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ABSTRACT

Road congestion is a common problem worldwide. Existing
Intelligent Transport Systems (ITS) are mostly inapplica-
ble in developing regions due to high cost and assumptions
of orderly traffic. In this work, we develop a low-cost tech-
nique to estimate vehicular speed, based on vehicular honks.
Honks are a characteristic feature of the chaotic road con-
ditions common in many developing regions like India and
South-East Asia.

We envision a system where dynamic road-traffic infor-
mation is learnt using inexpensive, wireless-enabled on-road
sensors. Subsequent analyzed information can then be sent
to mobile road users; this would fit well with the burgeoning
mobile market in developing regions. The core of our tech-
nique comprises a pair of road side acoustic sensors, sepa-
rated by a distance. If a moving vehicle honks between the
two sensors, its speed can be estimated from the Doppler
shift of the honk frequency. In this context, we have devel-
oped algorithms for honk detection, honk matching across
sensors, and speed estimation. Based on the speed esti-
mates, we subsequently detect road congestion.

We have done extensive experiments in semi-controlled
settings as well as real road scenarios under different traf-
fic conditions. Using over 18 hours of road-side recordings,
we show that our speed estimation technique is effective in
real conditions. Further, we use our data to characterize
traffic state as free-flowing versus congested using a variety
of metrics: the vehicle speed distribution, the number and
duration of honks. Our results show clear statistical diver-
gence of congested versus free flowing traffic states, and a
threshold-based classification accuracy of 70-100% in most
situations.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems];
C.2.4 [Computer-Communication Networks]
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1. INTRODUCTION
The issue of road traffic congestion is an important one

in most places of the world today. The problem is espe-
cially severe in developing regions like South/South-East
Asia, where new-found wealth for a section of the population
has driven traffic congestion to the brink in most cities [1].
The road traffic in cities like Bangalore is alarming, with
over 5 million vehicles plying on barely 3000 kms of road [2].
Growth of infrastructure has not been adequate due to a va-
riety of reasons, including insufficient funds, bureaucracy,
and sheer lack of physical space for the traffic volume.

The issue needs specific attention in developing countries
not only because the severity of the problem, but also be-
cause the nature of traffic is fundamentally different from
that in the developed world. The difference needs to be ex-
perienced to be fully understood, but an appreciation can
be partially gleaned from the representative videos at [3, 4].
Unlike traffic in developed countries, traffic on city-roads
in many developing regions is characterized by two aspects
(1) There is high variability in size and speed of vehicles.
The same road is shared by 4-wheeled buses and trucks, 4-
wheeled cars and vans, 3-wheeled vans and auto-rickshaws,
2-wheeler motor-bikes, bicycles, often-times pedestrians and
bullock-carts too. (2) Partly as a corollary of the variability,
traffic is often chaotic, with no semblance of a lane-system
common in developed countries [5, 3, 4].

Intelligent Transportation Systems (ITS) refers to a host
of techniques using sensors to alleviate road traffic conges-
tion. But most sensing techniques like inductive-loops, mag-
netic detectors, or imaging-based techniques not only have
a high cost [6], but also make assumptions of orderliness
or lane-systems or low vehicle variability, which are inap-
plicable in the chaotic road conditions [1] prevalent in most
developing regions.

We envision a system where inexpensive, wireless-enabled,
on-road sensors are deployed widely, to learn and report dy-
namic road traffic information. Subsequently analyzed infor-
mation, in the form of useful traffic updates, is sent to road
users over their mobiles. This fits in well with the burgeon-
ing mobile-phone market [7], and the budding mobile-data
market [8] in the cities of developing regions.



To this end, this paper presents a novel, inexpensive tech-
nique for sensing vehicular speed. Subsequently, we present
techniques to classify the traffic state as congested versus
free-flowing. To estimate vehicle speeds, we use vehicular
honks, a prevalent feature in chaotic road conditions (see [3,
4]). For instance, on Indian roads (city-roads as well as high-
ways), honks are common under all road conditions: slow or
fast, free-flowing or congested. In fact, honks are deeply
inter-twined with the on-road driving protocol, so much so
that honks are often required for “safe” driving (i.e. other
drivers & pedestrians expect honks). The title of this pa-
per is a phrase painted behind almost every truck/van in
India [9]; there is no better proof of how deeply entwined
honks are, in Indian road driving protocol. In this work,
we put this otherwise negative feature of chaotic road traffic
to positive use. While our narrative and experiments are
necessarily India-focused, we believe that the technique is
applicable in other developing regions with chaotic traffic
too, such as South and South East Asia.

Our technique uses a pair of low-cost audio sensors de-
ployed on the road-side, and is based on the Doppler shift of
vehicular honks, to estimate vehicular speed. Doppler shift
based speed estimation itself is of course very well known
(radars use this principle); the novelty and usefulness of our
work lies in applying this for vehicular honks. The use of
acoustic sensors means that the hardware we require for our
sensors is the same as any mobile phone; thus our technique
also has the advantage of riding the low-price-curve of the
mobile market.

