.

2. Modify the above program so that it prompts for and accepts a radius from the
user, then prints the area.

3. Write aprogram that reads a string and a number, and prints the string the

number of times indicated by the number on separate lines. (Hint: use
the x operator.)

4. Write aprogram that reads alist of strings and prints out the list in reverse
order.

5. Write aprogram that reads a list of strings and a number, and prints the string
that is selected by the number.

37
OSC Introduction to Perl



Exercises 1

6. Write a program that reads and prints a string and its mapped val ue according

to the mapping
| nput Output
red appl e
green | eaves
bl ue ocean

7. Write aprogram that reads a series of words with one word per line, until end-
of-file (ctrl-D), then prints a summary of how many times each word was seen.

38

OSC Introduction to Perl



Control Structures

e |f/unless

e while/until
+ for

e foreach

+ do

e  Simple constructs

39
OSC Introduction to Perl



| f/unl ess

« Basic decision making:

e Curly braces are required around each block (unlike in C)

 expressionisevauated for astring value to determine its truth or
falsehood

A 40
Osc Introduction to Perl



Truth and Falsehood

When testing an expr essi on for truth, it isfirst converted to a string
Basic rules are then:

Examples:

0SC 4
Introduction to Perl



| f/unl ess

* Canasoinclude any number of el si f clauses:

* Note: theel se block is optional
« unl essisjustif negated

0SC 2
Introduction to Perl



whil e/unti |

e Basiciteration;

whil e (expression) {
st at enent 1;
st at enent 2;

 expressionistested and, if true, the following block of statementsis
executed
» Attheend of the block, expr essi on istested again

e expressi on must become false at some point, or the loop will be infinite!

43
OSC Introduction to Perl



whi | e/ unti |

« Example:

e until isjustthenegation of whi | e:

0SC

44
Introduction to Perl



* Another looping construct:

« Example:

« Notethat$j = 11 when theloop exits

= 45
Osc Introduction to Perl



f oreach

* Allows convenient cycling through the elementsin alist:

foreach $var (@ist) {
st at enent 1;
st at enent 2;

}

o Thescaar variable $var takesonthevalue of eachitemin @i st inturn
e S$var islocal to the construct; it becomes undef when the loop is finished
o If you omit the scalar variable $var , Perl assumes you specified $ _ instead

foreach (@) # sane as foreach $_ (@)
{

print; # same as print "$ ";

46
OSC Introduction to Perl



f oreach

Example:

« If@i st isasinglearray variable, then $var isactually areferenceto the
itemsin @i st

 Thismeansthat if you modify $var intheloop, you are actually changing
that elementin @i st :

a7

Osc Introduction to Perl



0SC

do whil e/until

Similar to C:

L oop control statements (next , | ast ) do not work here, though

48
Introduction to Perl



Simple Constructs

« Toloop on or branch around a single statement, you can use

* Note position of the semicolon
* el seisnot allowed with this construct

A 49
Osc Introduction to Perl



Simple Constructs

» Logical constructs can be built from && (“and”) and | | (“or”)

o Example:

0SC

50
Introduction to Perl



Basic I/O

* Basics

 Reading from stdin

* Thediamond operator

e Writing to stdout and stderr
e Error message shortcuts

ol

Osc Introduction to Perl



/O Basics

* |/Oin Perl proceeds through filehandles, which are used to refer to input or

output streams
 Wewill seelater how to attach these to files (or devices) for reading and
writing
» There arethree pre-defined filehandles:
STDI N —refersto the keyboard
STDOUT — connected to the screen
STDERR — connected to the screen

52

OSC Introduction to Perl



Reading from the Standard | nput

» Toread from the keyboard, use <STDI N>
» Behavior depends on context:

* Note that newlines remain intact
— Canusechop () toremovethese

0SC

53
Introduction to Perl



Reading from the Standard | nput

 Example: Read and echo a series of input lines

« Shortcut: whenever aloop test consists solely of an input operator, Perl copies
theinput line into the variable $ _:

« $ isadefault for many Perl functions and operations

o4

Osc Introduction to Perl



The Diamond Operator

If the input operator is used without afilehandle, as <>, data are read from the
files specified on the command line

$ cat cat. pl
#!/usr/ 1 ocal / bi n/ perl

nt $; }

while (<>) { pri
1 file2 ...filen

$ cat.pl file

* Infact, Perl looks at @ARGV for thelist of input files
o Can set or modify this from within the script:

@GARGVY = ("filel”, "file2");
while (<>) { print; } # $ is the default for print, too!

