
Introduction to Perl

Science and Technology Support Group
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212-1163

2
Introduction to Perl

Introduction to Perl

• Setting the Stage
• Data Types
• Operators
• Exercises 1
• Control Structures
• Basic I/O
• Exercises 2
• Regular Expressions

• Functions
• Exercises 3
• File and Directory Manipulation
• External Processes
• References
• Exercises 4
• Some Other Topics of Interest
• For Further Information

3
Introduction to Perl

Setting the Stage

• What is Perl?
• How to get Perl
• Basic Concepts

4
Introduction to Perl

What is Perl?

• Practical Extraction and Report Language
– Or: Pathologically Eclectic Rubbish Lister

• Created by Larry Wall
• A compiled/interpreted programming language
• Combines popular features of the shell, sed, awk and C
• Useful for manipulating files, text and processes

– Also for sysadmins and CGI
• Latest official version is 5.005

– Perl 4.036 still in widespread use
– Use perl -v to see the version

• Perl is portable
• Perl is free!

5
Introduction to Perl

How to Get Perl

• Perl’s most natural “habitat” is UNIX
• Has been ported to most other systems as well

– MS Windows, Macintosh, VMS, OS/2, Amiga…
• Available for free under the GNU Public License

– Basically says you can only distribute binaries of Perl if you also make the source
code available, including the source to any modifications you may have made

• Can download source code (C) and compile yourself (unlikely to be necessary)
• Pre-compiled binaries also available for most systems
• Support available via

– Perl man page
– perldoc command
– The Usenet group comp.lang.perl

6
Introduction to Perl

Basic Concepts

• A shell script is just a text file containing a sequence of shell commands

• To run the script, first make it executable and then type its name:

$ cat testscript
echo Here is a long listing of the current directory
ls -l

$ chmod +x testscript
$ testscript
[output of echo and ls commands]
$

7
Introduction to Perl

Basic Concepts

• Similarly, a Perl script is a text file containing Perl statements
• To indicate that it’s a Perl program, include

#!/usr/local/bin/perl

as the first line of the file
– Note that the location of Perl on your system may vary!

• To run, make the script executable and then type its name at the shell prompt

$ chmod +x myscript.pl
$ myscript.pl
[output of script…]
$

8
Introduction to Perl

Basic Concepts

$ cat welcome.pl
#!/usr/local/bin/perl

Anything from # to EOL is a comment

print (”Enter your name: ”); # what it looks like...
$name = <STDIN>; # Read from standard input
chop ($name); # removes last character of $name (the newline)
print (”Hello, $name. Welcome!\n”);

$ chmod +x welcome.pl
$ welcome.pl
Enter your name: Dave
Hello, Dave. Welcome!
$

9
Introduction to Perl

Basic Concepts

• Statements executed in “top-down” order; each is executed in succession
• Syntax – and hence style – similar to that of C

– Free formatting
– Case sensitive
– Statements must end with a semicolon (;)
– Groups of statements can be combined into blocks using curly braces ({...})
– Control structures generally analogous to those in C
– But no main()
– Also no variable declarations!

• Introduce and use any type of variable at any time, including growing/shrinking arrays on
the fly...

– Lazy memory “management”

10
Introduction to Perl

Basic Concepts

• Perl is both an interpreted and a compiled language
• When run, the program is first read and “compiled” in memory

– Not a true compilation to native machine instructions
– Similar to creation of Java “bytecode”
– Some optimizations are performed, e.g.

• eliminating unreachable code
• reducing constant expressions
• loading library definitions

• Second stage is execution via an interpreter (analogous to Java VM)
• Much faster than fully interpreted languages, such as the shell
• No object code

11
Introduction to Perl

Data Types

• Scalar data
• Arrays
• Associative arrays, or “hashes”

12
Introduction to Perl

Scalar Data

• A single number or string, depending on context
• References to scalars always begin with $
• Variable names may contain characters, numbers and underscores
• Assignment is done using the = operator
• Examples:

• In general if you refer to a variable before assigning it a value, it will contain
the value undef

– Auto-converts to the null string (“”) or zero, depending on context

$pi = 3.14159;
$color = ’red’;
$old_color = ”was $color before”;
$host = `hostname`; # command substitution

(more on this later)

13
Introduction to Perl

Numeric Values

• No distinct “types” – conversion handled automatically
• Internally, Perl treats all numbers as doubles
• Decimal:

$pi = 3.14159;

• Hexadecimal:
$y = 0x1e; ($y has the hex value 1e, or decimal 30)

• Octal:
$y = 075; ($y is now octal 75 = 61 decimal)

• Scientific notation:
$z = 3e+2; ($z gets the value 300)
$z = 5e-3; ($z gets the value 0.005)

14
Introduction to Perl

Strings

• Sequences of characters
• No end of string character as in C
• Single-quoted (note: ’not `)

– no variable interpolation or backslash escape handling, e.g.

• Double-quoted
– variable interpolation and escape handling are performed, so

$x = ”dog”;
print ’bob $x’; # displays bob $x

$x = ”dog”;
print ”bob $x”; # displays bob dog

15
Introduction to Perl

Double-Quoted Backslash Escapes

Sequence
\n

\r

\t

\f

\b

\a

\001

\x20

\cD

\\

\”

Description
newline (form feed + carriage return)
carriage return
tab
formfeed
backspace
bell
octal ASCII value (here ctrl-A)
hex ASCII value (here space)
control character (here ctrl-D)
backslash
double quote

16
Introduction to Perl

Some Specially Defined Variables

$0

$_

$$

$!

$?

$|

$.

$]

$<

$>

Name of currently executing script
default variable for many operations
the current process ID
the current system error message from errno
exit status of last command substitution or pipe
whether output is buffered
the current line number of last input
the current Perl version
the real uid of the process
the effective uid of the process

17
Introduction to Perl

The Default Variable

• $_ is a generic default variable for many operations
• Many functions are assumed to act on $_ if no argument is specified

• $_ is also a default for pattern matching, implicit I/O and other operations
– Will see examples as we go...

• If you see Perl code that appears to be missing argument(s), chances are that
$_ is involved

print; # same as print (”$_”);
chop; # same as chop ($_);

18
Introduction to Perl

Conversion Between Numbers and Strings

• If a string is used as though it were a number, it is converted to a number
automatically

• Examples:

• If a number is used in a place where a string is expected (for example, if you
concatenate a number and a string), it is automatically converted to the string
that would have been printed for that number

• Examples:

” 3.145foo” converts to 3.145
”foo” converts to 0 (without warning!)