The contributions in this paper are as follows. (1) We
present the novel idea of using vehicular honks, a prevalent
feature on Indian roads, to gauge vehicle speed. (2) We de-
velop an inexpensive two-sensor architecture to implement
the above idea. (3) We develop algorithms for practical honk
detection, honk matching across sensors, and frequency ex-
traction for speed estimation. We use extensive on-road ex-
periments in this process. (4) We present over 18 hours of
data collected on different roads to show the usefulness of
the speed estimation algorithm in road congestion detection.

Our results show that the speed estimation technique based
on honks is practical under real city-road conditions. And
further that the estimated speeds can be used to clearly dis-
tinguish between various traffic states. The threshold-based
classification shows as high as 75-100% match with ground-
truth on real roads. This thus holds enormous promise for
widespread practical deployment.

The rest of the paper is organized as follows. Sec. 2 de-
scribes related work. We then describe our overall archi-
tecture and the envisioned context of usage, in Sec. 3. We
develop the details of our honk detection, honk matching,
and speed estimation algorithms in Sec. 4. Sec. 5 presents
the evaluation of our speed estimation technique. Subse-
quently, Sec. 6 focuses on using the speed estimates to clas-
sify road traffic state as congested versus free-flowing. The
paper concludes in Sec. 7.

2. RELATED WORK
We now discuss the state-of-the-art in related literature,

under various categories.

2.1 Existing on-road sensing techniques:
Various on-road sensing techniques are deployed in west-

ern cities. For instance, pairs of inductive loop detectors can

be used to identify vehicles based on their length [10]. This
technique is too expensive (several thousands of U.S.$ per
installation) for widespread deployment and maintenance
even in developed countries [6]. Furthermore, the inher-
ent assumption of lane-based orderly traffic makes it in-
applicable for chaotic road conditions. Similar criticisms
apply for imaging-based sensing [11] techniques too [6, 1],
with costs running into $10-20K per installation. While
magnetic sensor-based solutions [12] can be relatively in-
expensive, they also make assumptions of traffic orderli-
ness [1]. Furthermore, the technique is unreliable for mo-
torcycles [12], which form a substantial part of road traffic
in developing regions.

2.2 Probe-based techniques:
Given the costs of the above on-road sensing techniques,

the work in [6] considers GPS-enabled probe-vehicles. Us-
ing probe-vehicles’ GPS traces, they first classify the road
network into segments delimited by traffic signals. Tempo-
ral and spatial speed traces within each segment are then
analyzed, and a thresholding technique is developed to cat-
egorize traffic within the segment as congested versus free-
flowing. Such probe-based techniques are more applicable
to developing regions due to the lower cost, and lack of traf-
fic orderliness assumptions. However, various Indian city
roads have a large fraction of signal-less intersections, where
drivers follow a random protocol to pass the intersection
(see [4]). Even when there are traffic signals, it is not un-
common for a large fraction of vehicles to violate it. These
aspects place a significant question mark on the applicability
of the techniques developed in [6] for chaotic road conditions.

2.3 Techniques in chaotic road conditions:
Nericell [5] represents one of the early works in developing

techniques specifically for chaotic road conditions. It uses
sensors in high-end mobile phones, such as microphones, ac-
celerometers and GPS, belonging to users traveling in cars
to detect honks, potholes in roads, and vehicle braking. We
use the honk detection mechanism in [5] as a starting point
and enhance it further. Our technique itself is quite different
however: we use on-road sensors to detect vehicle honks, and
use Doppler shift to estimate vehicle speed. We require only
relatively inexpensive audio sensors (microphone). Also, in
comparison to [5], our work includes the additional aspect
of classifying traffic state as congested versus free-flowing.

2.4 Other audio-based techniques:
The use of Doppler-based speed estimation is quite well

known. Radars are based on this principle, and the adap-
tation of the technique to police “speed-guns” is common.
Radars require the sound beam to be “aimed” at a specific
moving vehicle. On a road where there are multiple ve-
hicles of various sizes (i.e. multiple sources of reflection),
and where the ambient noise is high, the use of radars is
questionable. Indeed, we are unaware of the use of radars
on Indian roads. Unlike radars, in this paper, we use honk
sounds originating from moving vehicles themselves.

The work in [13] uses signal processing techniques to es-
timate vehicle speed based on the Doppler shift of engine
and wheel noise. Since the technique assumes that a par-
ticular recording belongs to a single vehicle, its applicability
in a setting, where we have a mix of sounds from various
vehicles of different sizes and speeds, is questionable.