If no files are specified, <> reads from STDI N instead

55

OSC Introduction to Perl



Printing to the Standard Output

s print

0SC

Takesalist of strings as argument, and sends each to STDOUT in turn
No additional characters are added

Returns a true/false value indicating whether the print succeeded
Examples:

56
Introduction to Perl



Printing to the Standard Output

» For formatted output, use pri nt f

— Worksjust like the C function of the same name
— Example

printf "9%5s 9%d %0.2f\n”, $a, $b, $c;

/. \

Format string List of items to be printed

— Seepri ntf man page for further details

57
OSC Introduction to Perl



Printing to the Standard Error

e Justinclude STDERR asthefirst argument to pri nt orprintf

print STDERR ”"Whoops, an error has occurred!\n”;

« Thisalso appears on the terminal screen by default, but can be redirected by
the shell separately from the standard output

$ script.pl > output 2> err.log

58
OSC Introduction to Perl



Error Message Shortcuts

e die ()
— Takesalist asits argument
— Printsthelist (like pri nt) to STDERR and ends the Perl process

— If no\ n appears at the end of the printed string, die aso prints the script name and
line number

die "Oops, an error occurred\n”; # prints nsg and exits

die "Error occurred at ”; # prints nsg, then script nane
# and |ine nunber of die

e warn ()
— Sameasdi e, except Perl does not exit

war n " Debug enabl ed” if $debug;

59

OSC Introduction to Perl



Exercises 2

8. Write a program that accepts the name and age of the user and prints
something like “Bob is 26 years old.” Insurethat if theageis 1, “year” isnot
plural. Also, an error should result if a negative age is specified.

9. Write aprogram that reads a list of numbers on separate lines until 999 is read,
and then prints the sum of the entered numbers (not counting the 999). Thus if
you enter 1, 2, 3 and 999 the program should print 6.

10. Write a program that reads alist of strings and prints out the list in reverse
order, but without using ther ever se operator.

11. Write a program that prints a table of numbers and their squares from 0 to 32.
Try to find away where you don’t need all the numbersfrom 0to 32 in alist,
then try one where you do.

12. Build a program that computes the intersection of two arrays. The intersection
should be stored in athird array. For example, if @ = (1, 2, 3, 4)
and@® = (3, 2, 5),then@nter = (2, 3).

60
OSC Introduction to Perl



Exercises 2

13. Write a program that generates the first 50 prime numbers. (Hint: start with a
short list of “known” primes, say 2 and 3. Then check if 4isdivisible by any
of these numbers. Itis, soyounow goonto5. Itisn't, so pushit onto thelist
of primes and continue...)

14. Build a program that displays a ssmple menu. Each of the items can be
specified either by their number or by the first letter of the selection (e.g., P for
Print, E for Exit, etc.). Have the code ssimply print the choice selected.

15. Write a program that asks for the temperature outside and prints “too hot” if
the temperature is above 75, “too cold” if it isbelow 68, and “just right” if it
between 68 and 75.

16. Write a program that actslikecat but reversesthe order of the lines.

0SC o

Introduction to Perl



Regular Expressions

 OQOverview

» Metacharacters
e Substitutions
 Trandations

e Modifiers
e Memory

 Anchoring patterns
 Miscellaneous

62
Osc Introduction to Perl



Overview

* A regular expression defines a pattern of characters
e Typica usesinvolve pattern matching and substitution

e Used by many UNIX programs (gr ep, sed, awk, vi , enacs, ...), but not
always with exactly the same rules!

» Also appears similar to shell wildcarding (“globbing”), but the rules are much
different

63
OSC Introduction to Perl



RE Basics

* A regular expression (RE) in Perl isindicated by enclosing it in forward
slashes:

/ abc/
This represents a pattern consisting of these three characters

* When compared against a string, the result is“true’ if the pattern “abc” occurs
anywhere in that string

o Comparison operator: =~
# print a string if it contains “abc”

if ($line =~ /abc/) {
print $line;
}

Negated comparison: ! ~

64
OSC Introduction to Perl



RE Basics

o Consider the regular expression
Abc

— Each character isitself a RE which matches only that single character
— Case sengitivity: “A” does not match “a’
 REsare composed of two types of characters
— “literals’, or ordinary characters
— “Metacharacters,” which have a special meaning

