Visibility Map for Global Illumination in Point Clouds

R. Goradia¹ A. Kanakanti¹ S. Chandran¹ A. Datta²

¹Indian Institute of Technology, Bombay Mumbai, India {rhushabh, kanil, sharat}@cse.iitb.ac.in

²University of Western Australia Perth, Australia datta@csse.uwa.edu.au

2.12.2007

Overview

- Problem Definition
- 2 Visibility Map
 - What is a V-map?
 - Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

Overview

- Problem Definition
- 2 Visibility Map
 - What is a V-map?
 - Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

Problem Definition

Problem Statement

To compute a **Visibility Map** (*V-map*) for complex scenes represented as **point-models**, for the purpose of **global illumination**.

Application Domains

Visibility Between Point Pairs

View Independent Visibility calculation between point pairs is **essential** to give *correct* GI results as a point recieves energy from other point only if it is **visible**

GRAPHITE 2007 IIT-Bombay

Visibility Between Point Pairs

VISIBILITY IN POLYGONAL MODELS VISIBILITY IN POINT MODELS

Hierarchical Visibility

Hierarchical Visibility approach helps in achieving faster GI solution (eg. hierarchical radiosity).

Level 3 Level 2 Level 2						• . •		
• •	•		•	٠.		٠٠.	•	
				.∶.	•	٠:	•••	
:		·.	•••	:		•	: :	
٠.	·			••	:•			
•		٠٠.	••			٠.	··	
•		٠	•:			:•	•	

Model	Points (millions)	N ² links (millions)	V-Map Links (millions)	% Decrease	Memory(MB) N ² links	Memory(MB) V-Map links	Build V-Map Time(secs)
ECR	0.1	1.4	0.27	79.5%	5.35	1.09	20.6
PCR	0.14	3.85	0.67	82.62%	15.43	2.68	23.8
BUN	0.15	1.53	0.38	74.64%	6.09	1.5	21.7
DRA	0.55	2.75	0.43	84.54%	11.0	1.7	23.5
BUD	0.67	1.58	0.39	74.75%	6.33	1.6	23.9
GAN	0.15	1.56	0.38	75.64%	6.2	1.55	22.0
GOD	0.17	1.62	0.4	75.31%	6.4	1.63	22.9

- ECR Empty Cornell room
- PCR Packed Cornell room
- BUN Bunny in Cornell room
- DRA Dragon in Cornell room
- BUD Buddha in Cornell room
- GAN Indian God Ganesha in a Cornell room
- GOD Indian Goddess Satya in a Cornell room

Overview

- 1 Problem Definition
- 2 Visibility Map
 - What is a V-map?
 - Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

What is a V-map?

What is a Visibility Map (V-map)?

- The visibility map for a tree is a collection of visibility links for every node in the tree
- The *visibility link* for any node *p* is a list *L* of nodes
- Every point in any node in L is guaranteed to be visible from every point in p

Level 3 Level 2 Level 2		•	···			
Lev	<u> </u>	•	٠.		٠٠.	•
			٠:٠	•	٠:	٠٠.
: •	·. ·	•••	÷	•	٠.	•:
•			••	:•		
•	٠٠.	••			٠.	:
•	٠	۳.			÷	•

What is a Visibility Map (V-map)?

- The visibility map for a tree is a collection of visibility links for every node in the tree
- The *visibility link* for any node *p* is a list *L* of nodes
- Every point in any node in L is guaranteed to be visible from every point in p

What is a V-map?

What is a Visibility Map (V-Map)?

Visibility Map Queries?

Visibility maps entertain efficient answers to the following queries.

- 1 Is point x visible to point y?
- 2 What is the visibility status of *u* points around *x* with respect to *v* points around *y*?
 - lacktriangle Repeat a "primitive" point-point visibility query uv times
 - V-Map gives the answer with O(1) point-point visibility queries.
- **3** Given a point x and a ray R, determine the first object of intersection.
- 4 Is point x in the shadow (umbra) of a light source?