3. OVERALL ARCHITECTURE
The system we envision comprises of inexpensive road-

side sensors, collecting dynamic information about vehicle
movement on the roads. The sensors are wireless enabled,
and communicate with a central server to convey the learnt
information. This is shown in Fig. 1. Subsequent analysis
is used to extract information such as the road traffic state,
and this is conveyed to other mobile users. The traffic state
can be in terms of a simple free-flowing versus congested
classification, or finer grained.

In this context, this paper focuses on a low-cost approach
to use vehicular honks, and their Doppler shift to estimate
vehicle velocity. We propose to use audio sensors (micro-
phones) in this process.

Figure 1: System Architecture

3.1 Using Doppler shift:
Suppose that a sound source moves with speed vs, and the

receiver (observer) is stationary. Denote the emitted audio
frequency as f0 and speed of sound as v. When the source
moving away from the receiver, the frequency observed at
the receiver is given by,

f1 =
v

(v + vs)
f0 (1)

And when the source moving towards the receiver, the
frequency observed at the receiver is given by,

f2 =
v

(v − vs)
f0 (2)

3.2 Two-sensor architecture:
If f0 is known, vs can be estimated easily from Eqn. 1 or

Eqn. 2, and one sensor would suffice. But it is not easy to
guess f0, as different honks have different base frequencies.
We thus use a two-sensor architecture: Fig. 1 depicts a de-
ployment of two wireless-enabled audio sensors (recorders)
by the side of a two-way road. When a moving vehicle blows
honk in between the two receivers, it is approaching one re-
ceiver and receding from the other. Substituting the value
of f0 from Eqn. 1 in Eqn. 2, we get following equation,

vs =
−(f1 − f2)

(f1 + f2)
v (3)

The above approach can not only compute the speed but
also the direction of motion, on a two-way street. The steps
involved in speed estimation are as follows.

1. Honk detection: The two sensors (recorders) record
and detect the honk sample independently.

2. Honk matching: We then have to match honks with
each other, so that we apply Eqn. 3 for the same honk.

3. Frequency extraction: We have to extract f1 and
f2 and apply Eqn. 3 to get the speed estimate.

The second and third steps can be done at one of the
recorders, or at a central server. If done at one of the
recorders, the final speed sample can be communicated to
the central server. This is shown in Fig. 1.

The honk-matching step requires that the two recorders
be time-synchronized. This can be done using the wireless
connection to the central server, or using a local radio such
as Bluetooth, 802.15.4, or 802.11. For communication with
the central server, we could use GPRS/3G or SMS. We could
even use dpipe [14], via a local radio. Fig. 1 shows a particu-
lar two-sensor deployment feeding data to the central server.
The central server also receives similar measurements from
other similar deployments at other locations in the road net-
work of interest.

3.3 Line of vehicle motion:
In our architecture, we assume that the line of vehicle

motion coincides with the line joining the two sensors. This
causes some inaccuracy, but there are several ways to reduce
it. (1) Most city roads are at most two“lanes”wide, or about
5m each way. This reduces the inaccuracy as the inter-sensor
distance is large with respect to the road width (2) Our
algorithms seek to restrict honk samples to a sub-region near
the middle of the two recorders; we call this the “honking
zone of interest” (see Fig. 1). The intuition behind this is
that near the middle of the two recorders, the speed estimate
inaccuracy due to distance between the line of motion and
the line joining the recorders, is minimized. (3) Many roads
have a divider separating the two directions of traffic. In
such cases, the pair of recorders could be deployed on the
divider, and not on the side of the road.

Despite the above measures, some inaccuracy is unavoid-
able. But as we show, this inaccuracy does not matter when
we finally estimate the traffic state.

3.4 Sensor placement:
There are several issues related to where the sensors are to

be placed. The two sensors need to be sufficiently far away
from one another for the primary reason that we get suffi-
cient honk samples in-between. An additional reason may
be the reduction of the above-mentioned inaccuracy. How-
ever, if the two sensors are too far apart, the chances that
the same honk is heard at both places reduce. Furthermore,
if a local radio is used for communication between the two
sensors, its range is also a concern.

We have chosen an inter-sensor distance of 30m, and a
20m long honking zone of interest (see Fig. 1). This setting
gives a good number of honks in the zone of interest. And



if the sensors are mounted on light poles, the local radio
range can be several tens of meters if not more, even for
the relatively high frequency of 2.4GHz [15] for 802.15.4 or
Bluetooth or 802.11.

The basis of our architecture dictates that the pair of sen-
sors must be deployed where there is a clearly defined line
of traffic motion (in either direction). In other words, there
must be no nearby side-roads or cross-roads or intersections,
since honk samples from such settings would not have a well-
defined line of motion.