27.123 converts to ”27.123”
1e+4 converts to ”10000”

19
Introduction to Perl

Some Useful String Functions

• chop () [see also chomp ()]
– Takes a string as argument and removes the last character
– Return value is the removed character
– Most often used to strip newlines from strings
– If passed a list of strings, chop removes the last character from each

• length ()

– Returns the number of characters in the string

print “Enter your name: “;
$name = <STDIN>;
chop ($name); # remove the trailing newline
print “Hello $name, how are you?\n”;

$a = “hello world\n”;
print length($a) # prints 12

20
Introduction to Perl

Arrays (aka “Lists”)

• Ordered lists of scalar data items, indexed by an integer
• Array variable names start with a @
• There is a separate namespace for scalar and array variables

– $foo and @foo are unrelated

• Arrays are subscripted using square brackets
• Indexing begins at 0
• The (scalar) variable $#arry is the highest assigned index of the array

@arry

• Arrays need not be declared; they come into existence when used
– Size can also change dynamically

• Individual array elements can be any mixture of numbers or strings

21
Introduction to Perl

Arrays

Examples:

@nums = (2,4,6); # initialize an array
$a = $nums[1]; # $a = 4
$nums[3] = 4; # @nums grows automatically
$nums[5] = 12; # @nums is now (2,4,6,4,undef,12)
$x = $#nums; # $x is 5

@foo = (”one”, ”two”);
@bar = (3.14, @foo, 2.72); # @bar = (3.14, ”one”, ”two”, 2.718)
$foo = $bar[2]; # $foo = ”two” (no relation to @foo)

@new_array = @old_array; # copy entire array
@huh = 1; # becomes @huh = (1) automatically

@a = (1..5); # @a = (1,2,3,4,5);
@b = @a[1..3]; # a “slice”; @b is (2,3,4)
@c = (A..D); # ranges operate using ASCII codes

so @c = (A,B,C,D)

22
Introduction to Perl

Some Useful Array Functions

• push/pop

– Add/remove an element to/from the end of an array
– Either a scalar or a list can be added

• shift/unshift

– Add/remove element(s) at the beginning of a list
– Either a scalar or a list can be aded

push (@a, $b); # same as @a = (@a, $b);
@x = (1,2);
push (@a, @x); # same as @a = (@a, 1, 2);
$c = pop (@a); # returns and removes last element of @a

unshift (@a, $b); # same as @a = ($b, @a);
$c = shift (@a); # returns and removes first element

of @a

23
Introduction to Perl

Some Useful Array Functions

• reverse

– Reverses the elements of a list

• sort

– Returns a list sorted according to ASCII string value

@a = (7,8,”foo”);
@b = reverse (@a); # @b is now (”foo”,8,7)
@b = reverse (7,8,”foo”); # same thing
@x = reverse (@x);

@x = sort (”joe”,”betty”,”dave”); # @x gets
(”betty”,”dave”,”joe”)

@y = (1,2,4,8,16,32,64);
@y = sort (@y); # @y is now

(1,16,2,32,4,64,8)

24
Introduction to Perl

Some Useful Array Functions

• split ()

– Given a delimiter and a string, splits the string into pieces:

– The delimiter can also be a regular expression as well as a literal string

• join ()
– Given a delimiter and an array, joins the array elements together into a single

string:

$file = ”/etc/hosts”;
@tmp = split (”/”, $file); # split using / as delimiter:

@tmp is (“”, “etc”, “hosts”)

$file = ”/usr/local/bin/prog”;
@tmp = split (”/”, $file); # @tmp = (“”,”usr”,”local”,”bin”,”prog”)
pop (@tmp);
$dir = join (”\\”, @tmp); # $dir is now ”\usr\local\bin”

25
Introduction to Perl

Associative Arrays (aka “Hashes”)

• An array indexed by arbitrary scalars (not necessarily integers)
– Index values are called keys

• Associative array variable names begin with a %
• Separate namespace from scalars and ordinary arrays

– $foo, @foo and %foo are all different
• Subscripted using curly braces {}
• Elements have no particular order

26
Introduction to Perl

Associative Arrays

Examples:

$lastname{”John”} = ”Doe”;
$ssn{”John”} = 1234567890;

%ranking = (”UCLA”,1,”OSU”,2);
$x = $ranking{”UCLA”}; # $x is 1

%ranking = (”UCLA” => 1, # another way to initialize;
”OSU” => 2); # equivalent to the above

@y = %ranking; # @y is (”UCLA”,1,”OSU”,2)
%z = @y; # %z is the same as %ranking
%z = %ranking; # faster way to do the same

27
Introduction to Perl

Some Useful Hash Functions

• keys

– Returns a list (array) of the keys in an associative array

– Note that the order of the elements in a hash is undefined (it is under the internal
control of Perl)

• values

– Returns a list of the values in an associative array
– Order matches that returned by keys

$ranks{”UCLA”} = 1;
$ranks{”OSU”} = 2;
@teams = keys (%ranks); # @teams is (”UCLA”,”OSU”)

or possibly (”OSU”,”UCLA”)

28
Introduction to Perl

Some Useful Hash Functions

• each

– Returns a key-value pair
– Subsequent calls return additional pairs, stepping through the entire array

• delete

– Removes a key-value pair from a hash, returning the value of the deleted element

$ranks{”UCLA”} = 1;
$ranks{”OSU”} = 2;
while (($team, $rank) = each (%ranks)) {

print (“Ranking for $team is $rank\n”);
}

$x = delete $ranks{”UCLA”}; # %ranks is now just one
key-value pair, and
$x is 1

29
Introduction to Perl

Some Special Arrays and Hashes

@ARGV

@INC

@_

%ENV

%SIG

command line arguments
search path for files called with do, require, or use
default for split and subroutine parameters
the current environment (e.g., $ENV{”HOME”})
used to set signal handlers

Example:

$ script.pl arg1 arg2 … argn

$ARGV[0]$0 $ARGV[$#ARGV]

30
Introduction to Perl

A Note on Context

• Much of Perl’s behavior is determined by the context in which objects
(including variables and function calls) appear

• For example, if a list appears where a scalar is expected, Perl automatically
inserts the length of the list

• In general, $#arry + 1 == @arry

• If a scalar appears where an array is expected, it is promoted to a one-element
array

• We’ll see other context rules later...