65
OSC Introduction to Perl



M etacharacters

» These characters have a special meaning inside a regular expression

 Toremove ther special meaning, you can backslash-escape them
* Notethat backdash-escapes(\ n, \t,\r,\ f, .)retaintheir specia meaning
inside a RE

m 66
Osc Introduction to Perl



Examples

* Any single character matchesitself, so
bob

will match the word “bob”
 What if we want to match bob or bobby, or anything containing an “0”?
b. b matches:
bob, bib, bbb,
bob* matches:
bob, bobbb, bobcc,
bob. * matches:
bob, bobby, bob barker,

0SC o

Introduction to Perl



Character Classes

 Represented by [ ] enclosing alist of characters
« This matches any one of the charactersin the list
o Examples:
— What if wewant b. b but only with avowel in between?
b[ aei ou] b
— Toignore capitalization?
[ Bb] ob
 Rangesare also allowed, for example
— [ b- d] ob matches. bob, cob, ordob
« Togetalitera dash (- ) inaclass, precede it with a backslash
— [ 0-9\ -] matchesany single digit or adash
o If N isthefirst character inthelist, the classis negated
— ["0- 9] matches any single non-digit

68
OSC Introduction to Perl



Specia Class Abbreviations

* Perl provides shorthand names for some common classes;

Construct Equivalent Class Negated Construct
\d (digits) [ 0- 9] \D
\'w (wor ds) [ a- zA- Z0- 9 ] \'W
\'s (space) [ \r\t\n\f] \'S

(For example, \ Disequivalentto[ ~0- 9] )

69

OSC Introduction to Perl



More Examples

* be+ matches:
be, bee, beeeeeecee,
« Tomatchbob or bobby, make use of parentheses for grouping:
bob( by) ?
o Usingthe“or” symbol to match bob or dog:
(bob| dog)
e Combining metacharacters. b[ aei ou] * b matches:
bob, bab, baaab, boab, beieb, bb,
e Bo?b will only match:
Bob or Bb

70
OSC Introduction to Perl



The General Multiplier

e Curly braces{} can be used to specify in detail how many occurrences of a
RE are desired:
x{5, 10} matchesfive to ten occurrences of x
x{ 5, } matches5 or more occurrences of x
x{ 5} matches exactly 5 occurrences of x
x{ 0, 5} matchesfive or fewer occurrences of x (must include the zero)

 Examples:
— a. {5} b matches a followed by exactly 5 non-newline charactersand ab
— Whatabout \ ([0-9]{3}\) ?[0-9]{3}-[0-9]{4} ?

71

OSC Introduction to Perl



Parentheses

» Used for grouping sub-expressions
 (bob) + matches:
bob, bobbob, bobbobbobbob,
» Also causes the enclosed pattern to be memorized
e These patternscanthen berecalled as$1, $2, $3,
— Within the pattern match, use \ 1, \2, \3, ...instead
e ThusFred(.)Barney\ 1l matches
Fr edxBar neyx or Fr edyBar neyy but not Fr edxBar neyy
e a(.)b(.)c\2d\1 matches:
a, any one character (call it #1), b, any one character (call it #2), c,
character #2, d, character #1 (For example: aXbYc YdX)

 Memory isaso very useful when doing substitutions...

12

OSC Introduction to Perl



String Substitutions

o String modification is performed using the “ substitute” operator:
$var =~ s/regexp/replacenent-string/;

 Thevariable$var ismatched against the REr egexp. If successful, the part
that matchesisreplaced by r epl acenent - stri ng

$_:
$_:

"foobar”;
~ s/ bar/bear/; # $ is now “foobear”

o If severd parts of $var matchr egexp, only thefirst is substituted for by
default

= "foobaring up the foobar road”;

$_
$ =~ s/bar/bear/; # $_is now “foobearing
# up the foobar road”

73
OSC Introduction to Perl



Trangations

Similar tothet r programin UNIX, thet r operator trandates charactersin
regular expressions:

= 74
Osc Introduction to Perl



Modifiers

* REscan have optional modifying suffixes. Theseinclude “g” (global;
substitute as many times as possible), “i” (case insensitivity), “m” (treat string
as multiple lines), and “s” (treat string asasingleline)

