
GPU-based Adaptive Octree Construction Algorithms

Abstract

With rapid improvements in the performance and pro-
grammability, Graphics Processing Units (GPUs) have
fostered considerable interest in substantially reducing
the running time of compute intensive problems, many of
which work on fundamental octree based clustering. Par-
allelizing the construction of octrees is thus of immense
importance with respect to its applicability.

This paper presents two different ways for construct-
ing octrees on GPUs and reports average speed-ups of
100 than their CPU counterparts. We evaluate our al-
gorithms qualitatively and quantitatively and finally use
them in a compute-intensive problem of finding radiosity
based Global Illumination solution for point models using
the Fast Multipole Method as a proof of its correctness
and applicability.

1 Introduction

Octree is one of the numerous hierarchical data
structures, based on recursive domain decomposition
used to cluster spatial data (for brevity, we assume points)
in meaningful groups. Octrees have applications in vast
majority of fields which are computationally intensive or
problems which require quick response. More concretely,
consider the application areas enlisted below.

SCIENTIFIC COMPUTING [1] The n-body problem is the
problem of finding, given the initial positions, masses,
and velocities of n bodies, their subsequent motions as
determined by classical mechanics. Direct simulation
is often impossible; Classic algorithms such as the Fast
Multipole Method or the Barnes-Hut simulation, use the
hierarchical octree structure to divide the volume into
cubic cells, so that only particles from nearby cells need
to be treated individually, and particles in distant cells
can be treated as a single large particle centered at its
center of mass (or as a low-order multipole expansion).
Using the hierarchical structure and spatial indices can
thus dramatically reduce the number of particle pair
interactions that must be computed.

VISIBLE SURFACE DETERMINATION [8, 7, 5] It is
the process used to determine which surfaces and parts
of surfaces are not visible from a certain viewpoint

(view-dependent) or from all points in the model (view-
independent). They make use of octrees to subdivide the
scene’s space for visibility determination to be performed
hierarchically: Effectively, if a node in the tree is con-
sidered to be invisible then all of its child nodes are also
invisible, and no further processing is necessary.

COLOR QUANTIZATION FOR IMAGES It is a process
used for efficient compression that reduces the number
of distinct colors used in an image with the intention
that the new image should be as visually similar as
possible to the original image. It can be viewed as a
data-clustering problem where the points represent colors
in the original image and the three axes represent the
three color channels. The representative color of each
cluster can be used for the output image. Octrees are an
ideal solution for performing such clustering.

COLLISION DETECTION Highly used in physical simu-
ations and video games, this algorithm requires to have
real-time response. Object-based sub-division of space
using octrees helps to check collisions directly for
complex objects (as whole) rather than for each basic
primitive used (for constructing that object) and thereby
help speed-up the process.

Construction and traversal of the ubiquitous octree on a
CPU is well understood. However, parallelizing the con-
struction and traversal of such octrees can provide very
high speed-up gains for such compute-intensive problems.

GPUs have evolved into a very attractive [10] hard-
ware platform for general purpose computations due to
their extremely high floating-point processing perfor-
mance, huge memory bandwidth and their comparatively
low cost. This paper is concerned with constructing
octree on the GPU. A parallel implementation of octree
on GPU appeared in [3] which improved on the previous
algorithm of [9]. However, a complete octree (

∑l
i=0 8i,

where l represents the maximum depth) with empty nodes
is stored in [3], there making them memory-inefficient.

PRINCIPAL CONTRIBUTIONS:

1. We present an algorithm to construct octrees, in par-
allel, on the GPU, using CUDA. It performs data-
independent clustering of points (useful in N-body
simulations) and report upto 100 fold speed-up. Ba-
sic queries are suitably answered.



2. A different, data-dependent parallel octree construc-
tion algorithm (used for color quantization, collision
detection, visibility determination etc) is given and
100 fold speed-ups reported.

The rest of the paper is organized as follows. For com-
pleteness, a brief overview of the NVIDIA’s G80 GPU
and CUDA is given in § 2. Details of SFCs and com-
pressed octree are outlined in §3 which are useful for data-
independent parallel octree construction algorithm pre-
sented in §4. The data-dependent parallel octree construc-
tion algorithm appears in §5. §?? summarizes the use-
fulness of both our algorithms with respect to its appli-
cability. Quantitative and qualitative results along with
some run-time GPU based optimizations are explained in
§ 6. We follow this up with some concluding remarks and
work to be done in future in § 7.