$len = @foo; # $len is equal to the number
of elements in @foo

print ”Length = ”, @foo; # legal, but wrong
print ”Length = ”, scalar(@foo); # forces scalar context

31
Introduction to Perl

Operators

• Numeric operators
• String operators
• Comparisons
• Assignments

32
Introduction to Perl

Numeric Operators

• These are mostly the same as in C

• Also &&, ||, ?:, ...

• Operator associativity and precedence is identical to that in C

5 + 3
4.4 - 0.3
3*9
27 / 3
11.2 / 6.1
10/3 # floating point, so 3.3333…
2**3 # Fortran-style exponentiation
10 % 3
10.6 % 3.2 # same as above
3 > 2 # returns TRUE (not empty or “0”)
5 != 5 # returns FALSE

33
Introduction to Perl

Incrementation

• Like C, Perl provides a shorthand for incrementing or decrementing variables
• “Postfix” form:

– In an expression, $j is first used, and afterwards incremented

• “Prefix” form:

– In an expression, $j is first incremented, and then used in the expression

• Examples:

$j++; # the same as $j = $j + 1
$j--; # the same as $j = $j - 1

++$j; # the same as $j = $j + 1
--$j; # the same as $j = $j - 1

$j = 10;
$x = $j++; # $x is 10, $j is 11
$y = ++$j; # $y and $j both 12

34
Introduction to Perl

String Operators

• Concatenation: .

• Repetition: x

”hello” . ”world” # the same as “helloworld”

”fred” x 3 # same as ”fredfredfred”
”Bob” x (1+1) # same as ”BobBob”
(3+2) x 4 # same as ”5” x 4 or 5555

(note auto-conversion
of 5 to ”5”)

35
Introduction to Perl

Comparisons

• Separate operators for numeric and string comparisons:

• Examples:

Comparison Numeric String
equal == eq
not equal != ne
less than < lt
greater than > gt
less than or equal to <= le
greater than or equal to >= ge

”foo” == ”bar” # true (both are converted to 0!)
”foo” eq ”bar” # false
”zebra” gt ”aardvark” # true (ASCII comparison)
”10” == ” 10” # true
”10” eq ” 10” # false

36
Introduction to Perl

Assignments

• A scalar assignment itself has a value, which is equal to the value assigned:

This assigns 3 to $a, then assigns 4 + (3) or 7 to $b
• As in C, binary operators can be turned into assignment operators:

• Like all assignments, these have a value as well:

$b = 4 + ($a = 3);

$a += 5; # same as $a = $a + 5;
$x *= 42; # same as $x = $x * 42
$str .= ” ”; # same as $str = $str . ” ”;

$a = 3;
$b = ($a += 4); # $a and $b are both 7 now

37
Introduction to Perl

Exercises 1

1. Write a program that computes the area of a circle of radius 12.5.
2. Modify the above program so that it prompts for and accepts a radius from the

user, then prints the area.
3. Write a program that reads a string and a number, and prints the string the

number of times indicated by the number on separate lines. (Hint: use
the x operator.)

4. Write a program that reads a list of strings and prints out the list in reverse
order.

5. Write a program that reads a list of strings and a number, and prints the string
that is selected by the number.

38
Introduction to Perl

Exercises 1

6. Write a program that reads and prints a string and its mapped value according
to the mapping

7. Write a program that reads a series of words with one word per line, until end-
of-file (ctrl-D), then prints a summary of how many times each word was seen.

Input Output
red apple
green leaves
blue ocean

39
Introduction to Perl

Control Structures

• if/unless

• while/until

• for

• foreach

• do

• Simple constructs

40
Introduction to Perl

if/unless

• Basic decision making:

• Curly braces are required around each block (unlike in C)
• expression is evaluated for a string value to determine its truth or

falsehood

if (expression) {
true_statement1;
true_statement2;
…

} else {
false_statement1;
false_statement2;

}

41
Introduction to Perl

Truth and Falsehood

• When testing an expression for truth, it is first converted to a string
• Basic rules are then:

• Examples:

String Value True or False?
Empty (””) or ”0” False
Anything else True

0 # converts to “0”, so false
1-1 # converts to 0, then “0” so false
1 # converts to “1” so true
“00” # not “” or “0”, so true
“0.000” # true for the same reason
undef # converts to “”, so false

42
Introduction to Perl

if/unless

• Can also include any number of elsif clauses:

• Note: the else block is optional
• unless is just if negated

if (expr1) {
expr1_true1;
expr1_true2;
…

} elsif (expr2) {
expr2_true1;
expr2_true2;
…

} …
} else {

all_false1;
all_false2;

}

43
Introduction to Perl

while/until

• Basic iteration:

• expression is tested and, if true, the following block of statements is
executed

• At the end of the block, expression is tested again
• expression must become false at some point, or the loop will be infinite!

while (expression) {
statement1;
statement2;
…

}

44
Introduction to Perl

while/until

• Example:

• until is just the negation of while:

$j = 1;
while ($j <= 10) {

print “The square of $j is “;
print $j * $j, “\n”;
$j++;

}

$j = 1;
until ($j > 10) { # same loop as above

print “The square of $j is “;
print $j * $j, “\n”;
$j++;

}

45
Introduction to Perl

for

• Another looping construct:

• Example:

• Note that $j = 11 when the loop exits

for (init_expr; test_expr; incr_expr) {
statement1;
statement2;
...

}

for ($j=1; $j<=10; $j++) {
print “The square of $j is “;
print $j * $j, “\n”;

}

46
Introduction to Perl

foreach

• Allows convenient cycling through the elements in a list:

• The scalar variable $var takes on the value of each item in @list in turn
• $var is local to the construct; it becomes undef when the loop is finished
• If you omit the scalar variable $var, Perl assumes you specified $_ instead

foreach $var (@list) {
statement1;
statement2;
...

}

foreach (@a) # same as foreach $_ (@a)
{

print; # same as print ”$_”;
}

47
Introduction to Perl

foreach

• Example:

• If @list is a single array variable, then $var is actually a reference to the
items in @list

• This means that if you modify $var in the loop, you are actually changing
that element in @list:

foreach $j (1..10) {
print “The square of $j is “;
print $j * $j, “\n”;

}

@a = (3,5,7,9);
foreach $tmp (@a) {

$tmp *= 3;
}
@a is now (9,15,21,27)!