3.5 Advantages of our approach:
There are a whole host of advantages to our approach of

using honks. (1) First and foremost, honks are a natural
part of chaotic traffic, since honks are used as a warning to
avert collisions or indicate impatience. As already noted,
honks are common on Indian roads, under all conditions, on
most roads. So our method is an excellent fit for chaotic
roads. (2) The number of speed samples is likely to be far
higher than any probe-vehicle based mechanism. Further-
more, we readily get speed samples from all kinds of vehicles
on the road (4-wheelers, 3-wheelers, 2-wheelers, etc.). (3)
The more used or congested a road is, the more the reason
to honk; indeed we observe this consistently in our exper-
imental data. So we have a nice property: more the need
for traffic updates, more are the vehicular speed samples we
get. (4) Honks are used to warn other drivers; so by their
very design, honks are easily distinguishable from other road
noise. (5) For a similar reason, unlike other road noise, most
honks are non-overlapping in time, across vehicles (except
in very high congestion); so no sophisticated sound separa-
tion algorithm is necessary. (6) Last but not the least, the
wireless-enabled sensors are cheap. The hardware we require
is exactly what is present in a commercial mobile phone (this
is why Fig. 1 depicts the recorders as phones). Hence we can
ride the price-curve of mobile phones: in developing regions
like India, one can get mobile phones for as cheap as $20.

3.6 Scope of this paper:
While Fig. 1 gives the overall context, this paper itself

focuses on the main unsolved challenges related to (a) the
3-step speed estimation and (b) its subsequent use in traffic
state classification. Specific aspects we do not address in
this paper are: (a) determining the set of locations in a road
network, at which to install pairs of recorders, (b) using the
collection of traffic state reports from different installations
to estimate metrics such as travel time. These are interesting
avenues for future work.

3.7 Challenges:
In our honk-based approach, there are several open ques-

tions. Are there sufficient honks in practice? Can they be
detected and matched across sensors in the presence of road
noise, multiple random sound reflections (echoes), and other
sources of inaccuracies? What might be the honk detection,
matching, and frequency extraction algorithms? How ac-
curately can vehicle speeds be estimated? Given various
vehicle speed estimates, can we indeed distinguish between
congested and free-flowing traffic states? Can we distin-
guish traffic conditions between two directions on bidirec-
tional roads? Can we detect the time when congestion starts
setting in? We now turn to address these questions method-
ically.

4. ALGORITHM DESIGN
This section focuses on the three-steps in vehicle speed es-

timation: honk detection (Sec. 4.3), honk matching (Sec. 4.4),
and frequency extraction (Sec. 4.5). Before presenting our
algorithms, we first describe our experimental methodology
(Sec. 4.1), and present some preliminary honk properties
(Sec. 4.2).

4.1 Experimental Methodology
We have taken an experiment driven approach to algo-

rithm development. This is because many algorithm choices
become clear only after practical testing. During the exper-
iments, for the recordings, we have used the voice recorder
software on Nokia N79 mobile-phones. We have used 16KHz
audio sampling. As we shall see shortly, the frequency range
of honks is within 2-4KHz, so 8KHz sampling would be
enough according to Nyquist’s criterion. The criterion states
that if a function x(t) contains no frequencies higher than B
hertz, it is completely determined by giving its ordinates at a
series of points spaced 1/(2B) seconds apart. We double the
sampling frequency to reduce noise. We use mono-channel,
16-bit recording: stereo channel or higher bit encoding do
not add any benefit to our analysis.

When two (or more) recorders are involved in an experi-
ment, the recorders need to be time-synchronized. For sim-
plicity, we have used a known sound pattern for such syn-
chronization. We record this pattern in each phone at the
beginning of recording and clip the file in the recorder which
started earlier. The estimated error in synchronization is
under a milli-second, which suffices for our algorithms.

We have used two kinds of experimental settings, which
we call campus-road and city-road. The campus-road ex-
periments are within the IIT-Bombay campus, where there
is relatively little traffic. So we use a motorbike and con-
trol when we honk. We however have no control over the
frequency pattern, the sound echoes, etc. So the campus-
road experiments are semi-controlled. This greatly helped
us during the algorithm development process.

The city-road experiments are on various city roads. We
term one set of roads as Hira, which are from a residential
locality called Hiranandani. These roads were one-lane in
each direction, and about 5-6m wide overall. We also had
a set of measurements on a much wider road, called Adi
Shankaracharya Marg, which we abbreviate as Adi. This
road is 3 “lanes” each way: see [3]. Both Hira and Adi are
known for their congestion at peak times, the latter more so
than the former.

4.2 Empirical Data on Honks
In this section, we seek answers to three important ques-

tions: (1) are there indeed enough honks? (2) what are
typical honk durations? (3) and finally, what are the audio
frequencies of interest? Answers to these subsequently guide
our algorithm design.

We performed several road-side recordings at Hira, using
an N79 mobile-phone. The recordings are in terms of 10-
minute clips. We recorded in various conditions (morning,
noon, evening, night), and at different roads in Hira. Since
this was a precursor to our honk detection algorithm, we
sought to detect honks“manually”, using a two-step process,
to establish ground-truth. We first look for dark regions in
the spectrogram of the recording; such dark regions indicate
high amplitude. We use Praat, an audio signal processing



software, for this. An example is shown in Fig. 2. We then
verify that this is indeed a honk by hearing the identified
region of recording. The dark region also gives us a measure
of the honk duration, within an estimated error of a few
milliseconds. We can only guess the error here, since we are
determining ground-truth.