0SC s
Introduction to Perl



Memory and Substitutions

« Example:

* Note that matches are greedy; the longest string that matches is the one taken

= 76
Osc Introduction to Perl



Anchoring Patterns

» Special notations that allow you to anchor the pattern to specific parts of the
string:

 Examples:

- 77
Osc Introduction to Perl



Using a Different Delimiter

By default/ isused to delimit REs
e To match an expression containing slashes, you can backslash-escape them

# Match /etc/ passwd
if ($file =~ /\/etc\/passwd/) {

}

e Alternatively, you can use adifferent character such as: or # asthe delimiter,
by explicitly giving the m(“match”) prefix:

# Match /etc/ passwd
if ($file =~ m/etc/passwd:) {

}

Now the forward slash isn’t special

78

OSC Introduction to Perl



 $stri ng canaso contain metacharacters, which are interpreted normally

0SC

Variable Interpolation in REs

Variables that appear in regular expressions are substituted (interpolated)
before the RE is scanned for other special characters (metacharacters)

Allows you to construct REs from computed strings in addition to literals

$sent ence = "Every good bird does fly”;
print “What should |I ook for? “;
$string = <STDI N>;

chop ($string); # renove trailing newine
if ($sentence =~ /$string/) {

print "$string occurs in $sentence\n”;
el se {

}

print “”$string not found\n”;

79

Introduction to Perl



More Pattern Matching Variables

» Recall that character sequences that match subexpressions in parentheses are
assignedto $1, $2, $3, ...insequence

e In addition, after a successful match the entire text that matched is stored in the
variable $&

* All of thetext before the matchisassignedto $°
e All of thetext following the match is assigned to $’
 Example:

$ = "H35j78";

if ($_ =~ /\d+/)
print “$ - $& - $”

}

# Qutput is: H- 35 - 78

80

OSC Introduction to Perl



Functions

 Defining afunction

* |nvoking afunction
 Arguments

e Return values

 Local variables
 Example: Advanced sorting

81
Osc Introduction to Perl



Defining a Function

» Also called subroutines, or sometimes just “subs’
* General construct:
sub ny-subnane {

statenent 1;
statenent 2;

« Function definitions can appear anywhere in the program
— Need not occur before they are called

» Separate namespace from variables, so you can have a subroutine named f oo
along with variables $f 0o, @ 0o and % o0

« By default (almost) all variable referencesin afunction are global

82
OSC Introduction to Perl



0SC

| nvoking a Function

To invoke a function, precede the function name with &

Functions can call other functions (including themselves)

83
Introduction to Perl



Arguments

Arguments may be passed (in parentheses) to a function
Any arguments passed to the function appear in the special array @
@ islocal to the function
— If thereisaglobal variable @ , it is saved and restored after the function exits
No formal (dummy) parameters

sub print_nsg {
print “First argunent: $
print “Second argunent: $

}
&print _nmsg(“foo”, 42);

Notethat $ [ O] isunrelatedto $_ !

0SC o

Introduction to Perl



Return Vaues

» A function returns avaue to the code that called it, which may be assigned or
used in some other way

 Thereturn value of afunction isthe value of the last expression evaluated in
the body of the function

sub double_a {
* =

$a 2;
}
$a = 3;
$c = &double a; # $c is now 6

e Canasousereturn (val);
 Thereturned value can be ascalar or alist

85
OSC Introduction to Perl



Return Vaues

e Another example:

o Without the last line $sum(or the return statement), the last expression
evaluated would bef or each, resulting in anull return value

o If $sumdid not exist before invocation of add, it pops into existence when
add isfirst invoked

N 86
Osc Introduction to Perl



| ocal Variables

» By default, most variables are global in Perl
e @ isloca to each function, however

» Can define other local variables using
| ocal ($varl, S$var2, .)

e Takesalist of variable names and creates local instances of them

* Inside the function, local variables mask any global variables with the same
name(s)
— Values of global variables are saved, and restored after the function exits
| ocal canasobeusedinsideordinary codeblocks{ ...}

 InPerl 5, ny is(essentially) asynonym for | ocal

87
OSC Introduction to Perl



| ocal Variables

« Example:

* Note assignment of @ to other local variables for readability
« Coulduseny inplaceof | ocal here

= 88
Osc Introduction to Perl



Example: Advanced Sorting

« By default, sort sortsthe elementsof alist according to their ASCII values

e You can change this behavior by
— Writing a function that sorts according to some other rule