48
Introduction to Perl

do while/until

• Similar to C:

• Loop control statements (next, last) do not work here, though

do {
…

} while ($something_is_true);

do {
…

} until ($something_is_false);

49
Introduction to Perl

Simple Constructs

• To loop on or branch around a single statement, you can use

• Note position of the semicolon
• else is not allowed with this construct

print “Odd\n” if $n % 2 == 1;

print “Even\n” unless ($n % 2 == 1);

print $num--,”\n” while $num > 0;

50
Introduction to Perl

Simple Constructs

• Logical constructs can be built from && (“and”) and || (“or”)

• Example:

expr1 && expr2; # equivalent to:
if (expr1) { expr2 };

expr1 || expr2; # equivalent to:
unless (expr1) { expr2 };

Try to open file; print error msg and exit on failure

open (FH,”/etc/llamas”) || die ”cannot open llamas!”;

51
Introduction to Perl

Basic I/O

• Basics
• Reading from stdin
• The diamond operator
• Writing to stdout and stderr
• Error message shortcuts

52
Introduction to Perl

I/O Basics

• I/O in Perl proceeds through filehandles, which are used to refer to input or
output streams

• We will see later how to attach these to files (or devices) for reading and
writing

• There are three pre-defined filehandles:
STDIN – refers to the keyboard
STDOUT – connected to the screen
STDERR – connected to the screen

53
Introduction to Perl

Reading from the Standard Input

• To read from the keyboard, use <STDIN>
• Behavior depends on context:

• Note that newlines remain intact
– Can use chop () to remove these

$line = <STDIN>; # In a scalar context, reads the next line
of input, placing it in the scalar
variable $line.

@lines = <STDIN>; # In an array context, reads all remaining
lines. Each line becomes an element of
the array @lines.

54
Introduction to Perl

Reading from the Standard Input

• Example: Read and echo a series of input lines

• Shortcut: whenever a loop test consists solely of an input operator, Perl copies
the input line into the variable $_:

• $_ is a default for many Perl functions and operations

while ($line = <STDIN>) {
print $line; # echo each line as it is entered

}

while (<STDIN>) {
print $_; # the same thing!

}

55
Introduction to Perl

The Diamond Operator

• If the input operator is used without a filehandle, as <>, data are read from the
files specified on the command line

• In fact, Perl looks at @ARGV for the list of input files
• Can set or modify this from within the script:

• If no files are specified, <> reads from STDIN instead

$ cat cat.pl
#!/usr/local/bin/perl

while (<>) { print $_; }
$ cat.pl file1 file2 … filen

@ARGV = (”file1”, ”file2”);
while (<>) { print; } # $_ is the default for print, too!

56
Introduction to Perl

Printing to the Standard Output

• print

– Takes a list of strings as argument, and sends each to STDOUT in turn
– No additional characters are added
– Returns a true/false value indicating whether the print succeeded
– Examples:

print (”Hello”,”world”,”\n”); # prints “Helloworld” with newline
print (2+3), ”foo”; # prints 5, “foo” ignored!
print ((2+3),”bar”); # prints 5bar
print 2+3,”bar”; # also prints 5bar

57
Introduction to Perl

Printing to the Standard Output

• For formatted output, use printf

– Works just like the C function of the same name
– Example:

– See printf man page for further details

printf ”%15s %5d %10.2f\n”, $a, $b, $c;

Format string List of items to be printed

58
Introduction to Perl

Printing to the Standard Error

• Just include STDERR as the first argument to print or printf

• This also appears on the terminal screen by default, but can be redirected by
the shell separately from the standard output

print STDERR ”Whoops, an error has occurred!\n”;

$ script.pl > output 2> err.log

59
Introduction to Perl

Error Message Shortcuts

• die ()

– Takes a list as its argument
– Prints the list (like print) to STDERR and ends the Perl process
– If no \n appears at the end of the printed string, die also prints the script name and

line number

• warn ()

– Same as die, except Perl does not exit

die ”Oops, an error occurred\n”; # prints msg and exits

die ”Error occurred at ”; # prints msg, then script name
and line number of die

warn ”Debug enabled” if $debug;

60
Introduction to Perl

Exercises 2

8. Write a program that accepts the name and age of the user and prints
something like “Bob is 26 years old.” Insure that if the age is 1, “year” is not
plural. Also, an error should result if a negative age is specified.

9. Write a program that reads a list of numbers on separate lines until 999 is read,
and then prints the sum of the entered numbers (not counting the 999). Thus if
you enter 1, 2, 3 and 999 the program should print 6.

10. Write a program that reads a list of strings and prints out the list in reverse
order, but without using the reverse operator.

11. Write a program that prints a table of numbers and their squares from 0 to 32.
Try to find a way where you don’t need all the numbers from 0 to 32 in a list,
then try one where you do.

12. Build a program that computes the intersection of two arrays. The intersection
should be stored in a third array. For example, if @a = (1, 2, 3, 4)
and @b = (3, 2, 5), then @inter = (2, 3).

61
Introduction to Perl

Exercises 2

13. Write a program that generates the first 50 prime numbers. (Hint: start with a
short list of “known” primes, say 2 and 3. Then check if 4 is divisible by any
of these numbers. It is, so you now go on to 5. It isn’t, so push it onto the list
of primes and continue…)

14. Build a program that displays a simple menu. Each of the items can be
specified either by their number or by the first letter of the selection (e.g., P for
Print, E for Exit, etc.). Have the code simply print the choice selected.

15. Write a program that asks for the temperature outside and prints “too hot” if
the temperature is above 75, “too cold” if it is below 68, and “just right” if it
between 68 and 75.

16. Write a program that acts like cat but reverses the order of the lines.

62
Introduction to Perl

Regular Expressions

• Overview
• Metacharacters
• Substitutions
• Translations
• Modifiers
• Memory
• Anchoring patterns
• Miscellaneous

63
Introduction to Perl

Overview

• A regular expression defines a pattern of characters
• Typical uses involve pattern matching and substitution
• Used by many UNIX programs (grep, sed, awk, vi, emacs, …), but not

always with exactly the same rules!
• Also appears similar to shell wildcarding (“globbing”), but the rules are much

different

64
Introduction to Perl

RE Basics

• A regular expression (RE) in Perl is indicated by enclosing it in forward
slashes:

This represents a pattern consisting of these three characters
• When compared against a string, the result is “true” if the pattern “abc” occurs

anywhere in that string
• Comparison operator: =~

• Negated comparison: !~

/abc/

print a string if it contains “abc”

if ($line =~ /abc/) {
print $line;

}

65
Introduction to Perl

RE Basics

• Consider the regular expression
Abc

– Each character is itself a RE which matches only that single character
– Case sensitivity: “A” does not match “a”

• REs are composed of two types of characters
– “literals”, or ordinary characters
– “Metacharacters,” which have a special meaning

66
Introduction to Perl

Metacharacters

• These characters have a special meaning inside a regular expression

• To remove their special meaning, you can backslash-escape them
• Note that backslash-escapes (\n,\t,\r,\f, …) retain their special meaning

inside a RE

Character Meaning
. Any single character except newline (\n)
* zero or more of the preceding RE
? Zero or one of the preceding RE
+ One or more of the preceding RE

{} Some number of the preceding RE
() grouping and sub-expressions
| ’or’

[] a character class

67
Introduction to Perl

Examples

• Any single character matches itself, so
bob

will match the word “bob”
• What if we want to match bob or bobby, or anything containing an “o”?

b.b matches:
bob, bib, bbb, ...

bob* matches:
bob, bobbb, bobcc, ...

bob.* matches:
bob, bobby, bob barker, ...