Figure 2: Spectrogram in Praat

4.2.1 How often do vehicles honk?

For the 18 ten-minute clips we recorded, we found an av-
erage of 30 honks per clip. The median was 27 honks, the
minimum 15, and the maximum 63 honks per clip. Note
that these honks were those within the recording range of
the recorder we used. While these numbers can clearly vary
with the road and the conditions, there appear to be a large
enough number of honks to get several vehicle speed samples
per minute.

4.2.2 How long do vehicles honk?

Fig. 3 shows the CDF of the honk durations, as visually
detected in the spectrogram, for the 18 x 10-min = 3 hours
of recordings. We see that over 90% of the honks are at least
100ms long. The median honk length is about 200ms. And
there are some honks which are more than 1-2 seconds long.
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Figure 3: CDF of honk length

4.2.3 What is the audio frequency of honks?

We use the Discrete Fast Fourier Transform (FFT) [16]
tool in the Audacity software to determine the honks’ dom-
inant audio frequencies. Nericell [5] claims that honk fre-
quency range is between 2-4 KHz. We verify this claim in
our data: out of approximately 300 honks in the recordings,
only 3 have a dominant frequency outside of this range.

4.3 Honk Detection
The first of our three-step speed estimation process is honk

detection.

4.3.1 Goal

Here, we not only have to detect honks in presence of
noise, but also determine each honk’s boundary (start and
end) in time.

4.3.2 Approach

Nericell [5] uses the following simple honk detection algo-
rithm. The recording is broken up into 100ms windows. A
Discrete Fast Fourier Transform (FFT) [16] is performed on
each window. A discrete FFT transforms a sample set in
time domain to frequency domain. A 100ms window is said
to be a honk if there are at least two spikes, with at least one
spike in the 2-4KHz range. A spike is defined as a frequency
whose amplitude in the FFT is at least a threshold T times
the average amplitude across all frequencies. Values of 5-10
are reported to work well for T .

While we use Nericell’s basic approach, we adapt it in
several subtle yet significant ways.

4.3.3 Band-pass filtering:

First, we found in our road experiments that band-pass
filtering is a necessary step, to remove noise, especially in the
road Adi. So we band-pass and filter out (i.e. reduce the
amplitude of) sound outside the 2-4KHz range. Such band-
passing allows us to have uniform comparison thresholds in
all situations, irrespective of road noise.

4.3.4 Breaking time into small windows:

A more important aspect is that the algorithm in [5] only
tells whether or not there is a honk in a 100ms window.
We need to know the start and end boundaries of the honk,
as accurately as possible. Since propagation delay of sound
causes the two recorders to see time-delayed versions of the
same honk, honk boundary detection is important for honk
matching. And for frequency extraction, accuracy in honk
boundaries is necessary for accurate estimates of f1 and f2.

For precise honk boundary detection, we need to use small
time windows. Now, the number of samples in a time win-
dow, to be used in FFT computation of that time window,
has to be equal to the number of FFT points. That is, the
number of points in frequency domain is the same as the
number of samples in time domain. For a given sampling
frequency (16 Khz in our case), the number of samples in
a time window is directly proportional to the size of the
time window, which we want to decrease. Thus a small time
window means a reduction in the number of FFT points,
and thus the frequency resolution. That is, we cannot have
accuracy in the time and frequency domains simultaneously.

This is precisely the reason why we have a separate fre-
quency extraction step. In the honk detection step, where
frequency resolution is not important, we choose higher time
resolution. In the later frequency extraction step, we focus
on better frequency resolution.

For honk detection, we choose to use 128 FFT points (128
is the minimum FFT points supported by the open source
FFT implementation we use). With a 16Khz sampling fre-
quency and 128 samples per time window, we have time
window size as 8ms which gives good time accuracy.

4.3.5 Algorithm choices:

We considered three possible choices for the algorithm.

1. PeakVsAvgAllFreq: This algorithm, similar to [5],
considers a time window to be a honk if a frequency in



the 2-4 KHz range has an amplitude at least T times
the average of all frequencies in that time window. We
use a time window of 8ms, and have found that T =
10 works uniformly well for all roads, after the band-
pass filtering step; without the band-passing, we were
unable to find one uniform threshold for all situations.

2. PeakVsAvgHonkFreq: This algorithm is similar to
PeakVsAvgAllFreq, except that we compare the peak
against the average of the amplitudes in the honk fre-
quency (2-4KHz).

3. PeakAbsAmp: This labels an 8ms window as a honk
if the absolute threshold of any frequency in 2-4KHz
range exceeds -20dB.