Telling sor t to usethisfunction

» The sorting function should assume two arguments $a and $b, and return

0SC

any negative number if $a is“lessthan” $b (i.e., if $a should come before $b in
the sorted list)

zero if $a “equals’ $b and

any positive number if $a is“greater than” $b (i.e., if $a should come after
$b)

89

Introduction to Perl



Example: Advanced Sorting

e  Numeric comparison:

| 90
Osc Introduction to Perl



Exercises 3

17. Construct aregular expression that matches
at least one a followed by any number of b’s
any number of backslashes followed by any number of asterisks
three consecutive copies of whatever is contained in $what ever
any five characters, including newline

18. Write a program that accepts alist of words on STDI N and searchesfor aline
containing all five vowels (a, e, i, 0, and u).

19. Modify the above program so that the five vowels have to be in order.

20. Write a program that looks through the file/ et ¢/ passwd on STDI N,
printing the real name and login name of each user. (Hint: usespl i t to break
each line up into fields, then s/ / / to get rid of the parts of the comment field
that are after the first comma.)

91
OSC Introduction to Perl



Exercises 3

21. Write a subroutine that takes a numeric value from 1 to 9 and returns its
Englisn name (i.e., one, two ...). If theinput isout of range, return the
original value as the name instead.

22. Taking the subroutine from the previous exercise, write a program to take two
numbers and add them together, printing theresult as“Two pl us t hree
equal s five.” (Don't forget to capitalize the first letter!)

23. Create a subroutine that computes factorials. (The factorial of 5is5! =
5*4*3*2*1 =120.) Try thisusing anormal subroutine and arecursive one
(i.e., asubroutine that calls itself).

24. Build afunction that takes an integer and returns a string that contains the
integer displayed with acomma every three digits (i.e., 1234567 should return
1,234,567).

92
OSC Introduction to Perl



File and Directory Manipulation

e Filehandles
e Opening afilehandle
 Using filehandles

e Filetests
e Moving around the directory tree
e Globhing

e QOperationsonfiles

93
Osc Introduction to Perl



Filehandles

» A filehandleisthe name of an I/O connection between your Perl process and
the outside world

o Already seen STDI Nand STDOUT/STDERR
— 1/O connections to keyboard and screen

* Filehandles have a separate namespace from other Perl entities
— Can have $f oo, @ 00, % 00, &f 00, aswell asfilehandlef oo

 Recommended style isto uppercase filehandles, but thisis not required

94
OSC Introduction to Perl



Opening a Filehandle

o The operation
open (HANDLE, "fil enanme”);

opensthefilef i | ename and attaches it to HANDLE

« Anprefixtofil ename controls whether file is opened for reading, writing,
appending, etc.
» Returnstrue or false (actually undef ) indicating success or failure of the
operation
— Canfall dueto, e.g., permissions, file not found, etc.

open (FH, "nyfile”) or die "can’'t open nyfile!”;

e Tocloseafileand release the filehandle, use

cl ose (FI LEHANDLE) ;

95
OSC Introduction to Perl



Examples

= 96
Osc Introduction to Perl



Using Filehandles

* Once afilehandle has been opened for reading, you can read from it by
enclosing the filehandle in <>, just asfor STDI N:

open (FH, "nyfile”); # open nyfile for reading

while ($line = <FH>) { # read a line fromthe file
print “$line”; # echo it to STDOUT

}

 Asbefore, <FH> reads the next line from the file in a scalar context

* |Inanarray context, <FH> all remaining lines of the file are read and placed in
an array

 Newlinesareretained (can usechonp () toremove them)
 Returnsundef (hence“false”) if there are no more linesto read

97
OSC Introduction to Perl



Using Filehandles

» Towrite/append to afilehandle, give the filehandle as the first argument to
print:

open (LOGFILE, ">>build.log”);

print LOGFI LE " Fi ni shed buil ding application\n”;

* Note: no comma after the filehandle!
o STDQUT isthe default filehandle for pri nt and printf

0SC o

Introduction to Perl



File Tests

» Cantest for existence, ownership, permissions, etc. of files and directories
o Genera formof test is

-X file

where X issome character andfi | e isthefileor directory to be tested
— fil e canbeanameor afilenandle

* Most tests return truef/fal se, though some return numbers (e.g. - s, which
returns the size in bytes of afile)