68
Introduction to Perl

Character Classes

• Represented by [] enclosing a list of characters
• This matches any one of the characters in the list
• Examples:

– What if we want b.b but only with a vowel in between?
b[aeiou]b

– To ignore capitalization?
[Bb]ob

• Ranges are also allowed, for example
– [b-d]ob matches: bob, cob, or dob

• To get a literal dash (-) in a class, precede it with a backslash
– [0-9\-] matches any single digit or a dash

• If ^ is the first character in the list, the class is negated
– [^0-9] matches any single non-digit

69
Introduction to Perl

Special Class Abbreviations

• Perl provides shorthand names for some common classes:

(For example, \D is equivalent to [^0-9])

Construct Equivalent Class Negated Construct
\d (digits) [0-9] \D

\w (words) [a-zA-Z0-9_] \W

\s (space) [\r\t\n\f] \S

70
Introduction to Perl

More Examples

• be+ matches:
be, bee, beeeeeeee, ...

• To match bob or bobby, make use of parentheses for grouping:
bob(by)?

• Using the “or” symbol to match bob or dog:
(bob|dog)

• Combining metacharacters: b[aeiou]*b matches:
bob, bab, baaab, boab, beieb, bb, ...

• Bo?b will only match:
Bob or Bb

71
Introduction to Perl

The General Multiplier

• Curly braces {} can be used to specify in detail how many occurrences of a
RE are desired:
x{5,10} matches five to ten occurrences of x
x{5,} matches 5 or more occurrences of x
x{5} matches exactly 5 occurrences of x
x{0,5} matches five or fewer occurrences of x (must include the zero)

• Examples:
– a.{5}b matches a followed by exactly 5 non-newline characters and a b
– What about \([0-9]{3}\) ?[0-9]{3}-[0-9]{4} ?

72
Introduction to Perl

Parentheses

• Used for grouping sub-expressions
• (bob)+ matches:

bob, bobbob, bobbobbobbob, ...

• Also causes the enclosed pattern to be memorized
• These patterns can then be recalled as $1, $2, $3, …

– Within the pattern match, use \1, \2, \3, … instead
• Thus Fred(.)Barney\1 matches:

FredxBarneyx or FredyBarneyy but not FredxBarneyy
• a(.)b(.)c\2d\1 matches:

a, any one character (call it #1), b, any one character (call it #2), c,
character #2, d, character #1 (For example: aXbYcYdX)

• Memory is also very useful when doing substitutions...

73
Introduction to Perl

String Substitutions

• String modification is performed using the “substitute” operator:

• The variable $var is matched against the RE regexp. If successful, the part
that matches is replaced by replacement-string

• If several parts of $var match regexp, only the first is substituted for by
default

$var =~ s/regexp/replacement-string/;

$_ = ”foobar”;
$_ =~ s/bar/bear/; # $_ is now “foobear”

$_ = ”foobaring up the foobar road”;

$_ =~ s/bar/bear/; # $_ is now “foobearing
up the foobar road”

74
Introduction to Perl

Translations

• Similar to the tr program in UNIX, the tr operator translates characters in
regular expressions:

$str = “Bob the Dog”;

$str =~ tr/a-z/A-Z/; # $str now “BOB THE DOG”
$str =~ tr/BDO/xyz/; # $str now “xzx THE yzG”

$str =~ tr [A-Z] [a-z]; # also valid syntax
$str is now “xzx the yzg”

75
Introduction to Perl

Modifiers

• REs can have optional modifying suffixes. These include “g” (global;
substitute as many times as possible), “i” (case insensitivity), “m” (treat string
as multiple lines), and “s” (treat string as a single line)

$_ = ”foobaring up the foobar road”;

$_ =~ s/bar/BEAR/g; # $_ is now “fooBEARing
up the fooBEAR road”

if ($str =~ /abc/i) { # same as /[Aa][Bb][Cc]/
…

}

$_ = ”fooBARing up the foobar road”;

$_ =~ s/bar/bear/ig; # $_ is now “foobearing
up the foobear road”

76
Introduction to Perl

Memory and Substitutions

• Example:

• Note that matches are greedy; the longest string that matches is the one taken

$name = ”John Wilbur Smith”;

$name =~ s/(\w+)\s+(\w)?\w*\s(\w+)/\3, \1 \2\./;

$name is now ”Smith, John W.”

$foo = ”fred xxxxxxxxxx barney”;

$foo =~ s/(x*)/boom/; # $foo is now ”fred boom barney”
and $1 is ”xxxxxxxxxx”

77
Introduction to Perl

Anchoring Patterns

• Special notations that allow you to anchor the pattern to specific parts of the
string:

• Examples:

Symbol Meaning
^ beginning of string
$ end of string

\b word boundary
\B not a word boundary

/^fred/ # matches fred only at the beginning of the string
/betty$/ # matches betty only at the end of the string
/fred\b/ # matches fred, but not freddy
/\bwiz/ # matches wiz and wizard, but not twiz
/\bFred\B/ # matches Frederick but not “Fred Flinstone”

78
Introduction to Perl

Using a Different Delimiter

• By default / is used to delimit REs
• To match an expression containing slashes, you can backslash-escape them

• Alternatively, you can use a different character such as : or # as the delimiter,
by explicitly giving the m (“match”) prefix:

• Now the forward slash isn’t special

Match /etc/passwd
if ($file =~ /\/etc\/passwd/) {

…
}

Match /etc/passwd
if ($file =~ m:/etc/passwd:) {

…
}

79
Introduction to Perl

Variable Interpolation in REs

• Variables that appear in regular expressions are substituted (interpolated)
before the RE is scanned for other special characters (metacharacters)