2. GPU Programming Model
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Figure 1. Hardware Model of GPU

NVIDIA’s G80/G92 architecture GPUs are typical of
current generation graphics hardware which uses a large
number of parallel threads [2] to hide memory latency.
Programs are written in C/C++, with CUDA specific ex-
tensions. A program consists of a host component exe-
cuted on the CPU, and a GPU component. The host com-
ponent issues bundles of work (GPU kernels) to be per-
formed by threads executing on the GPU. Threads are or-
ganized as a grid of thread blocks and are run in parallel.
A typical computation running on the GPU must express
hundreds of threads in order to effectively use the hard-
ware capabilities.

The G80 (Fig. 1) has N = 16 multiprocessors operat-
ing on a bundle of threads in SIMD fashion. All multipro-
cessors can talk to a large (320MB) global device mem-
ory (shown in blue). In addition, a set of 8192 registers
per multiprocessor, and a total constant memory of 64kB
are available. The M = 8 processors within each multi-
processor share 16kB of fast read-write “shared” memory
(shown in red). This memory is (ironically) not shared
with other (processors) in other multiprocessors. The
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Figure 2. Z-Space Filling Curve

memory access times vary considerably for these different
types of memory. From the programmers perspective, the
code executing on the GPU has a number of constraints
that are not imposed on host code; the major ones being
no support for dynamic memory allocation and recursion
in the kernel code.

In summary, we need to design our parallel algorithm
to have large number of threads, use shared memory
wisely, and get around programming constraints.

3 SFC and Compressed Octree

SPACE FILLING CURVES: SFC provides an easy to im-
plement, parallelize and a good load-balanced domain de-
composition technique useful in linearization of data liv-
ing in 2D or 3D spaces.

Say, our spatial data lies in some d dimensional hyper-
cube. This hypercube if bisected k times recursively along
each dimension, results in 2dk non-overlapping hypercells
of equal size. The SFC is a mapping of these hypercells
to a 1-D linear ordering. We use a 2-D Z-SFC as shown in
Fig. 2(a). Fig. 2(b) shows 10 points in a 2-D space which
are sequentially labeled in the Z-SFC order.

Consider a 3-D particle space of sidelength D and
let its bottom left corner be at the origin. Given
a point (Px, Py, Pz) in the model, the integer co-
ordinates of the cell to which it belongs will be
(b2kPx/Dc, b2kPy/Dc, b2kPz/Dc) [3]. The Z-SFC
index of the cell is now computed by representing these

Problem Statement

 Given a cube bisected k times recursively along each
dimension, and a set of points in the cube, generate a Space
Filling Curve (SFC) to map each of the voxels to a 1-D linear
ordering, in parallel on the GPU

 Construct, in parallel, nodes of the octree representing the
points. Also support parallel queries

Motivation

 Spatial Domain Decomposition (SDD) refers to the
process of spatially partitioning the domain of the problem
across processors in a manner that attempts to balance the
work performed by each processor while minimizing the
number and size of communication

 SFC is a key SDD method

 Application : SDD is  a first 
step in many particle based 
methods. In graphics, a triangular
element can be represented by its 
centroid.  In the picture [2] on the
right, the surface of the dragon is
represented by points intersecting
a cubic grid cell.

 Octrees are useful in organizing the
resultant point set

Prior Work

 Octrees are represented in the GPU as indexes in a texture[2]

 However, the resulting top-down structure is intrinsically
sequential. A bottom up representation (using SFC) can make
use of large number of parallel GPU threads

Contributions

 First parallel SFC construction algorithm on GPU

 Fast, parallel octree on GPU supporting
 Parallel Post Order Traversal
 Parallel Nearest Neighbor
 Parallel Range Queries
 Location of the cell containing the queried point
 Least Common Ancestor of two cells

Fast, Parallel, GPU-based Space Filling Curves and Octrees
Prekshu Ajmera, Rhushabh Goradia, Sharat Chandran, Srinivas Aluru

Department of Computer Science & Engineering, IIT Bombay

Space Filling Curve (SFC)

A d dimensional hypercube bisected k times recursively along each
dimension, results in 2dk non-overlapping hypercells of equal size.
The SFC is a mapping of these hypercells to a 1-D linear ordering.
We use the z-SFC shown below

On the left we show a 2-D z-SFC. On the right we show 10 points in
a 2-D space. The points are sequentially labeled in the z-SFC order.