All the above queries are done with a simple traversal of the octree.

GRAPHITE 2007 IIT-Bombay

V-map Construction Algorithm

■ Initialize the o-IL of every node to be its seven siblings

V-map Construction Algorithm

```
procedure Octree Visibility (Node A)
for each node B in old interaction list (o-IL) of A do
    if NodetoNode Visibility (A,B) == VISIBLE then
        add B in new interaction list (n-IL) of A
        add A in new interaction list (n-IL) of B
    end if
    remove A from old interaction list (o-IL) of B
end for
for each C in children(A) do
    Octree Visibility (C)
end for
```

- V-map constructed by calling initially for the root, which sets up the relevant visibility links in n-IL
- NodetoNodeVisibility(A,B) constructs the visibility links for all descendants of A w.r.t all descendants of B (and vice-versa) at the best (i.e. highest) possible level. This ensures an optimal structure for hierarchical radiosity as well as reduces redundant computations.

GRAPHITE 2007 IIT-Bombay

V-map Construction Algorithm

GRAPHITE 2007 IIT-Bombay

Leaf-Leaf Visibility Algorithm

■ Consider centroid and **NOT** leaf center

Leaf-Leaf Visibility Algorithm

Leaf-Leaf Visibility Algorithm

- Distance **R** is unique for each leaf and depends on distribution of points in the leaf (**R** is not a user-input)
- Imposing a strict visibility condition balances the leniency introduced
- Faster, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of averaged normals) only for the leaves. There are no average normals defined for internal nodes of the tree.

Point Pair Visibility

Finding Potential Occluders using bresenham line algorithm

Computational Complexity

- Assume $N = \Theta(n^2)$, n = points in input model.
- \blacksquare Visibility problem provides answer to N pairwise queries. Hence we measure the efficiency w.r.t N
- Octree Visibility has the recurrence: T(h) = 8T(h-1) + N (for a Node A at height h)
- Complexity for *NodetoNodeVisibility(A,B)* is determined by the calls to point-pair visibility algorithm
- Assuming the latter to be O(1), the recurrence relation for the former is T(h) = 64T(h-1) + O(1).
- lacktriangledown The overall algorithm consumes a small amount of memory (for storing M) during runtime.

Overview

- 1 Problem Definition
- 2 Visibility Map
 - What is a V-map?
 - Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

Quantitative Results

Model	Points (millions)	N^2 possible links (millions)	V-Map Links (millions)	% Decrease	$\begin{array}{c} {\sf Memory}({\sf MB}) \\ N^2 \ {\sf links} \end{array}$	Memory(MB) V-Map links	Build V-Map Time(secs)
ECR	0.1	1.4	0.27	79.5%	5.35	1.09	20.6
PCR	0.14	3.85	0.67	82.62%	15.43	2.68	23.8
BUN	0.15	1.53	0.38	74.64%	6.09	1.5	21.7
DRA	0.55	2.75	0.43	84.54%	11.0	1.7	23.5
BUD	0.67	1.58	0.39	74.75%	6.33	1.6	23.9
GAN	0.15	1.56	0.38	75.64%	6.2	1.55	22.0
GOD	0.17	1.62	0.4	75.31%	6.4	1.63	22.9

Overview

- 1 Problem Definition
- 2 Visibility Map
 - What is a V-map?
 - Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure we propose enables efficient answer to common rendering gueries
- In this paper, we have given a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown
- If analyzed properly, the visibility algorithm is *embarrassingly parallel*

e been shown
gly parallel

GRAPHITE 2007 IIT-Bomba

Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk.

The digital michelangelo project: 3D scanning of large statues.

In Kurt Akeley, editor, *Siggraph 2000, Computer Graphics Proceedings*, pages 131–144. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

Marc Levoy and Turner Whitted.

The use of points as a display primitive.

Technical Report TR 85-022, University of North Carolina at Chapel Hill, 1985.

Thank you for your time!

Questions?

GRAPHITE 2007 IIT-Bombay