• Allows you to construct REs from computed strings in addition to literals

• $string can also contain metacharacters, which are interpreted normally

$sentence = ”Every good bird does fly”;
print “What should I look for? “;
$string = <STDIN>;
chop ($string); # remove trailing newline
if ($sentence =~ /$string/) {

print ”$string occurs in $sentence\n”;
else {

print “”$string not found\n”;
}

80
Introduction to Perl

More Pattern Matching Variables

• Recall that character sequences that match subexpressions in parentheses are
assigned to $1, $2, $3, … in sequence

• In addition, after a successful match the entire text that matched is stored in the
variable $&

• All of the text before the match is assigned to $`
• All of the text following the match is assigned to $’
• Example:

$_ = ”H35j78”;

if ($_ =~ /\d+/)
print “$` - $& - $’”

}

Output is: H - 35 - j78

81
Introduction to Perl

Functions

• Defining a function
• Invoking a function
• Arguments
• Return values
• Local variables
• Example: Advanced sorting

82
Introduction to Perl

Defining a Function

• Also called subroutines, or sometimes just “subs”
• General construct:

• Function definitions can appear anywhere in the program
– Need not occur before they are called

• Separate namespace from variables, so you can have a subroutine named foo
along with variables $foo, @foo and %foo

• By default (almost) all variable references in a function are global

sub my-subname {
statement_1;
statement_2;
...

}

83
Introduction to Perl

Invoking a Function

• To invoke a function, precede the function name with &

• Functions can call other functions (including themselves)

&say_hello; # invokes the function say_hello

$a = 3 + &radius; # part of an expression

for ($x = &start_val; $x <= &end_val; $x += &incr) {
…

}

84
Introduction to Perl

Arguments

• Arguments may be passed (in parentheses) to a function
• Any arguments passed to the function appear in the special array @_
• @_ is local to the function

– If there is a global variable @_, it is saved and restored after the function exits

• No formal (dummy) parameters

• Note that $_[0] is unrelated to $_ !

sub print_msg {
print “First argument: $_[0]\n”;
print “Second argument: $_[1]\n”;

}

&print_msg(“foo”, 42);

85
Introduction to Perl

Return Values

• A function returns a value to the code that called it, which may be assigned or
used in some other way

• The return value of a function is the value of the last expression evaluated in
the body of the function

• Can also use return (val);

• The returned value can be a scalar or a list

sub double_a {
$a *= 2;

}

$a = 3;
$c = &double_a; # $c is now 6

86
Introduction to Perl

Return Values

• Another example:

• Without the last line $sum (or the return statement), the last expression
evaluated would be foreach, resulting in a null return value

• If $sum did not exist before invocation of add, it pops into existence when
add is first invoked

sub add {
$sum = 0;
foreach $n (@_) {

$sum += $n;
}
$sum; # Required!

could also use return($sum);
}

$a = &add(4,3); # $a is now 7
$b = $a + &add(1..5); # $b is now 7+1+2+3+4+5=22

87
Introduction to Perl

Local Variables

• By default, most variables are global in Perl
• @_ is local to each function, however
• Can define other local variables using

• Takes a list of variable names and creates local instances of them
• Inside the function, local variables mask any global variables with the same

name(s)
– Values of global variables are saved, and restored after the function exits

• local can also be used inside ordinary code blocks { … }

• In Perl 5, my is (essentially) a synonym for local

local ($var1, $var2, …)

88
Introduction to Perl

Local Variables

• Example:

• Note assignment of @_ to other local variables for readability
• Could use my in place of local here

sub greater_than {
local ($n, @values) = @_; # create some local variables
local (@result); # to hold the return value
foreach $val (@values) { # step through arg list

if ($val > $n) { # is it eligible?
push (@result, $val); # include it

}
}
return (@result); # return final list

}

@new = &greater_than(55,@list); # @new gets all @list > 55
@foo = &greater_than(5,1,5,15,30); # @foo is (15,30)

89
Introduction to Perl

Example: Advanced Sorting

• By default, sort sorts the elements of a list according to their ASCII values
• You can change this behavior by

– Writing a function that sorts according to some other rule
– Telling sort to use this function

• The sorting function should assume two arguments $a and $b, and return
– any negative number if $a is “less than” $b (i.e., if $a should come before $b in

the sorted list)
– zero if $a “equals” $b and
– any positive number if $a is “greater than” $b (i.e., if $a should come after

$b)

90
Introduction to Perl

Example: Advanced Sorting

• Numeric comparison:

sub numerically {
if ($a < $b) {

-1;
} elsif ($a == $b) {

0;
} elsif ($a > $b) {

1;
}

}

@new = sort numerically (@list); # tells sort to use numerically
in sorting the list

Shorthand:

sub numerically {
$a <=> $b; # the “spaceship” operator; same as the

} # above

91
Introduction to Perl

Exercises 3

17. Construct a regular expression that matches
at least one a followed by any number of b’s
any number of backslashes followed by any number of asterisks
three consecutive copies of whatever is contained in $whatever
any five characters, including newline

18. Write a program that accepts a list of words on STDIN and searches for a line
containing all five vowels (a, e, i, o, and u).

19. Modify the above program so that the five vowels have to be in order.
20. Write a program that looks through the file /etc/passwd on STDIN,

printing the real name and login name of each user. (Hint: use split to break
each line up into fields, then s/// to get rid of the parts of the comment field
that are after the first comma.)

92
Introduction to Perl

Exercises 3

21. Write a subroutine that takes a numeric value from 1 to 9 and returns its
English name (i.e., one, two …). If the input is out of range, return the
original value as the name instead.

22. Taking the subroutine from the previous exercise, write a program to take two
numbers and add them together, printing the result as “Two plus three
equals five.” (Don’t forget to capitalize the first letter!)

23. Create a subroutine that computes factorials. (The factorial of 5 is 5! =
5*4*3*2*1 = 120.) Try this using a normal subroutine and a recursive one
(i.e., a subroutine that calls itself).

24. Build a function that takes an integer and returns a string that contains the
integer displayed with a comma every three digits (i.e., 1234567 should return
1,234,567).