Merit of SFC ordering: Partitioning points as per SFC order
ensures load balancing. Also, as important we have data
ownership, i.e., implicit knowledge of where each point lives

GPU-based Parallel SFC Construction Algorithm

1. Consider a 3 dimensional particle space of side length D and
let its bottom left corner be at the origin

2. In parallel do,  
For resolution k, integer coordinates of a cell having a point
P(Px, Py, Pz) is ( , , )

3. Allocate 8k threads .  In parallel do
Interleave each of the k bits of a cell coordinate starting
from the first dimension to form a 3k bit value. For example,
SFC value of a cell with coordinates (3, 1, 2) = (11, 01, 10) is
101110= 46

SFC& Octrees

 If the computed SFC values
(at any fixed resolution) 
are sorted, then we have
the correct order to 
consider nodes in a 
bottom up traversal 
of an octree

 Octrees can be viewed
as multiple SFCs at
varying resolutions

 A linear bottom up 
octree construction is  therefore 
easy if we follow the SFC order

Construction of Parallel Octree

 Removing the least d bits
from the value of a cell
gives the value of its
parent

 Value of parent cell  can be 
computed  independently 
in parallel

GPU-based Parallel Octree Construction Algorithm

Input : SFC based sorted ordering of cells at resolution k
Output : An Adaptive Octree (Leaves present at different levels)

1. Allocate L0, L1, …, Lk arrays of sizes 80, 81, …, 8k respectively 
2. Loop for i=k to i=1

a. Allocate 8i-1 threads
b. Each thread checks 8 elements in Li from SFC ids

(8*Threadid ) to (8*Threadid +8)
c. If all 8 elements are empty then make all the elements

NULL and their PARENT at level Li-1 as leaf (The 3-D
position of the parent of a node in the upper layer can
directly be calculated from the 3-D position of the child )

Note: Implementation is highly data parallel with zero
communication between the GPU threads

Typical Queries

We use the bit representation of SFC values

 Is node C1 contained in node C2 ?

C1 is contained in C2 if and only if the SFC value of C2 is a prefix of
the SFC value of C1

 Given C2 as a descendant of C1, return child of C1

containing C2

For dimension d and level l, dl is the number of bits representing C1.

The required child is given by the first d(l + 1) bits of C2

What is the Least Common Ancestor of nodes C1 & C2 ?

The longest common prefix of the SFC values of C1 and C2 which is
a multiple of dimension d gives us the least common ancestor

Note: Computation is directly done on SFC values. Therefore
performance loss due to many threads accessing the same node
will not occur even if there are multiple queries

 Post Order Traversal

For each node in parallel do
1. Compute post order number (PONA) in a notional non-

adaptive tree (this is an O(1) computable formula)
2. Lookup previously computed number of empty nodes (NE)

from a set of nodes that occur before the node in question
3. is the final post order number of the node in

question

Results

Results were generated on an AMD Opteron 2210, 64-bit dual core  
CPU  & nVidia 8800 GTS using CUDA [3]. GPU timings in charts 
does not include data copy time from CPU to GPU. 

Similar results were obtained for parallel computation of finding

● Near neighbors for n points

● Locations in the octree of n query points

We observe that if the problem size is large, GPU vastly
outperforms the CPU

Future Work
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Applying the SFC-based constructed parallel octree to an N-body
problem for the Global Illumination solution in point models [4]
using the Fast Multipole Method on GPU
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Figure 4. (a) Octree, (b) Compressed Octree

integer coordinates using k bits for each dimension and
interleaving these bits. (The SFC index of, e.g. a cell with
coordinates (3, 0, 2) = (11, 00, 10) is 101100).

If the computed SFC values (at any fixed resolution)
are sorted, then we have the correct order to consider
nodes in a bottom up traversal of an octree. Octrees can
thus be viewed as multiple SFCs at varying resolutions
(see Fig. 3). Further, removing the least d bits from the
value of a cell gives the value of its parent. A linear bot-
tom up octree construction is therefore easy if we follow
the SFC order. A nice property that follows is the result-
ing linearization of all cells in an octree (or compressed
octree (please refer below)) sorted by the SFC order gives
us its postorder traversal. For more information on SFCs,
we guide the reader to [11].
COMPRESSED OCTREES: In octrees, if the manner in
which any subregion is bisected is independent of the
specific location of the points within it, chains may form
when many points lie within a small volume of space. An
example of a chain formed due to close points labeled 8
and 9 is as shown in Fig. 4. These points can be separated
only after several recursive subdivisions. Though nodes
in these chains represent different volumes of the under-
lying space, they do not contain any extra information and
hence can be compressed, thereby forming a compressed
octree – an octree without chains.

