
()

Fast, GPU-based Illumination Maps For Point Models using
FMM

Rhushabh Goradia, Prekshu Ajmera and Sharat Chandran

Indian Institute of Technology Bombay

Abstract

Point-based methods have gained significant interest due to their simplicity. The lack of connectivity touted as a
plus, however, creates difficulties in generating global illumination effects. We are interested in looking at inter-
reflections in complex scenes consisting of several models, the data for which are available as hard to segment
aggregated point-based models.
In this paper we use the Fast Multipole Method (FMM) which has a natural point based basis, and the light
transport kernel for inter-reflection to compute a description – illumination maps – of the diffuse illumination.
These illumination maps may be subsequently rendered using methods in the literature such as the one in [WS05].
We use Graphics Processing Units with CUDA programming enivronment to achieve multi-fold speed-ups.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

This paper is about capturing interreflection effects of a set
of objects when the input is available as point samples. We
use the technique of the Fast Multipole Method which also
starts with points as primitives.

1.1. Point Samples

Points as primitives have come to increasingly challenge
polygons for complex models; as soon as triangles get
smaller than individual pixels, the raison d’etre of tradi-
tional rendering can be questioned. Simultaneously, modern
3D digital photography and 3D scanning systems [LPC∗00]
acquire both geometry and appearance of complex, real-
world objects in terms of (humongous) points. More im-
portant, however, is the considerable freedom points enjoy.
The independence of connectivity and topology enable filter-
ing operations, for instance, without having to worry about
preserving topology or connectivity [PKKG03, OBA∗03,
PZvBG00].

1.2. Global Illumination

Global illumination – the simulation of the physical process
of light transport – is a memory intensive and compute inten-
sive operation. This problem has been considered for several
years with interesting methods like statistical photon trac-
ing, directional radiance maps, and wavelets based hierar-
chical radiosity. Traditionally all these methods assume a
surface representation for the propagation of indirect light-
ing. Surfaces are either explicitly given as triangles, or im-
plicitly computable. The lack of any sort of connectivity in-
formation in point-based modeling (PBM) systems now hurt
photo-realistic rendering. This becomes especially true when
it is not possible to correctly segment points obtained from
an aggregation of objects (see Figure 1) to stitch together a
surface.

Recent work [WS05] suggests one way to handle this
problem — ray tracing. However, as both rays and points
are singular primitives, this requires one to trace thick rays
[Ama84, SJ00]. Alternatively, points are seen as covering a
finite area by expanding them to ellipses [RL00], or filtering
them with an implicit function [AA03, OBA∗03].

Our view is that these methods would work even better
if fast pre-computation of diffuse illumination could be per-

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

Figure 1:
Grottoes, such as the ones from China and India form a treasure for mankind. If data from the ceiling and the statues are
available as point samples, can we capture the interreflections?

formed, much the way photon tracing is done for triangu-
lated models before rendering.

1.3. Fast computation with FMM

Computational science and engineering is replete with prob-
lems which require the evaluation of pairwise interactions
in a large collection of particles. Direct evaluation of such
interactions results in O(N2) complexity which places prac-
tical limits on the size of problems which can be considered.
The first numerically-defensible algorithm [DS00] that suc-
ceeded in reducing the N-body complexity to O(N) was the
Greengard-Rokhlin Fast Multipole Method (FMM) [GR87].
The FMM, in a broad sense, enables the product of restricted
dense matrices with a vector to be evaluated in O(N) or
O(N logN) operations, when direct multiplication requires
O(N2) operations.

Global illumination problem requires the computation of
pairwise interactions among each of the surface elements
(points) in the given data (usually of order > 106) and thus
naturally fits in the FMM framework.

Besides being very efficient (O(N) algorithm) and appli-
cable to a wide range of problem domains, the FMM is also
highly parallel in structure. Thus implementing it on a par-
allel, high performance multi-processor cluster will further
speedup the computation of diffuse illumination for our in-
put point sampled scene. Our interest lies in a design of a
parallel FMM algorithm that uses static decomposition, does
not require any explicit dynamic load balancing and is rigor-
ously analyzable. We use latest Nvidia’s G80/G92 architech-
ture GPUs with CUDA [?] as the programming environment.