= "/ etc/ passwd”;
(-e $x) { # does the file exist?
print “Crack sone passwords!\n”;

$x
| f

}

99
OSC Introduction to Perl



File Tests

 Moreexamples,

" | 100
Osc Introduction to Perl



0SC

File Test

File Tests

Meaning

file or directory isreadable

file or directory iswritable

file or directory is executable

file or directory is owned by user

file or directory exists

file or directory exists and has zero size
file or directory exists and has nonzero size
(return value is size in bytes)

entry isaplainfile

entry isadirectory

fileistext, binary

modification, access time (in days)

101

Introduction to Perl



Moving Around the Directory Tree

* When your Perl program islaunched it inherits the environment of its parent,
(usually the shell) including the current directory

 To move to another directory, usechdi r (” di r nane”) ;
» Return value istrue/false indicating whether the change was successful

0SC 102

Introduction to Perl



Globhing

« Can expand shell wildcards (“globbing”) by putting the globbing pattern inside
<>

 Example:

returnsalist of all filenamesin/ et ¢ that begin with host

 |nascaar context it would return the next filename that matches, or undef if
Nno others remain

OSC::E 103

Introduction to Perl



Globhing

o Multiple patterns are allowed inside the glob, for example

@oo bar files = <foo* bar*>;

* Generaly, anything you could send to the shell for expansion will work in a
glob

* Note: looks similar to regular expressions, but the meaning of the various
metacharactersis very different!

104
OSC Introduction to Perl



Operations on Files

« Some useful functions for performing operations on files/directories:
— unlink ("filenane”);
* Removes (“unlinks’) alist of files

unlink (<*.0>); # just like ‘rm*.0o in the shell

— renane ("filel”,”file2”);
* Renames(moves)fil eltofile2

renane ("foo”,”bar”); # like ‘“mv foo bar’ in the shell

* Noterenane ("file”,”directory”) isnotalowed!

105
OSC Introduction to Perl



Operations on Files

— nkdir (”dirnanme”, node);
» Creates adirectory with permissions set by node

— ridir (7dirnanme”);
* Removes adirectory

— chnod (node, "filel”,”file2”, .);
o Setspermissionsfor listed filesto node

- 106
Osc Introduction to Perl



Operations on Files

All of these functions return true/false indicating success or failure of the
operation
Examples:

0SC 107
Introduction to Perl



External Processes

 Using backquotes
e system ()
e Qutput to and from pipes

108
OSC Introduction to Perl



Using Backquotes

* Anexternal command can be run by placing it in backquotes:
« The command output is becomes the value of the backquoted string

$now = "the tine is now " . " date ;

« Output of the date command is concatenated with the previous string

« |f the backquoted command appearsin an array context, you get an array of
strings each of which is one line of the command output

@iles = Is -1 ; # each elenent of @il es contains
# one line of |Is -1 output

e Variableinterpolation does occur inside backticks
» Look out for newlines (use chop/ chonp if desired)

109
OSC Introduction to Perl



system()

* Another way to execute an external command
 |fgivenascaar, syst em passesitto/ bi n/ sh for execution

system (“date”);

» Thescalar can be anything sh can process, including multiple commands
separated by semicolons

o |f given alist, system takes the first item as the command, and subsequent
Items as arguments to that command

system ("grep”,” I NTEGER’, "prog. f”);
» Note that shell processing (globbing) does not occur for these arguments:

system (”/bin/echo”,”*”); # just echos *

110
OSC Introduction to Perl



system()

*  Where does the output of the command go?

» Theshdl inherits STDOUT and STDERR from the Perl process, so output
normally goes to the screen

« Thiscan be changed using ordinary sh redirects:

system ("a.out > outfile 2> err”);

$where = "who_out” . ++3i; # make a fil enane
system (”(date; who) > $where &’); # interpolation

e syst emreturns the exit status of the command, usually O if no error occurred
» Backwards from normal convention:

system ("date > now’) && die "cannot create now’;

— di e invoked if command returns nonzero (i.e., true)

111
OSC Introduction to Perl



Output to and from Pipes

* Reading from a pipe:
open (PIPE, "Is -1 |”) or die "lIs error!?!”;

— Inascaar context, <Pl PE> returns asingle line of output froml s - |
— Inan array context, <Pl PE> returns all (remaining) output lines