4.3.6 Experimental evaluation of algorithm choices:

To evaluate the above algorithm choices, we use the same
3 hours of road-side recording as given in Sec. 4.2, where we
manually (visually and through hearing) labeled about 300
honks. A false-positive is an 8ms window which is labeled
as not a honk in the ground-truth, but is detected as a honk
by the algorithm. And a false-negative is a window which is
labeled as a honk in the ground truth, but not detected by
the algorithm.

Table 1 tabulates the results for the three algorithms. As
we can see from the first row, the initial results are quite
poor.

Honk length bounding: On closer look, we found that
most of the false positives were due to stray windows. Since
our CDF in Fig. 3 shows that over 90% of the honks are
longer than 100ms, we use this as a lower-bound in our honk
boundary detection. That is, any 8ms window which is not
part of a train of at least 14 such windows, is classified as
not a honk. This lower-bounds the honk length to be at
least 14 × 8ms = 112ms. The second row in Tab. 1 shows
the effect of honk length bounding.

Honk merging: Furthermore, in our various in-campus
experiments, we found that the honk detection algorithms
many times split the same honk as several shorter honks. To
correct this, we introduced a merging step, where two trains
of 8ms windows (detected as honks) are merged if they are
separated by not more than 3 intervening non-honk 8ms
windows. The last row in Tab. 1 shows the effect of this
merging step. We see that the false negatives come down
further, with almost no effect on the false positive rate.

More than the reduction in the false negative rate, honk
merging ensures that we do not have spurious honk bound-
aries (start/end), which is important for honk matching, as
we shall see.

4.3.7 Algorithm choice:

PeakVsAvgHonkFreq has a high rate of false negatives.
The reason is, in a honk window, most frequencies in honk
range have fairly high amplitudes. So the peak cannot ex-
ceed the average amplitude of the honk frequency range by
a threshold. The other two algorithms have comparable per-
formances, with PeakVsAvgAllFreq being the better of the
two. So we choose PeakVsAvgAllFreq as our honk detection
algorithm.

Table 1: Comparison of honk detection algorithms

The final honk detection algorithm:(1) Perform band-
passing to filter out (reduce the amplitude of) sounds out-
side 2-4KHz. (2) Break time into 8ms windows, and use
PeakVsAvgAllFreq (with T = 10) to classify each window
as a honk or non-honk. (3) Use honk length lower bounding
followed by honk window train merging to arrive at the final
set of honks, along with their time boundaries.

4.4 Honk Matching
The second of our three-step speed estimation process is

honk matching.

4.4.1 Goal

Honk detection can be done independently by each recorder.
After detection, the same honk has to be matched across the
two recordings. In our honk-matching step, we also seek to
ensure that we match only honks in the “zone of interest”
(Fig. 1).

4.4.2 Intuitions

To match honks, we consider the following two intuitions.

• StartTimeDiff: For two honk windows h1 and h2, at
recorders R1 and R2 respectively, to have originated
from the same honk, within the zone of interest, the
difference between the start times of h1 and h2 must
be bounded. For instance, in Fig. 1, suppose the honk-
ing vehicle is at distance x1 and x2 respectively from
the two recorders, when it starts honking. And if the
vehicle is within the zone of interest at this time, then
|x1 − x2| < 20m. So ideally, the start times of h1 and
h2 must differ by not more than D = 20

v
, where v is

the speed of sound.

• DurnRatio: This criterion bounds the ratio of honk
durations in the two recorders to be below R. Ideally,
if d1 and d2 are the honk durations at recorders R1
and R2 respectively, d1f1 = d2f2, since the number
of wavelengths (lambdas) seen by both the recorders
is the same (also same as the number of wavelengths
generated at source). Here we are ignoring the change
in vehicle position for the duration of the honk. So,
d1

d2

= f2

f1

= v+vs

v−vs

where v is speed of sound and vs is
speed of vehicle. Since v is fixed, this ratio will increase
with increasing vs. If we take maximum value of vs to
be 54Km/h i.e. 15m/sec, which is realistic for most
city roads, ideally R = v+15

v−15
.

4.4.3 Sources of error:

There are two main possible sources of error. First, there
may be environment-dependent echoes. The second source
of error is something we realized after experimenting: the
honk amplitude is different at the two recorders. This is es-
pecially so when the vehicle is in-between the two recorders:



most honk installations are directional by design. That is,
they give a higher amplitude in front of the vehicle than be-
hind it. Such amplitude difference in turn means that one
recorder will detect it earlier than the other, for any given
value of T in our detection algorithm.

4.4.4 Experimental evaluation of honk matching heuris-
tics:

We use semi-controlled campus-road experiments to test
the usability of StartTimeDiff and DurnRatio. For this, we
place Recorder-1 near a stationary bike. This is shown in
Fig. 4. Recorder-2 is first at a distance of 10m and then at
a distance of 20-m from Recorder-1. For the first position of
Recorder-2, we blow the bike honk 15 times, for the second
position 10 times and record in both the recorders. This
setup allows to examine how StartTimeDiff and DurnRatio
fare.