1.4. Contributions

Can the point-based framework of the FMM (albeit without
visibility) be coupled with the input point models to store the
diffuse illumination? This paper answers this question in the
affirmative. We store the precomputation in a data structure
called Illumination Maps which are conceptually like photon
maps except that we do not employ statistical photon tracing.
The challenges we solve in the process are

• Earlier [ala04], we presented the mathematical appara-
tus required to apply the linear-time adaptive FMM al-
gorithm to diffuse objects given as triangles. Five math-
ematical results with respect to the core interreflection
kernel under full visibility are now available. We extend
this to blend the point based nature of FMM with input
available as PBMs instead of triangles. For storing illu-
mination maps, this is sufficient. For more complete ren-
dering (purely based on the FMM technique) we require
the BRDF to be available as a low rank matrix. This cou-
pled with a directional discretization of radiance [Wal05]
should be employed for pure FMM-based rendering of
non-diffuse objects.

• We exploit the inherent parallelism of this method to im-
plement it on the data parallel architecture of the GPU to
achieve multifold speedups. Further, the same parallel im-
plementation on the GPU, designed for point models, can
also be used for triangular models.

The rest of the paper is organized as follows. First, we
gave the basic background of FMM followed by our mathe-
matical results for factorizing the interreflection kernel. Sec-
tion 2.4 provides the crucial extension needed when points
are given as input. Our visibility requires us to provide
a stripped-down FMM algorithm which we give in Sec-
tion 2.5. We follow this with our GPU-based parallel FMM
algorithm using CUDA in section 3. Pictures of our illumi-
nation maps appear in Section 4 followed by concluding re-
marks.

2. FMM for Global Illumination

The Fast Multipole Method [GR87] is concerned with evalu-
ating the effect of a “set of sources” Y, on a set of “evaluation
points” X. More formally, given

X = {x1,x2, . . . ,xM}, xi ∈ R3, i = 1, . . . ,M, (1)

Y = {y1,y2, . . . ,yN}, y j ∈ R3, j = 1, . . . ,N (2)

we wish to evaluate the sum

f (xi) =
N

∑
j=1

φ(xi,y j), i = 1, . . . ,M (3)

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

The function φ which describes the interaction between two
particles is called the “kernel” of the system. The function
f essentially sums up the contribution from each of the
sources y j . Assuming that the evaluation of the kernel φ can
be done in constant time, evaluation of f at each of the N
evaluation points requires N operations. The total complex-
ity of this operation will therefore be O(NM). The FMM
attempts to reduce this seemingly irreducible complexity to
O(N logN + M) or even O(N + M). The three main insights
that make this possible are (a) factorization of the kernel,
(b) the observation that many application domains do not re-
quire that the function f be calculated at very high accuracy,
(c) FMM follows a hierarchical structure (Octrees).

2.1. Interreflection in the FMM context

yA

nx n

yx

y

rx ry

rx− ry

O

Figure 2: Geometry and notations used in this paper.

Figure 2 shows how a point x receives irradiance from
a small area around y. The nature of this interaction is
quadratic for all points as in Equation 3. Further, the kernel
of the geometric interaction (assuming full visibility) can be
written as:

I(x) =
Z

Ay

[~ny.(~rx−~ry)][~nx.(~ry− ~rx)]
π|~ry− ~rx|4

dAy (4)

Notice that the interaction written in this form is coupled in
nature. The theory of the FMM, in general, requires factor-
ization and translation theorems for the type of kernel under
consideration. Simply stating, these results are based on the
position and orientation of the source and receivers. These
results are given in brief in Section 2.2 and the proofs ap-
pear in [ala04, ala03]. The nature of light transport is even
more complicated than this, but Equation 4 is sufficient to
capture the diffuse illumination maps.