— The command is run when the filehandle is opened
— Shell metacharacters other than | (e.g., redirects) are also processed

e Writing to a pipe:
open (LPTR, "| lpr”);

— print LPTR ...; now sendsto the standard input of | pr
— When thefilehandle is closed (or the script exits), the command is run

112

OSC Introduction to Perl



References

» Creating references
 Anonymous references
e Using references

» Passing references

* Nested datastructures

113
Osc Introduction to Perl



Creating References

A referenceislikeapointerin C

» |tisascaar object that holds the location of the data associated with some
variable
— Saidto “point to” the variable
* You can create references to nearly any kind of data
— Scalars, arrays, hashes, functions
* A referenceiscreated using the\ operator

$sref =\ $x; # $sref points to the scal ar $x
$ar ef :\@rry, # pointer to an array

$cref = \0OxFAO # reference to a constant

$code = \&rryfun # pointer to a function
@eflist = \(%$a, $b, $¢)

114
OSC Introduction to Perl



0SC

Anonymous References

Y ou can also directly create references to unnamed objects:

115
Introduction to Perl



Using References

 Touseareference (dereferenceit, in C parlance), just put the appropriate type
indicator in front of the reference variable

0SC 116
Introduction to Perl



Passing References

» Can also pass variables by reference to functions

0SC 17
Introduction to Perl



0SC

Passing References

Can aso return references, of course

118
Introduction to Perl



Nested Datastructures

» Perl does not support arrays of arrays directly, but you can create an array of
references, each of which refersto an array

* Theoperator - > can be used to dereference array pointers

0SC 119
Introduction to Perl



Exercises 4

25. Write a program that reads a filename from STDIN, then opens the file and
prints its contents preceded by the filename and a colon. For example, if the
file fred contains the lines aaa, bbb and ccc, the output should be

fred: aaa
fred: bbb
fred: ccc

26. Write aprogram to read in alist of filenames and then display which of them
are readabl e, writeable and/or executable, and which ones don’t exist.

27. Write a program that accepts alist of filenames and finds the oldest file among
them. Print the name of that file along with its age in days.

28. Write a program to change directory to alocation specified as input, the print a
listing of the filesthere. Do not show alist if the directory change doesn’t
succeed; in this case ssmply warn the user.

120
OSC Introduction to Perl



Exercises 4

29. Write aprogram that works like r m deleting the files given as command line
arguments. (Be careful testing this!)

30. Write a program to parse the output of the data command to get the current day
of theweek. If it isaweekday, print “get to work,” otherwise “go play.”

31. Using references, build a structure (asin C) that represents a circle image.
Y our circle struct should contain four dataitems: the x and y coordinates of
the center point, the radius and the color. (Hint: the struct can be a hash where
the keys are the names of the data items and the values are reference variables
pointing to the actual data.)

121

OSC Introduction to Perl



Some Other Topics of | nterest

 ThePerl debugger (per| -d)

— Also highly recommend using per | - w (print warnings) during development!
» Advanced process management
 Handling binary data (pack and unpack)

e Formats
 Databaseinterfaces
e CGI

« Many more features, functions and optionsin virtually all the areas we' ve
covered so far...

122
OSC Introduction to Perl



Some Additional Featuresin Perl 5

» Perl compiler: can compile Perl code into a machine-native executable
« Lexical scoping of variables. variables may be declared with alexical scope

* Regular expression enhancements: pattern grouping can be done without using
backreferences, and whitespace and comments can be embedded in a RE

» Loadable code modules: the Perl library in Perl 5 is defined in terms of
packages, and there are also many 3rd-party packages available throuth CPAN

* Object oriented programming
 And more...

123
OSC Introduction to Perl



For Further | nformation

* Learning Perl, 2nd ed., Randal L. Schwartz (O’ Reilly and Associates, 1996)

* Programming Perl, 2nd ed., Larry Wall, Tom Christiansen, and Randal L.
Schwartz (O’ Rellly and Associates, 1996)

» Advanced Perl Programming, Sriram Srinivasan (O’ Rellly and Associates,
1997)

* Perl 5 Desktop Reference, John Vromans (O’ Reilly and Associates, 1996)
e http://ww.perl.com

« http://1|anguage. perl.com

e http://|anguage. perl.conlinfo/docunentation. htm

e http://1|anguage. perl.con’ CPAN

124
GSC Introduction to Perl