93
Introduction to Perl

File and Directory Manipulation

• Filehandles
• Opening a filehandle
• Using filehandles
• File tests
• Moving around the directory tree
• Globbing
• Operations on files

94
Introduction to Perl

Filehandles

• A filehandle is the name of an I/O connection between your Perl process and
the outside world

• Already seen STDIN and STDOUT/STDERR
– I/O connections to keyboard and screen

• Filehandles have a separate namespace from other Perl entities
– Can have $foo, @foo, %foo, &foo, as well as filehandle foo

• Recommended style is to uppercase filehandles, but this is not required

95
Introduction to Perl

Opening a Filehandle

• The operation

opens the file filename and attaches it to HANDLE
• A prefix to filename controls whether file is opened for reading, writing,

appending, etc.
• Returns true or false (actually undef) indicating success or failure of the

operation
– Can fail due to, e.g., permissions, file not found, etc.

• To close a file and release the filehandle, use

open (HANDLE, ”filename”);

close (FILEHANDLE);

open (FH, ”myfile”) or die ”can’t open myfile!”;

96
Introduction to Perl

Examples

open(PWD, ”/etc/passwd”); # open for reading; fails if
/etc/passed doesn’t exist or can’t
be read

open(FH, ”>myfile”); # write-only; if myfile doesn’t
exist it is created, else clobbered

open(LOG, ”>>logfile”); # append mode; if logfile doesn’t
exist it is created

open(TOPRINTER, ”| lpr”); # can also “print” to UNIX pipelines

open(FROMPIPE, ”ls -l |”); # or read from them

close(LOG);

97
Introduction to Perl

Using Filehandles

• Once a filehandle has been opened for reading, you can read from it by
enclosing the filehandle in <>, just as for STDIN:

• As before, <FH> reads the next line from the file in a scalar context
• In an array context, <FH> all remaining lines of the file are read and placed in

an array
• Newlines are retained (can use chomp () to remove them)
• Returns undef (hence “false”) if there are no more lines to read

open (FH, ”myfile”); # open myfile for reading
while ($line = <FH>) { # read a line from the file

print “$line”; # echo it to STDOUT
}

98
Introduction to Perl

Using Filehandles

• To write/append to a filehandle, give the filehandle as the first argument to
print:

• Note: no comma after the filehandle!
• STDOUT is the default filehandle for print and printf

open (LOGFILE, ”>>build.log”);

print LOGFILE ”Finished building application\n”;

99
Introduction to Perl

File Tests

• Can test for existence, ownership, permissions, etc. of files and directories
• General form of test is

where X is some character and file is the file or directory to be tested
– file can be a name or a filehandle

• Most tests return true/false, though some return numbers (e.g. -s, which
returns the size in bytes of a file)

-X file

$x = ”/etc/passwd”;
if (-e $x) { # does the file exist?

print “Crack some passwords!\n”;
}

100
Introduction to Perl

File Tests

• More examples:

if (-r $file && -w $file) {
$file exists and I can read and write it
. . .

}

chop ($fname = <STDIN>);
if (-A $fname > 7) { # last accessed more than seven days ago?

print “Say goodbye to $fname...\n”;
unlink $fname; # delete the file

} else {
print “$fname accessed recently!\n”;

}

if (-e) { # same as if (-e $_), of course!
…

}

101
Introduction to Perl

File Tests

File Test
-r

-w

-x

-o

-e

-z

-s

-f

-d

-T, -B

-M, -A

Meaning
file or directory is readable
file or directory is writable
file or directory is executable
file or directory is owned by user
file or directory exists
file or directory exists and has zero size
file or directory exists and has nonzero size
(return value is size in bytes)
entry is a plain file
entry is a directory
file is text, binary
modification, access time (in days)

102
Introduction to Perl

Moving Around the Directory Tree

• When your Perl program is launched it inherits the environment of its parent,
(usually the shell) including the current directory

• To move to another directory, use chdir(”dirname”);
• Return value is true/false indicating whether the change was successful

print ”Where do you want to go? ”;
chop ($where = <STDIN>);

if (chdir $where) {
we got there
…

} else {
didn’t make it for some reason
…

}

103
Introduction to Perl

Globbing

• Can expand shell wildcards (“globbing”) by putting the globbing pattern inside
<>

• Example:

returns a list of all filenames in /etc that begin with host
• In a scalar context it would return the next filename that matches, or undef if

no others remain

@list = </etc/host*>;

while($next = </etc/host*>) {
$next =~ s#.*/##; # remove part before last slash

(note use of # as delimiter)

print “one of the files is $next”;
}

104
Introduction to Perl

Globbing

• Multiple patterns are allowed inside the glob, for example

• Generally, anything you could send to the shell for expansion will work in a
glob

• Note: looks similar to regular expressions, but the meaning of the various
metacharacters is very different!

@foo_bar_files = <foo* bar*>;

105
Introduction to Perl

Operations on Files

• Some useful functions for performing operations on files/directories:
– unlink (”filename”);

• Removes (“unlinks”) a list of files

– rename (”file1”,”file2”);
• Renames (moves) file1 to file2

• Note: rename (”file”,”directory”) is not allowed!

unlink (<*.o>); # just like ‘rm *.o’ in the shell

rename (”foo”,”bar”); # like ‘mv foo bar’ in the shell

106
Introduction to Perl

Operations on Files

– mkdir (”dirname”, mode);
• Creates a directory with permissions set by mode

– rmdir (”dirname”);
• Removes a directory

– chmod (mode,”file1”,”file2”,…);
• Sets permissions for listed files to mode

mkdir (”foo”, 0777); # creates direcoty foo with rwx
permissions for all

rmdir (”foo”); # just like ‘rmdir foo’ in the shell

chmod (0666,”foo”,”bar”); # gives everybody rw
permissions for foo and bar

107
Introduction to Perl

Operations on Files

• All of these functions return true/false indicating success or failure of the
operation

• Examples:

unlink (”foo”) || die “Unable to delete foo”;

if (mkdir (”tmp”,0700)) {
creation was successful, proceed
…

} else {
creation failed!
…

}

108
Introduction to Perl

External Processes

• Using backquotes
• system ()

• Output to and from pipes

109
Introduction to Perl

Using Backquotes

• An external command can be run by placing it in backquotes: ` `

• The command output is becomes the value of the backquoted string

• Output of the date command is concatenated with the previous string
• If the backquoted command appears in an array context, you get an array of

strings each of which is one line of the command output

• Variable interpolation does occur inside backticks
• Look out for newlines (use chop/chomp if desired)

$now = ”the time is now: ” . `date`;

@files = `ls -l`; # each element of @files contains
one line of ls -l output

110
Introduction to Perl

system()

• Another way to execute an external command
• If given a scalar, system passes it to /bin/sh for execution

• The scalar can be anything sh can process, including multiple commands
separated by semicolons