Note that each node in a compressed octree is either a
leaf or has at least two children. This ensures that every
internal node is a Least Common Ancestor (LCA) of some
leaf-pair, a property which is useful for our parallel octree
construction algorithm of § 4. For more information on
compressed octree please refer [4].

4 Parallel Bottom-Up Adaptive Octree

We present the parallel, data-independent, bottom-up
SFC based octree construction algorithm along with some
implementation details. For brevity we assume that the
data of interest is available as points in a domain. For
eg., these could be the points belonging to some 3-D point
model of say, a Stanford bunny, or might represent cen-
troids of triangular patches of some 3-D mesh. We make
no assumption on the number of points in the model.
However, memory limitations of the GPU might possibly

result in multiple points within a cell. Before heading on,
here are some of the intuitions behind the algorithm de-
sign.

1. BOTTOM-UP TRAVERSAL: Since every internal
node in an octree has leaves in its subtree, given
the leaves we can somehow decode this hierarchi-
cal inheritance information and generate the internal
nodes.

2. PARALLEL STRATEGY: Each internal node can be
considered as a LCA of some particular leaf pairs (in
a compressed octree). Thus, given the leaves, gener-
ation of internal nodes can be parallelized since each
of them can be generated independently from a leaf
pair. Many leaf pairs might have the same LCA node
resulting in duplicates which can be easily detected
and removed.

3. Parent-Child relationship can be established and oc-
trees can be generated from a given compressed oc-
tree using SFC indices across multiple levels.

The algorithm, with the help of Fig. 5, along with the im-
plementation details is presented next.

1. CONSTRUCTING LEAVES

(a) Read n points in the first n locations of an array
A of size 2n−1. As shown in Fig. 5(a), we have
8 input points in this example.

(b) Assuming a point per leaf, for every point, in
parallel, do

i. Generate the 3D co-ordinate of leaf cell to
which it belongs (§3).

ii. Generate SFC index (§3) for the leaf cell
as shown in Fig. 5(a). For in-depth par-
allel GPU based SFC construction algo-
rithm, please refer [3].

(c) Sort [6] the first n elements of array A,
in parallel, based on SFC indices of leaves
(Fig. 5(b)).

2. GENERATING INTERNAL NODES & POST ORDER:
In Parallel, for every adjacent leaves, find their LCA
using the common bits (multiple of 3; 3 being the
dimension) in their SFC indices. For eg. say ad-
jacent leaves L1 and L2 have their SFC indices as
100 101 1100 10 and 100 101 100 001 respectively,
then the LCA is the internal node having SFC index
100 101

(a) Allocate n− 1 GPU threads.

(b) For every two adjacent leaves (say at locations
i and i + 1) in array A, in parallel, generate the
internal node and store it at location n + i in
array A (Fig. 5(c)).
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Figure 5. Algorithm 1

(c) Sort [6], in parallel, the internal nodes gener-
ated, across levels based on their SFC indices.
To do the same, we need to establish a total or-
der on the cells across levels. If one is contained
in the other, the subcell is taken to precede the
supercell; if they are disjoint, they are ordered
according to the order of the immediate sub-
cells of the smallest supercell enclosing them.
Fig. 5(c) shows sorted internal nodes with du-
plicates (N2 and N3) which might be gener-
ated.

(d) Allocate n− 2 threads for a maximum of n− 2
consecutive internal node pairs in the later half
of array A to remove the duplicates.

(e) For every two adjacent internal nodes not hav-
ing same SFC indices, in parallel, traverse
back in the later half of array A starting from
the current node to look for its duplicates and
eliminate them (Remove node N3 as shown in
Fig. 5(d)).

(f) Sort array A, in parallel, based on SFC indices
across levels to get the postorder traversal of a
compressed octree (§3). (Fig. 5(e)).

Here we note that there might be some empty ele-
ments at the end of array A after sorting (the gray
shaded area in Fig. 5(e)). We can not avoid this sit-
uation since CUDA does not support dynamic mem-
ory allocation and deallocation. So, an array of max-
imum required size (2n − 1) has to be declared at
compile time only.

3. PARENT-CHILD RELATIONSHIP: The compresed
octree represented by this post-ordered array A is
shown in Fig. 5(f). The tree is shown only for the pur-
pose of illustration as the parent-child relationships
are still not established. To generate the parent-child
relationship in the compressed octree, an intuition
would be since the tree is in the post order fashion,
a LCA of every two adjacent nodes would definitely
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be the parent of the first node in the pair considered.
Three possible cases are shown in Fig. 6.