2.2. Multipole Expansion

If we denote the spherical coordinates of ~rx by (rx,θx,φx),
then our first result makes use of [Hau97] to write (for ry <
rx),

1

|~ry− ~rx|4
=
∞
∑

n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

π
j
n

{
1

rn+4
x

Y m
n−2 j(θx ,φx)

}{
rn
yY m

n−2 j(θy ,φy)
}

(5)

where

e j
n = 4

(n− j +1)!(j +1/2)!
(n− j +1/2)! j!

and Y m
n are the normalized spherical harmonics. Substitut-

ing (5) in (4) and rearranging terms, we get the multipole
expansion in Equation 8 as

I(x) =
∞

∑
n=0

[n/2]

∑
j=0

n−2 j

∑
m=−n+2 j

e j
nRm

n j(x)⊗Mm
n j(Ay) (6)

Rm
n j(x) =

ρ(x)
rn+4

x
Y m

n−2 j(θx,φx)RM(x) (7)

Mm
n j(Ay) =

Z
Ay

rn
yY m

n−2 j(θy,φy)SM(y)dAy (8)

Here, RM(x) and SM(y) stands for the receiver and the
source matrices respectively. The intuition for this step is
shown in Figure 3. For practical implementation, the sum-
mation to infinity is truncated to (in our case) two terms. We
have theoretically and experimentally verified [ala04] that
the error incurred is very small.

sources receiver

x

sources receiver

xO

Figure 3: By associating a constant number of coefficients at
center O, we can calculate the irradiance received by x from
a number of differential emitters. The value of the coeffi-
cients depends upon the location of these emitters, and the
recipient has to be sufficiently far.

Since the FMM algorithm is hierarchical, we need a way
to collect irradiance, as shown in Figure 4.

2.3. Local Expansion

Equation 6 may be viewed as an irradiance gather process
“outside” the sources. We need a similar expression on how
irradiance collected at a center is distributed to receivers. For
rx < ry, we derive [ala03] the so-called local expansions in
terms of the coefficients Lm

n j. Our intuition behind this for-
mulation is explained in Figure 5.

Similar to the multipole coefficients, the local coefficients
Lm

n j are also additive, and can be translated to a different co-
ordinate system. We illustrate this in Figure 6.

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

x

sources receiver

C1C2

C3

..

.

Ck

x
O

C1
C2

C3

....
Ck

Figure 4: Multipole coefficients are additive and can be
translated to a different coordinate system. This enables a hi-
erarchical approach by considering the effect of several clus-
ters. For each cluster C1,C2,C3, . . .Ck, the multipole coeffi-
cients Mm

n j(Ay) are first accumulated and then “translated” to
get the cumulative effect of the entire set of clusters.

sources receivers

iY

X1
X2

X3
.
..

Xm
sources receivers

OYi

X1
X2

X3
...

Xm

Figure 5: The irradiance stored at a virtual point O in the
form of a constant number of coefficients can be disseme-
nated to different receivers. This is valid only if the receiver
points are “close by.”

O O

Figure 6: Local coefficients are additive. On the left, we first
collect the cumulative local coefficient of several clusters
from the local coefficients of each cluster and accumulate
it in the center O. We then disseminate it to the recipients.

Finally, a very important result is ilustrated in Figure 7.

2.4. Assigning Weights to Points

The equations in the previous section assume that we are
in a position to integrate over a surface area. In our earlier
work, we had assumed triangles as input and we performed
Gaussian quadrature to calculate the integral exactly. For
PBMs, we do not have any surface information; we there-

O’O

Y1

Y2
.....

Yn

X1

X2

...

..
Xm

Figure 7: A crucial part of FMM is the conversion of mul-
tipole coefficients at a given center into local coefficients at
another center. The multipole to local translation converts
the multipole coefficients of a set of N source points into
local coefficients for a set of M receiver points.

fore approximate this integration. Weights are assigned to
each point and signify the contribution of the point to the
reconstruction of the surface. This is a local property based
on the normal available at points. As the number of points
increase, the integration is computed more accurately.

In summary, we can define the multipole coefficients (and
similarly local coefficients) for a point y as

Mm
n j(y) = w(y)rn

yY m
n−2 j(θy,φy)SM(y) (9)

We thus replace the interaction between surfaces and
points (in Equation 8) as between points only. This inter-
action is termed as a particle interaction.

2.5. The FMM Algorithm

A brief version of the algorithm is given here for the sake of
completeness.