• If given a list, system takes the first item as the command, and subsequent
items as arguments to that command

• Note that shell processing (globbing) does not occur for these arguments:

system (“date”);

system (”grep”,”INTEGER”,”prog.f”);

system (”/bin/echo”,”*”); # just echos *

111
Introduction to Perl

system()

• Where does the output of the command go?
• The shell inherits STDOUT and STDERR from the Perl process, so output

normally goes to the screen
• This can be changed using ordinary sh redirects:

• system returns the exit status of the command, usually 0 if no error occurred
• Backwards from normal convention:

– die invoked if command returns nonzero (i.e., true)

system (”a.out > outfile 2> err”);

$where = ”who_out” . ++$i; # make a filename
system (”(date; who) > $where &”); # interpolation

system (”date > now”) && die ”cannot create now”;

112
Introduction to Perl

Output to and from Pipes

• Reading from a pipe:

– In a scalar context, <PIPE> returns a single line of output from ls -l

– In an array context, <PIPE> returns all (remaining) output lines
– The command is run when the filehandle is opened
– Shell metacharacters other than | (e.g., redirects) are also processed

• Writing to a pipe:

– print LPTR … ; now sends to the standard input of lpr
– When the filehandle is closed (or the script exits), the command is run

open (PIPE, ”ls -l |”) or die ”ls error!?!”;

open (LPTR, ”| lpr”);

113
Introduction to Perl

References

• Creating references
• Anonymous references
• Using references
• Passing references
• Nested datastructures

114
Introduction to Perl

Creating References

• A reference is like a pointer in C
• It is a scalar object that holds the location of the data associated with some

variable
– Said to “point to” the variable

• You can create references to nearly any kind of data
– Scalars, arrays, hashes, functions

• A reference is created using the \ operator

$sref = \$x; # $sref points to the scalar $x
$aref = \@arry; # pointer to an array
$cref = \0xFA0; # reference to a constant
$code = \&myfun; # pointer to a function
@reflist = \($a,$b,$c)

115
Introduction to Perl

Anonymous References

• You can also directly create references to unnamed objects:

array reference:
$aref = [1,”foo”,”a”,42];

hash reference:
$href = {

”UCLA”, 1,
”tOSU”, 2,

}

function reference:
$code = sub { print “Hello world\n”; }

116
Introduction to Perl

Using References

• To use a reference (dereference it, in C parlance), just put the appropriate type
indicator in front of the reference variable

$foo = 12;
$sref = \$foo; # $sref points to foo
print “$$sref”; # prints 12
$$sref = “bar”; # $foo is now “bar”

@arry = (1,2,3);
$aref = \@arry; # $aref refers to @arry
@$aref = (2,4,6); # changes @arry
$$aref[2] = ”gaak”; # reference to individual element

117
Introduction to Perl

Passing References

• Can also pass variables by reference to functions

sub doubler {

my @reflist = @_; # local array for incoming pointers

foreach (@reflist) {
$$_ *= 2; # $_ is a reference,

$$_ is what it points to
}

}

&doubler (\$a, \$b, \$c);

118
Introduction to Perl

Passing References

• Can also return references, of course

sub arrayinit {

my @a = (1,3,5);
my @b = (2,4,6);

return (\@a, \@b);
}

($aref, $bref) = &arrayinit ();

119
Introduction to Perl

Nested Datastructures

• Perl does not support arrays of arrays directly, but you can create an array of
references, each of which refers to an array

• The operator -> can be used to dereference array pointers

$aptr = [1,2,3]; # anonymous array reference
$$aptr[0] = 3.14; # changes 0th element of the array
$aptr->[0] = 3.14; # same thing

here is an array of pointers, each of which refers
to a hash consisting of a single key/value pair:

$ptr = [{“cow”,”purple”},{“llama”,”blue”}];

$ptr->[1]->{“llama”} = “scarlet”;
$ptr->[1]{“llama”} = “scarlet”; # equivalent

120
Introduction to Perl

Exercises 4

25. Write a program that reads a filename from STDIN, then opens the file and
prints its contents preceded by the filename and a colon. For example, if the
file fred contains the lines aaa, bbb and ccc, the output should be

26. Write a program to read in a list of filenames and then display which of them
are readable, writeable and/or executable, and which ones don’t exist.

27. Write a program that accepts a list of filenames and finds the oldest file among
them. Print the name of that file along with its age in days.

28. Write a program to change directory to a location specified as input, the print a
listing of the files there. Do not show a list if the directory change doesn’t
succeed; in this case simply warn the user.

fred: aaa
fred: bbb
fred: ccc

121
Introduction to Perl

Exercises 4

29. Write a program that works like rm, deleting the files given as command line
arguments. (Be careful testing this!)

30. Write a program to parse the output of the data command to get the current day
of the week. If it is a weekday, print “get to work,” otherwise “go play.”

31. Using references, build a structure (as in C) that represents a circle image.
Your circle struct should contain four data items: the x and y coordinates of
the center point, the radius and the color. (Hint: the struct can be a hash where
the keys are the names of the data items and the values are reference variables
pointing to the actual data.)

122
Introduction to Perl

Some Other Topics of Interest

• The Perl debugger (perl -d)
– Also highly recommend using perl -w (print warnings) during development!

• Advanced process management
• Handling binary data (pack and unpack)
• Formats
• Database interfaces
• CGI
• Many more features, functions and options in virtually all the areas we’ve

covered so far...

123
Introduction to Perl

Some Additional Features in Perl 5

• Perl compiler: can compile Perl code into a machine-native executable
• Lexical scoping of variables: variables may be declared with a lexical scope
• Regular expression enhancements: pattern grouping can be done without using

backreferences, and whitespace and comments can be embedded in a RE
• Loadable code modules: the Perl library in Perl 5 is defined in terms of

packages, and there are also many 3rd-party packages available throuth CPAN
• Object oriented programming
• And more...

124
Introduction to Perl

For Further Information

• Learning Perl, 2nd ed., Randal L. Schwartz (O’Reilly and Associates, 1996)
• Programming Perl, 2nd ed., Larry Wall, Tom Christiansen, and Randal L.

Schwartz (O’Reilly and Associates, 1996)
• Advanced Perl Programming, Sriram Srinivasan (O’Reilly and Associates,

1997)
• Perl 5 Desktop Reference, John Vromans (O’Reilly and Associates, 1996)
• http://www.perl.com

• http://language.perl.com

• http://language.perl.com/info/documentation.html

• http://language.perl.com/CPAN