Fig. 6(a) shows a case where both nodes A and B
are siblings. Hence the LCA is the parent of A i.e.
C. Fig. 6(b) is a case where B is the first node in
the post-order fashion in the subtree of the node N ,
adjacent to A. Again their LCA i.e. C is the parent
of A. Third case shown in Fig. 6(c) is where, given
two adjacent nodes in post-order fashion, node B is
the parent of A. Hence their LCA is B.

Thus, considering every two adjacent nodes in post-
ordered compressed octree, and generating their
LCA gives us the SFC index of the parent of the first
node in the pair, thereby establishing the parent-child
relationship. Here are the implementation steps per-
fomed on GPU (Fig. 5(g)).

(a) Allocate an array B twice the size of the num-
ber of leaves and internal nodes (atmost 4n−2).
Copy the first half of array B with the current
post-ordered array A of leaves and nodes.

(b) Allocate threads one less than the
(NumberOfLeaves + InternalNodes).

(c) For every two adjacent nodes in the first half of
array B, in parallel, do

i. Generate the LCA from the SFC indices.



ii. Copy the new node (copy of the parent of
the first node in the pair considered) into
the corresponding location in second half
of the array B. (Generated copies of the
nodes are shown in green in Fig. 5(g)).

iii. Write in this new node, the SFC index of
the first node of the node-pair which gen-
erated it, along with the location of that
node in array A. This location information
will eventually give the index of the child
this parent node-copy was generated from.
Fig. 5(g) shows an example of the same.
We expand the copy-node N1 (in black)
generated by leaves 1 and 3 (both shaded
in black) and show the information it stores
(Information box shaded in orange).

(d) Sort array B across levels, in parallel based on
newly generated SFC indices. All the parents
and their copies will come together (Fig. 5(h)).

(e) For every two adjacent nodes both having same
SFC indices and atleast one of them not being
a generated copy, in parallel, do

i. Establish the parent-child relationship.
Here we see that one of the nodes is the
original node and another is its copy (gen-
erated in step 3(c)(ii)). The copy will give
the location of the child in array A while
we get the location of the parent from the
original (Fig. 5(g) and Fig. 5(h)).

ii. Scan ahead in array B and repeat step
3(e)(i) for all the copies of the original to
establish the relationship between the par-
ent and all its children. Step 3(e)(i) will be
repeated atmost 7 times since in an octree,
a parent can have atmost 8 children. Refer-
ring Fig. 5(h) and Fig. 5(i), step 3(e)(i) will
be repeated twice for N1 since we have
two generated copies (and hence two chil-
dren) of it. Similarly step 3(e)(i) will be re-
peated twice for N4, N2, N6 and N7 while
thrice for N5 since it has 3 children.

4. CREATING OCTREE FROM COMPRESSED OCTREE:
We now move on to the final step of our algorithm
where we need to generate octree from compressed
octree. Consider two adjacent nodes, say A and B
with A being the child of B, calculate the difference
of octree depths between the two using their SFC in-
dices, and finally add those many intermediate nodes
in the chain between A and B. For eg. if A and B
have SFC indices as 100 110 010 011 and 100, then
the level difference is 3 (B is at depth 1 while A at
depth 4, assuming root at depth 0).

This difference indicates a chain of nodes between A
and B which are missing in the compressed octree,
as shown in Fig. 7. This chain can now easily be
generated, thereby giving us the final octree. The
implementation steps are summarized below.
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(a) Allocate threads equal to size of current array
A i.e. (no. of leaves + no. of internal nodes).
Array is in post-order fashion.

(b) For every node calculate the level difference
w.r.t its parent i.e. (level of node - level of par-
ent - 1). This level difference gives us the count
of memory needed between these two nodes.

(c) Do parallel prefix [6] on the level differences
calculated in the step above and store at each
location in A to get the total amount of mem-
ory needed to insert the internal nodes so as to
make an octree (due to no support for dynamic
memory allocation on GPU). While doing par-
allel prefix, keep track of number of nodes to
be inserted before the current one, so that the
index or the array location for the new node to
be inserted can directly be identified.

(d) Allocate required memory for new nodes.

(e) Allocate threads equal to the size of current ar-
ray A minus 1.