1. Setup: We start with the given input point model. All
points are arranged in an adaptive octree such that no
leaf node contains more than s = O(1) points. With each
node, we associate two set of disjoint nodes:

• near neighbors of a node b are nodes that share a com-
mon boundary point of the node. Points in these nodes
do not satisfy the distance constraint in (Equation 6).

• interaction list of a node b are the children of the
near neighbors of the parent of b — children who
are not near neighbors of b itself. When occlusion is
present in the scene, the interaction list is modified as
in [GAC08].

2. Upward Pass: For each leaf node in the octree, we cal-
culate the multipole coefficients of all points contained
in the node about its center. Then, for each level (start-
ing from the penultimate level) we calculate the multipole
coefficients of each node at that level by translating and
accumulating the multipole coefficients of its children.

3. Downward Pass: For each level (starting from the sec-
ond), the local coefficients at each node b are calculated
by converting the multipole coefficients of boxes in the

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

interaction list of b into local coefficients about b’s center
using the multipole to local translation algorithm (Fig-
ure 7). Additionally, the local expansion coefficients ob-
tained from the individual points contained in the local
interaction list are aggregated.

4. Evaluation: For each leaf b in the octree, for each evalu-
ation point x ∈ b, the local expansion about the center of
b is evaluated at x.

We iterate over these steps till sufficient convergence is
reached. The evaluation points are the same points that rep-
resent the input point model.

3. FMM on GPU

Besides being very efficient (O(N) algorithm) and applica-
ble to a wide range of problem domains, the FMM is also
highly parallel in structure. Thus implementing it on a par-
allel, high performance multi-processor cluster will further
speedup the computation of diffuse illumination for our in-
put point sampled scene.

FMM algorithm used for GI consists of the following five
phases:

1. Octree Construction
2. Generating interaction lists
3. Determine visibility between octree nodes
4. Upward Pass
5. Downward Pass and Final Summation

Our parallel FMM algorithm specifically solves the last
two phases (Upward pass, Downward pass and Final sum-
mation stage) on the GPU. These phases are the ones which
take more than 97% of the run time (not taking visibility
phase into account). Hence we first implemented these two
stages on the GPU while the Octree Construction and In-
teraction List Construction stages were performed on the
CPU. We assume, as a part of pre-processing step, that
we have been given an octree constructed for the input 3D
model along with the interactions lists for each of the oc-
tree nodes (containing only visible nodes). The octree can
be constructed on the CPU or on the GPU , while the in-
teraction lists construction happens on the CPU. These two
phases will eventually be implemented on GPU and com-
bined with the rest of the algorithm. Visibility between oc-
tree nodes is determined by using a CPU-GPU combo al-
gorithm presented in [GAC08]. Our FMM algorithm bears
some similartiy to the one presented in [GD07]. But they
solve for Laplace kernel, whereas our radiosity kernel in-
volves much more complications.

INPUT: A 3D model with its defined octree and visible in-
teraction lists.
OUTPUT: A Diffuse Global Illumination solution for the
given model.

Our input octree is a long one dimensional array with each
level of octree stored one after the other(starting from the

root). The parent-child relationship is established using the
array indices. We also define four one dimensional arrays,
each corresponding to one of the interaction list’s type (far,
near, multipole, local). The size of each of these arrays is the
sum total of the number of nodes in the interaction lists of ev-
ery node. The relationship between each node and each of its
interaction lists is defined by storing in it the start and the end
indices of each of its interaction list in the four global inter-
action list arrays. A 3D input point model is stored as a single
point array with its necessary attributes (co-ordinates, nor-
mal, diffuse surface color, emmissivity, gaussian weights).
Incase of triangular models, they are converted to points us-
ing gaussian quadrature weights theory [ala03].

3.0.1. Step 1: Generating Multipole Expansion
Co-efficients for the Leaves (Upward Pass)

We need to calculate, in parallel, for each leaf in the octree,
the multipole, or S expansion of all particles (sources) con-
tained in the node about the center of the node. The expan-
sions from all particles (sources) in the node are consoli-
dated in a single expansion by summing the coefficients cor-
responding to each particle (source). We adopt a one thread
per node strategy (and the same strategy for other passes
of FMM). In this case one thread performs expansion for
each of the sources in the leaf and consolidates these expan-
sions. So one thread produces full multipole expansion for
the entire leaf. The advantage of this approach is that the
work of each thread is completely independent and so there
is no need for shared memory. This perfectly fits the situation
when each leaf may have different number of sources, as the
thread that finishes work for a given leaf simply takes care
of another leaf, without waiting or need for synchronization
with other threads.