Figure 4: Evaluation setup for StartTimeDiff &
DurnRatio

Verifying StartTimeDiff: For sound speed of v = 340m/s,
the expected start time difference is 29ms at 10m and 59ms
at 20m. We measure the actual start time difference for the
25 honks recorded in the above experiment using our honk
detection algorithm. Fig. 5 shows the results.

We can see that most of the start time differences are close
to what we expect. But there can be errors as much as a
few tens of milli-seconds, due to the various reasons listed
earlier. Given this experiment, we take the StartTimeDiff
threshold value of D = 80ms, keeping some allowance from
the expected value of 59ms at 20m.

Figure 5: Start time difference values (ms) for 25
honks

Verifying DurnRatio: To evaluate the DurnRatio heuris-
tic, we calculate the durations of the 25 honks using our
detection algorithm. The speed of the bike being 0, the du-
rations of the same honk in the two recordings, should be

the same; i.e. we expect d1 = d2, or d1

d2

= 1. But at a dis-

tance of 10m, we found that d1

d2

varied all the way from 0.43
to 1.75 for the 15 honks. At a distance of 20m, the values
varied from 0.38 to 0.96. In both cases, most values were
significantly different from the expected value of 1.

Figure 6: Trailing honk pattern in Recorder-2

We viewed each honk pair in Audacity and found a sig-
nificant trailing pattern after each honk in Recorder-2 (see
Fig. 6). This is likely due to echoes. The cases where
d1 > d2 are likely due to the fact that the honk source
was near Recorder-1. Since there is no discernible pattern
to the variation of d1

d2

, we decide not to use it at all in the
honk matching algorithm.

The final honk matching algorithm: is thus as fol-
lows. If the start time of a honk (h1) recorded in one recorder
is greater or less than the start time of a honk (h2) recorded
in second recorder by at most D = 80ms, h1 and h2 are
matched; i.e. taken to be from the same honk.

4.5 Frequency Extraction
The final of our three-step speed estimation process is

frequency extraction.

4.5.1 Goal

Here we extract frequencies f1 and f2 from a pair of
matched honks to calculate speed using them.

4.5.2 Choosing FFT points:

For honk detection, we used 128-point FFTs, since we
needed good time resolution. Here we need good frequency
resolution. The frequency resolution for N-point FFT is
given as n = F/N , where F = 16KHz is the sampling
frequency. In other words, the error in frequency estimation
can be as high as n/2 in the worst case. A higher N thus
means a lower n and hence a lower error in the final speed
estimate.

In choosing high value of N , we have two criteria man-
dated by the FFT computation (a) N should be a power of
2, and (b) each time window passed to the FFT computation
algorithm should have N samples. If we choose N = 4096,
we need time window of 256ms as our sampling frequency is
16KHz. From Fig. 3, 70% of the honks in each sound clip
is less than 250ms in length, so we will be discarding most
honks if we stipulate a 256ms time window. Hence we choose
N = 2048, which needs a 128 ms time window. If a honk has
many 128ms windows, then we do independent 2048-point
FFTs in each window, and average out the amplitude for
each frequency across the multiple windows.

According to Sec. 4.3, the minimum honk duration for us
is 112ms. So for the few honks with duration 112 ms or 120



ms (our honk duration always is a multiple of 8 as detection
uses time window of 8 ms), we use N = 1024.

4.5.3 Choosing frequency peaks:

From a pair of honks, matched across the two recorders,
we do an N-point FFT, N chosen as above. Using various
campus-road experiments’ data, and observing the FFT of
the matched honks in Audacity, we find the following. In
most cases, there is a close correspondence between the lo-
cal maximas (in terms of amplitude) of frequencies in either
recording. This is shown in Fig. 7. That is, local maxi-
mas in the original sound show up as local maximas even
after Doppler shift. This is intuitive, since the Doppler phe-
nomenon is not concerned with the amplitude, and since
attenuation is similar across frequencies in the region of in-
terest.

Figure 7: Close correspondence between local max-
imas in the two recordings

We thus use the following heuristic, termed SinglePeak.
From each honk, we choose the frequency with the highest
amplitude in the FFT, and use these as f1 and f2 for speed
estimation.

We used several campus-road experiments to evaluate the
effectiveness of the above mechanism. From 80 pairs of
matched honks from these experiments, we found that for 75
pairs, the speed estimates were fairly accurate. But in the
remaining 5 cases, we saw huge errors, such as 100Km/h.
On closer examination of the recordings, we found that the
highest peak in one recording corresponded not to the high-
est, but to the second highest peak in the other recording.
This is shown in Fig. 8.