(f) In parallel, check for every node having a level
difference greater than 1 with its parent, and
generate new nodes to be inserted after the cur-
rent node. Write them in the array location de-
cided in step 4(c) above. As shown in Fig. 5(j),
we add two chain nodes CH1 and CH2 be-
tween N4 and 4 to get a complete octree as
shown in Fig. 9.

DISCUSSION Maximum memory required for implemen-
tation is just 4n − 2 for storing array B. It is far less
than occupied by octree implementation in [3]. Our im-
plementation is slightly slower than one presented in [3].
However, the advantage we gain due to high memory sav-
ing out-peforms the timing comparisions between them.
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Figure 8. Spatial Clustering of Points

Further, we easily win against the same algorithm imple-
mented on the CPU. It is a nicely load-balanced algorithm
as each thread does almost the same amount of computa-
tions through out the algorithm. Here are some example
queries our octree supports and solution for the same.
PARALLEL POST-ORDER TRAVERSAL: Since our output
is in post-ordered form, this query is implicitly answered.
PARENT-CHILD RELATIONSHIP: For dimension d and
level l, if dl is the number of bits in the SFC index rep-
resenting child C1, then the parent can be directly given
by its first d(l − 1) bits.
GIVEN A POINT (Px, Py, Pz ), FIND WHICH NODE IT
BELONGS TO: The co-ordinates of the desired node are
(b2kPx/Dc, b2kPy/Dc, b2kPz/Dc), where k is the
number of times the space has been bisected and D is the
sidelength of space enclosing all points in the model.
IS NODE C1 CONTAINED IN NODE C2? C1 is contained
in C2 if and only if the SFC value of C2 is a prefix of the
SFC value of C1

GIVEN C2 AS A DESCENDANT OF C1, RETURN CHILD
OF C1 CONTAINING C2 For dimension d and level l , dl
is the number of bits representing C1.The required child
is given by the first d(l + 1) bits of C2.
LEAST COMMON ANCESTOR OF NODES C1 AND C2:
The longest common prefix of the SFC values of C1 and
C2 which is a multiple of dimension d gives us the least
common ancestor.

Many other such basic queries (like Neighbor Finding,
Leaves in a node’s sub-tree etc.) can be supported.

5 Parallel Top-Down Adaptive Octree

We now look at a new and quite a different way to gen-
erate an octree in parallel. The problem setting is same as
that in §4 but as opposed to algorithm of §4, this is a top-
down parallel adaptive octree generation algorithm. The
intuition behind this algorithm is to iteratively cluster the
points belonging to the same node together, starting from

the root till we construct the leaves. As each cluster gen-
eration is independent of the other, on each iteration, the
cluster generation process can be parallelized. An exam-
ple to explain the same is shown in Fig. 8.

Here in Fig. 8(a), we see an array of points enclosed
in some space. We now try to cluster these points based
on their locations with respect to nodes of the octree. As-
sume the space enclosing the points to be the root of the
octree. We now divide the root into its children as shown
in Fig. 8(b). Here we see that points 1, 3, 8 belong to
child N1 of root, points 7, 9 belong to child N2 and so
on. Hence we swap these points accordingly in the array
(Implementation fact: we swap the pointers, not the actual
data) so that they cluster together as shown in the array of
Fig. 8(b). We iteratively repeat this process till we have
less than some pre-defined points (2 as in Fig. 8) in a node
and term it as a leaf. Fig. 8(c) shows this recursion and
the final point array after all the swaps. The octree nodes
generated now just need to store the start and end bounds
defining their cluster of points in the point array. For eg.,
node N1, as shown in Fig. 8, stores its start bound as array
location 0 and end bound as 2, while node N4 stores them
as 9 and end bound as 11. Further, node N34, child on N3,
stores bounds as 7 and 8 and so on for all the nodes.

Here we move down level by level, starting from the
root. This intuition on building the octree can easily be
extended to a parallel algorithm as each of the partitions
per iteration can be generated in parallel. Hence, initially
for the root we have a single thread generating 8 new par-
titions corresponding to 8 of its children. We then have
maximum of 8 threads generating maximum of 64 new
partitions corresponding to 64 grand-children on the root
(maximum of 8 because some nodes might turn to leaves
and won’t be divided further and their thread stops); then
maximum of 64 threads for the next level and so on. The
degree of parallelism increases as we move down to the
greater depths of the octree generation process. The algo-
rithm with implementation details is as sketched below.
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Figure 10. Spatial Clustering of Points

1. Read points in an array P of size n.

2. Initialize the root node of the octree as containing all
points of P . Set the bounds defining cluster of points
belonging to the root as 0 and n− 1.