1. For every level of octree, starting from the last level of
octree, upto the root do

a. Allocate threads equal to number of nodes at the cur-
rent level

b. For every thread, in parallel, Do
c. If current node is a leaf Then

i. Calculate the multipole expansion of all particles
(sources) contained in the current leaf about the
center of that leaf.

ii. Consolidate each of these expansions in a single
expansion at the current leaf’s center.

3.0.2. Step 2: Generating Multipole Expansion
Coefficients for the Internal Nodes (Upward pass)

We need to calculate, in parallel, for each level l = lmax−
1, ...2, for each node b at that level, the multipole, or S ex-
pansion coefficients M(b) due to all particles in that node by
translating and aggregating the multipole expansion coeffi-
cients of all its children.

1. For every level of octree, starting from the second last
level, upto the root do

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

a. Allocate threads equal to number of nodes at the cur-
rent level

b. For every thread, in parallel, Do

i. If current node is a non-leaf node Then
ii. For all childeren of current node, Do

iii. Translate S coefficient corresponding to the child
to the center of the current node

c. Synchronize the threads
d. Sum up all the coefficients at center of current node

Note that the upward pass is a very cheap step of the FMM
and normally takes not more than 1% of the total time. This
also diminishes the value of putting substantial resources and
effort in achieving high speedups for this step.

3.1. Downward Pass

We repeat the following steps for each level of the octree,
starting from level 2 to the maximum level lmax. Downward
pass and the final summation phases are combined into a
single phase.

3.1.1. Step 1: Multipole to Local Translations

For each node, in parallel, translate and aggregate the multi-
pole, or S expansion coefficients of every node in the far cell
interaction list of the current node into local, or R expansion
coefficients about the current node’s center.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. For each node A in the far cell list of current node Do

i. Translate the multipole expansion coefficients of
A into local, or R expansion coefficients about the
center of current node.

ii. Aggregate each of these expansions in a single ex-
pansion at the current node’s center.

3.1.2. Step 2: Local List Translations

For every node, in parallel, in addition to converting the mul-
tipole expansion coefficients of all nodes in the interaction
list into local expansion coefficients at the node’s center,
the local expansion coefficients obtained from the individ-
ual particles contained in the local interaction list are also
aggregated.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. For each node n in the local list of current node Do

i. Obtain the local expansion coefficients obtained
from the individual particles contained in n about
the center of current node.

ii. Aggregate each of these expansions in a single ex-
pansion at the current node’s center and add up to
its existing local expansion coefficients.

3.1.3. Step 3: Local to Local Translations

In addition to multipole-to-local and local-list translations,
we further need to calculate, in parallel, for each node b at
current level, the local, or R expansion coefficients about its
center by translating and aggregating the local expansion co-
efficients from its parent.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. Obtain the local expansion coefficients from its parent
node about the center of current node.

b. Add up to the existing local expansion coefficients
about current node’s center.

This step is very similar to the step 2 of upward pass. For
parallelization of this step, the one thread per node strategy
is used.

3.1.4. Step 4: Evaluate Local Expansion at Points

Evaluate, in parallel, the local expansions at individual
points in each of the leaves, from the corresponding leaf’s
center.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. If current node is a leaf Then

i. Obtain the radiosity values at individual points in
the current leaf, from the local expansion coeffi-
cients at current leaf’s center.

This step is very similar to the multipole expansion gen-
erator discussed above in step 1 of the upward pass. For par-
allelization of this step, the one thread per node strategy
is used. The performance of this step is approximately the
same as of the multipole expansion generator.

