
Real Time Ray Tracing of Point-based Models

Sriram Kashyap Rhushabh Goradia Parag Chaudhuri Sharat Chandran
Indian Institute of Technology Bombay

Web: www.cse.iitb.ac.in/∼{kashyap,rhushabh,paragc,sharat}

Figure 1: Point-based rendering of (a) Dragon. (b) Buddha in a reflective room. (c) David with self shadows. (d) Memory footprint reduction

ABSTRACT: Mirroring the development of rendering algorithms
for polygonal models, z-buffer style rendering for point-based mod-
els has given way recently to more advanced methods. A fast ray-
casting based approach [Wald and Seidel 2005] shows shadows,
but does not demonstrate reflective effects. The more general ray-
tracing approach [Linsen et al. 2007] is substantially slower.

We advance the state of the art by ray tracing point models in real
time. Our system relies on an efficient way of storing and accessing
point data structures on the GPU. We hope that this leads the way
for future work towards more realistic global illumination effects
including soft shadows, simultaneous reflection & refraction, and
caustics.

INTRODUCTION: Our ability to generate data has increased tremen-
dously. Three dimensional scanning can result in point-based mod-
els that may need to be rendered “as is” interactively, without resort-
ing to surface representations. Since points are zero-dimensional
entities, earlier rendering algorithms focused on ensuring hole free
rendering. Only recently do we find methods that attempt to mimic
the reflection associated with specular models that we take for
granted in polygonal models. Unfortunately these methods do not
satisfy, simultaneously, both conditions: realism attributed to re-
flection, and real time behaviour. For example, only shadow rays,
and no secondary rays are considered in the ray traced renderings
in [Wald and Seidel 2005].

CONTRIBUTIONS: Leveraging on the parallelism in GPUs, we
present a real time raytraced point based renderer that, to the best
of our knowledge, outperforms all previous methods, and still show
complex reflective effects.

Hierarchical culling is a must in ray tracing. While the GPU is
an eminent parallel workhorse, current methods do not support dy-
namic memory management, and recursion. Prior GPU-based oc-
tree methods [Rhushabh et al. 2008] impractically assume that all
leaves are at the same height. Further, since rays cannot inter-
sect zero-dimensional points, some sort of “expansion” of the data
is needed for visibility tests. These challenges are met with our
lightweight, memory efficient, variable height octree texture design.

COHERENT REPRESENTATION: Inspired by prior work to incorpo-
rate visibility, we represent each point as a splat with position, non-
zero radius, normal, and material properties in a 1D GPU texture.
Splats are stored in a non-complete full octree (similar to [Lefeb-
vre et al. 2005]): every internal node in the octree has exactly 8

children. If a node is not divided, and if it does not have any splat
centers in it, it is an empty leaf. Otherwise it is a filled leaf. These
texture arrays along with the fact that all 8 children of a node are
grouped together is our first component in providing coherency, and
reducing thread latency.

MEMORY FOOTPRINT: It is natural to store several points, and thus
splats per leaf node, reminiscent of variable height octree. How-
ever, a consequence of using splats with non-zero radii will imply
that multiple splats may need to be stored in all leaf nodes that they
intersect. This results in about 10× expansion in memory that un-
duly burdens the GPU. We optimize by eliminating unnecessary
splats. Intuitively, a splat in a leaf is considered unnecessary if, for
example, a secondary ray hits another splat that also occupies the
same leaf.

We first add splats to a leaf when the splat center intersects the leaf.
Such a splat is a “member” splat. Next, we tentatively add other
splats that intersect the given leaf. We now send probe rays into the
leaf from various directions (Fig. 1(d)). If a ray does not intersect
any member splat, we check other splats. Finally, we retain only
those tentative splats that intersected at least one ray. This brings
down the memory expansion from 10× to 3×.

RESULTS: All our images are 512 × 512 with 4x supersampling
and created on a 1.86 Ghz Intel Core 2 Duo with an nVIDIA GTX
275. We consciously demonstrate results on point-based versions
of standard polygonal models to enable quality comparison. The
dragon with 3.8 million points is rendered at 4 fps with upto 10
secondary ray bounces and 4 shadow casting lights. Buddha is ren-
dered at 12 fps with 10 secondary ray bounces. David (1 million
points) is rendered at 80 fps using local illumination and 55 fps with
shadows, as compared to 10 fps and 4 fps respectively, in [Wald and
Seidel 2005]. With only Phong shading, we get 114 fps.

References
LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. GPU Gems 2. Addison Wesley,

ch. Octree Textures on the GPU, 595–614.

LINSEN, L., MULLER, K., AND ROSENTHAL, P. 2007. Splat-based ray tracing of
point clouds. In Journal of WSCG, 51–58.

RHUSHABH, G., PREKSHU, A., SHARAT, C., AND SRINIVAS, A. 2008. Fast, par-
allel, gpu-based construction of space filling curves and octrees. In Poster in I3D
’08: The 2008 Symposium on Interactive 3D graphics and games.

WALD, I., AND SEIDEL, H.-P. 2005. Interactive Ray Tracing of Point Based Models.
In Symposium on Point Based Graphics.