3. Now loop on current step

(a) Allocate threads equal to the number of parti-
tions. (Num Threads = 1 initially for the
root and then increases as we iterate)

(b) For every thread, in parallel, do

i. STOP the thread if the current partition is
a leaf.

ii. ELSE, create 8 new partitions and 8 new
octree nodes. Record the respective parti-
tion bounds in the nodes created. To create
8 new partitions, we first divide the current
partition along the longest axis (can be any
of x, y or z) and swap the points belong-
ing to one side of the partition with another
as shown in Fig. 10(a). We then repeat the
same process and divide the 2 new parti-
tions along the second longest axis, as in
Fig. 10(b), and finally along the third. For
purpose of illustration, we have shown par-
titioning a quadtree instead of an octree.

(c) STOP looping when every thread encounters a
leaf and hence no new partitions are generated.

Here are some of the implementation details.

MEMORY ALLOCATION: Every iteration of the algorithm
creates many different number of new partitions and oc-
tree nodes. We need to allocate memory to store this
new information. The problem arises here because GPU
doesn’t allow for dynamic memory allocation. A way to
get around this is to allocate maximum possible mem-
ory. But this eventually leads to storing the whole tree
(80 + 81 + 82 + ... + 8l) till level l, and there by wasting
lot of memory [3]. A better solution is to pre-compute, in
the current iteration, the number of nodes which will be
generated at the next iteration. We can thus allocate only
the desired memory before the next iteration starts.

This can be achieved by setting a global Num Leaves
variable. This will be used to count the leaves which are

17 2 2 4 7 7 6 5

leaf1 leaf2

17 19 21 25 32 39 45 50(a)

(b)
points per 
partition

point 
partitioning

Figure 11. Partition Array of a Node

formed in the current iteration and hence these won’t
be partitioned further. Every thread, after creating the
partitions, checks whether any of the 8 partitions is a leaf.
If YES (For eg. 2 of the 8 are leaves) it increments the
global Num Leaves variable by those many leaf-counts
(For eg. Num Leaves+=2). We use atomic increments
available in latest G92 GPUs so that every thread incre-
ments it by a desired amount and the final outcome is the
total number of leaves at current level. The new global
memory allocated then would be (Nodes at current level
- Num Leaves)*8 (8 here refers to the 8 new partitions
generated by each thread).

INDEXING MECHANISM: We know that the partitions
generated by the iteration will be partitioned further in the
next iteration, provided they don’t represent a leaf. Thus,
there might be threads which are stopped as they represent
a leaf. Hence, a proper indexing and offset mechanism
must be installed so that the threads know where to write
the new partitions in the global array, as shown in Fig. 11.

We have a 8 threads operating on Noden containing
50 points. Let Node1, Node2, . . . Node8 be the children
of Noden. As in Fig. 11, points 1− 17 belong to Node1,
18 − 19 to Node2 and so on. Let us assume that a leaf
is formed when the node has 3 or less points. Thus
Node2 and Node3 are leaf nodes. Hence the memory
allocated for next iteration is (8 − 2) ∗ 8 = 48 for 48
new partitions. So thread0 will write its 8 partitions at
locations 1 − 8, thread1 at 9 − 16 and so on. But since
Node2 and Node3 are leaves, thread3 will now write the
new partitions at locations where thread1 was suppose
to write i.e. 9 − 16 and the remaining threads will follow
the offset. So every node must know how many leaves are
present before itself in the array. One can find this using
a simple parallel prefix sum [6] on the array. Thus, the
new location to write new partitions is, say for node A is
(original location to write - 8*Number of leaves before
A). This gives a unique indexing for every thread and
memory is allocated only as much as desired.

PARENT-CHILD: This relation is established while parti-
tioning as each child partition is generated from its parent,
thereby giving us our final octree.
DISCUSSION Maximum memory required for implemen-
tation is just equal to storing non-empty octree nodes, very
less compared to [3]. However, it looses w.r.t time when
compared to [3] but is very fast compared to the CPU
implementation. As it performs data-dependent cluster-
ing, it generates a different octree compared to our first
implementation. Thus they have different application ar-
eas(§ 1) and hence we dont compare them against each



other. Parent-Child, containment, range, and neighbor-
finding are some example queries which it can answer.