3.1.5. Step 5: Near Cell List Translations

For every node in parallel, evaluate the near neighbor inter-
actions (if current node is a leaf) between the points in the
current node and every point in each of the nodes in its near
cell interaction list. This, and the remaining steps, are a part
of the final summation phase.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. If current node is a leaf Then

i. For each node n in the near cell list of current node
Do

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

A. For all points in current leaf
B. For all points in n
C. Evaluate the radiosity interaction directly
D. Add up the evaluated value to the exisiting ra-

diosity values of the points

3.1.6. Step 6: Multipole List Translations

For every node, in parallel, in addition to evaluating the near
neighbors and local expansion coefficients at each particle,
we also evaluate the multipole expansion coefficients of all
nodes in the multipole interaction list.

1. Allocate threads equal to number of nodes at the current
level

2. For every thread, in parallel, Do

a. If current node is a leaf Then

i. For each node n in the multipole list of current
node Do

A. Translate the multipole expansion coefficients
of n from its center to
individual points of current leaf

B. Add up the evaluated value to the exisiting ra-
diosity values of the points

Performance improves with the size of the problem and,
respectively, as the maximum level of the octree increases
(for levelmax = 8 the time ratio reached 20). Each point has 3
primary colors associated with it viz. Red, Green and Blue.
Hence, we run all the above steps thrice, corresponding
to each color. Further, we converge to the final Global
Illumination solution by iterating all the above steps (for
all colors) three times (Empirical evidences prove that the
solution converges to a good extent in 3 iterations).

4. Results

The CUDA based parallel FMM algorithm, implemented on
G80 NVIDIA GPU, was tested on several point models. In
this section we provide qualitative validation and quantita-
tive results. Note that all input such as the models in the
room, the light source, and the walls of the Cornell room
are given as points.

Fig. 8 shows results of FMM based global illumination
algorithm applied to point models. Effects of color bleed-
ing and soft shadows are clearly visible. It also works well
even in the case of aggregated input models (e.g., point mod-
els of both Ganesha and Satyavathi placed in a point model
of a Cornell room). Note that the input is a single, large,
mixed point data set consisting of Ganesha, Satyavathi, and
the Cornell room. These models were not taken as separate
entities nor were they segmented into different objects dur-
ing the whole process.

Quality Comparisons

Figure 9: Left (2 pics): A Cornell Room with the Ganesha’s
point model on CPU and corresponding GPU result. Right
(2 pics): A Cornell Room with the Bunny’s point model on
CPU and corresponding GPU result. Both the results assume
50 points per leaf.

To compare CPU and GPU implementations we use 3-d
point models of bunny and Ganesha in a Cornell room each
having four light sources on the ceiling. As we can see in
Fig. 9 the CPU-GPU results look identical. Color bleeding
and soft shadows are also clearly visible. We converge after
3 iterations.

Timing Comparisons

The timing calculations are done on a machine having
a dual core AMD Opteron 2210 processor with 2 Gbs of
RAM, NVIDIA GeForce 8800 GTS with 320 Mbs of mem-
ory and Fedora Core 7 (x86_64) installed on it. The total
time taken by the upward and downward passes of the FMM
algorithm for all 3 iterations and all 3 colors RGB is shown
in the results below. The time taken by each iteration is ap-
proximately same.

Thus, we see that the GPU outperforms the CPU by fac-
tors of 13−20 in the downward pass of the FMM algorithm.
We also see that the upward pass of the FMM algorithm con-
sumes less than 1% of the time taken by the downward pass.
Thus, the speedup achieved in the upward pass does not play
an important role in the overall FMM speedup. The overall
speedup achieved is the speedup achieved in the downward
pass.

5. Conclusion

The FMM method is elegant because it trades off error with
quality in a disciplined quantitative way. In this paper, the
kernel of the energy balance in the rendering equation has

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

Figure 8: Point models rendered with diffuse global illumination effects of color bleeding and soft shadows. Pair-wise visibility
information is essential in such cases. Note that the Cornell room as well as the models in it are input as point models.

GPU

CPU0

50

100

150

200

200
150

100
50

25

GPU

CPU

Ganpati (165646 points)

Number of
points per leaf GPU (sec) CPU (sec)

GPU
Speedup

200 42.3485 58.9931 1.39

150 46.5512 67.2873 1.44

100 49.6921 79.7653 1.61

50 99.4292 145.2349 1.46

25 130.5751 189.4829 1.45

Figure 10: FMM Upward Pass: Ganpati with 165646 points

GPU

CPU0

5

10

15

20

25

30

200
150

100
50

25

GPU

CPU

Ganpati (165646 points)

Number of
points per leaf GPU (hr) CPU (hr)

GPU
Speedup

200 1.11 14.54 13.1
150 1.16 16.58 14.3
100 1.21 20.81 17.2
50 1.28 23.15 18.1
25 1.41 26.37 18.7

Figure 11: FMM Downward Pass: Ganpati with 165646
points

been made conformant to the FMM by deriving the near and
far field expansions. The illumination problem over surfaces

is reduced to a solution over points enabling point based ren-
dering. We have also extended this to latest NVidia’s GPU
and achieved multi-fold speed-ups. Photo-realistic global il-
lumination for point models have been shown.

References

[AA03] ADAMSON A., ALEXA M.: Ray tracing point set
surfaces. In Proceedings of Shape Modeling International
2003 (2003).

[ala03] Removed for purposes of Review. Master’s thesis,
2003.

[ala04] Removed for purposes of review.

[Ama84] AMANATIDES J.: Ray tracing with cones.
In Computer Graphics (SIGGRAPH ’84 Proceedings)
(1984), Christiansen H., (Ed.), vol. 18, pp. 129–135.

[DS00] DONGARRA J., SULLIVAN F.: The top ten algo-
rithms. Computing in Science and Engineering 2 (2000),
22–23.

[GAC08] GORADIA R., AJMERA P., CHANDRAN S.:
Gpu-based hierarchical computation for view indepen-
dent visibility. Accepted at ICVGIP, Indian Conference
on Vision, Graphics and Image Processing (2008).

[GD07] GUMEROV N. A., DURAISWAMI R.: Fast multi-
pole methods on graphics processors. Astro GPU (2007).

[GR87] GREENGARD L., ROKHLIN V.: A fast algo-
rithm for particle simulations. Journal of Computational
Physics 73 (1987), 325–348.

[Hau97] HAUNSNER A.: Multipole expansion of the light
vector. IEEE Transactions on Visualization and Computer
Graphics 3, 1 (Jan-Mar 1997), 12–22.

[LPC∗00] LEVOY M., PULLI K., CURLESS B.,
RUSINKIEWICZ S., KOLLER D., PEREIRA L., GINZTON

M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J.,
FULK D.: The digital michelangelo project: 3D scanning
of large statues. In Siggraph 2000, Computer Graphics
Proceedings (2000), Akeley K., (Ed.), ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, pp. 131–144.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK

c© The Eurographics Association .

Rhushabh Goradia & Prekshu Ajmera & Sharat Chandran /

G., SEIDEL H.-P.: Multi-level partition of unity implicits.
ACM Trans. Graph. 22, 3 (2003), 463–470.

[PKKG03] PAULY M., KEISER R., KOBBELT L. P.,
GROSS M.: Shape modeling with point-sampled geom-
etry. ACM Trans. Graph. 22, 3 (2003), 641–650.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: Surface elements as rendering primi-
tives. In Siggraph 2000, Computer Graphics Proceedings
(2000), Akeley K., (Ed.), ACM Press / ACM SIGGRAPH
/ Addison Wesley Longman, pp. 335–342.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A mul-
tiresolution point rendering system for large meshes. In
Siggraph 2000, Computer Graphics Proceedings (2000),
Akeley K., (Ed.), ACM Press / ACM SIGGRAPH / Addi-
son Wesley Longman, pp. 343–352.

[SJ00] SCHAUFLER G., JENSEN H.: Ray tracing point
sampled geometry. In Eurographics Rendering Workshop
Proceedings (2000), pp. 319–328.

[Wal05] WALD I.: High-Quality Global Illumination
Walkthroughs using Discretized Incident Radiance Maps.
Technical Report, SCI Institute, University of Utah, No
UUSCI-2005-010 (submitted for publication) (2005).

[WS05] WALD I., SEIDEL H.-P.: Interactive Ray Tracing
of Point Based Models. In Proceedings of 2005 Sympo-
sium on Point Based Graphics (2005).

c© The Eurographics Association .