6. Results and GPU optimizations

In this section we compare our implementation of oc-
tree on the GPU with the corresponding implementation
on the CPU based on running time. We use 3-d points
models of bunny and Ganesha in a Cornell room as inputs
to create the octree.
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Figure 12. Top-Down Octree Construction
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Figure 13. Top-Down Octree Construction
(Ganpati 165646 points) (sec. ??)

We see that the GPU outperforms the CPU at higher

levels. We implemented the top-down GPU-based paral-
lel octree construction algorithm using the latest NVIDIA
GPUs featuring support for atomic operations like atomic
increment/decrement etc. These GPUs have G92 architec-
ture. The machine used has a Intel Core 2 Duo 1.86 GHz
with 2 Gbs of RAM, NVIDIA Quadro FX 3700 with 512
Mbs of memory and Fedora Core 7 (x86 64) installed on
it.

As a proof of applicability, we used the parallel con-
structed octrees as a part of GPU-based global illumina-
tion algorithm for point models using the Fast Multipole
Method. Fig 14 shows some results. Effects of color
bleeding and soft shadows are clearly visible. Note that
all input such as the models in the room, the light source,
and the walls of the Cornell room are given as points. The
input is a single, large, mixed point data set consisting of
Ganesha, Satyavathi, and the Cornell room. These mod-
els were not taken as separate entities nor were they seg-
mented into different objects during the whole process.

6.1 GPU Optimizations

To improve the GPU kernel’s performance, we utilize
several optimization techniques enlisted below.

1. LOOP UNROLLING: Any flow control instruction (if,
switch, do, for, while) can significantly impact the
effective instruction throughput by causing threads
to diverge. Thus, significant performance improve-
ments can be achieved by unrolling the control flow
loop. We found that especially the loops with global
memory accesses (as it is the case in our algorithm)
in them benefit a lot from unrolling.

2. OPTIMAL THREAD AND BLOCK SIZE: Obtained
via an empirical study, eEach thread block must con-
tains 128 − 256 threads and every thread block grid
no less than 64 blocks for optimal performance on
G80 GPU. We made sure this was achieved. If the
number of nodes considered is not a divisor of the
block size, only the remaining number of threads is
employed for computations of the last block.

3. OPTIMAL OCTREE DEPTHS: As every thread works
only on two adjacent nodes most of the times in I1 or
on independent partitions in I2, work of each thread
is completely independent. This fits our situation
where each thread (in any of the two implementa-
tions) on finishing its work or on making an early
exit (say by encountering a leaf) simply moves on
to next pair of adjacent nodes for I1 or a new par-
tition for I2, without the need for any shared mem-
ory or synchronization with other threads. Note that
to realize the full GPU load the number of nodes to
be considered should be sufficiently large. With 16
multi-processors, we need atleast 64 thread-blocks,
each having 128 threads to realize optimal GPU load.
Thus, we realize a full GPU load for I1 at even a
small enough point model (of size 8192, and assum-
ing a point per leaf). On the other hand, for I2, if



Figure 14. Point models rendered with diffuse global illumination effects of color bleeding and
soft shadows. Pair-wise visibility information is essential in such cases. Note that the Cornell
room as well as the models in it are input as point models.

the octree is built till depth 4, we have at most 84

= 4096 leaves and for depth 5 this number becomes
85 = 32768. Thus, GPU works to its full potential
at a small enough octree depths and the efficiency in-
creases as we move down to greater depths (> 6). As
we will see in Fig. ?? that GPU totally out-performs
the CPU for depths > 6.

7 Conclusion

Rapid developments and improvements in the perfor-
mance of graphics hardware has attracted much attention.
Its performance is way ahead of CPUs and thus, it is be-
ing used not only for traditional graphics rendering, but
for solving computationally intensive problems in varied
fields. One such problem is parallel construction of oc-
trees. We presented two different octree construction al-
gorithms, each having its own merits and support for de-
sired queries. When a user needs support for various
different queries, the bottom-up octree construction algo-
rithm can be used, while the top-down algorithm, although
supports only a subset of those queries, has less memory
requirement and is faster in terms of run-time. We com-
pared our algorithms with their CPU equivalent counter-
parts and showed that they out-perform them in every de-
partment. Further, we applied both our octree algorithms
to a N-body problem of computing radiosity based Global
Illumination solution for point models using Fast Multi-
pole Method and demonstrated the visually pleasing re-
sults. These algorithms can be applied to a vast variety of
computationally intensive domains requiring hierarchical
data structuring techniques.
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