We thus correct SinglePeak, and use the following heuris-
tic termed TwoPeak. This corrected heuristic uses the fol-
lowing observation. Without loss of generality assume that
f1 < f2. So f1

f2
= v−vs

v+vs

, which lower for higher vs. With

v = 340m/s, and vs being the vehicle speed, we can lower
bound f1

f2
by upper-bounding vs. Assuming an upper bound

of 50Km/h, which is practical for most city roads, the lower
bound for f1

f2
is 0.92.

So in TwoPeak, we first seek to use the highest ampli-
tude peaks in the two recordings. If this gives a value of
f1

f2
< 0.92, then we assume that the local maximas have

been exchanged in the two Doppler shifted recordings. We
then consider all the other three possible combinations of the
highest and second highest peaks among the two recordings.

Figure 8: 1st & 2nd peaks exchanged in the two
recordings

We take the combination which gives 0.92 ≤ lowerF req

higherF req
≤ 1

as the final frequencies for speed estimation.
The final frequency extraction algorithm: is thus

as follows. Compute 2048 point FFT for a matched pair
of honks, for honk length ≥ 128ms. Compute 1024 point
FFT if honk length is between 112ms and 128ms. Consider
frequencies f1 and f2 as per the TwoPeak heuristic, and
use Eqn. 3 for speed estimation.

5. EXPERIMENTAL EVALUATIONOF SPEED

ESTIMATION TECHNIQUE
How well does our 3-step speed estimation technique work

in practice? We experimentally evaluate this now. We
present both campus-road and city-road experiments. For
the city-road experiments, we considered both Hira and Adi.
For all the experiments presented in this section, we used our
own motorbike and honks from it.

5.1 Initial experiments, the issue of ground truth:
We conducted several initial campus-road experiments, where

we noted the ground-truth from the vehicle’s speedometer.
The speed estimated by our algorithm was always within
about 5-10Km/h of what we expected. But we quickly real-
ized that the ground-truth in these experiments was always
suspect. Knowing the actual speed of the vehicle is diffi-
cult, even for the person driving the vehicle. There can
be speedometer errors, parallax errors while reading, etc. In
many situations, it was even dangerous to divert the driver’s
attention to the speedometer, even on campus roads. So we
did not even attempt this in our city-road experiments. Since
the ground-truth is inexact, we do not report results from
these initial experiments.

Use of a mobile recorder for ground-truth estima-
tion: In our setup, we used the following mechanism to es-
timate the ground truth. Apart from the on-road recorders,
we place a third recorder, called Recorder-3 (R3), on the
moving vehicle. Since this recording has no Doppler shift, it
should give f0 as in Eqns. 1 & 2. This procedure for ground-
truth has errors too, for instance in estimation of f0 itself.
So for each experiment we have also done a sanity check in
terms what speed we expect approximately.



5.2 Campus-road experiments:
On a campus road, our bike was driven past the sensors

at various speeds. We varied the speed from 0 Km/h (sta-
tionary), to slow (about 10 Km/h), to moderate (about 25
Km/h) to fast (about 35 Km/h). The vehicle blows a honk
near the middle of the two recorders. A total of 30 honks
are blown in 30 different experimental runs.

5.3 City-road experiments:
We conducted similar experiments at roads Hira and Adi

too. Here too, we varied the motorbike speed between 0
Km/h and about 40 Km/h (the actual speed here was also
determined by the traffic situation at that instant). We
have 18 honk samples each from Hira & Adi, making a total
of 36 honks. In these experiments, there are several other
vehicles’ honks too in the same recording. To distinguish
our own motorbike’s honk from these (which is necessary to
evaluate the speed estimation), we annotated the recording
by speaking into one of the recorders.

In the campus-road experiments, out of the 30 honks blown,
25 are matched across all the three pairs of recorders, while
the remaining 5 are not detected in one of the three recorders.
And in the city-road experiments, 4 out of the 36 honk sam-
ples were lost due to manual annotation errors. And 26 out
of the remaining 32 honks were matched across all the three
recorders.

5.4 Results:
We have three estimates of speed: one from Recorder-

1 and Recorder-2, using Eqn. 3, which we term v12. We
also get an estimate from Recorder-1 and Recorder-3, us-
ing Eqn. 2, which we term v13. We get v23 similarly from
Recorder-2 and Recorder-3, using Eqn. 1. From these, we
define three measures of error.

• (1) Relative Error - % ratio of v12 as estimated
speed in numerator and v13+v23

2
as actual speed in de-

nominator.

• (2) Max3Err - maximum of the three error quantities
|v12 − v13|, |v13 − v23|, and |v23 − v12|.

• (3) Avg3Err - average of the three error quantities
|v12 − v13|, |v13 − v23|, and |v23 − v12|.

For each of the 25 matched honks in campus-road experi-
ments, and the 26 matched honks on city-road experiments,
Fig. 9 shows the measures of error. Max3Err is given on
the left y-axis and the Relative Error is given on the right
y-axis. The points on the x-axis are sorted in increasing
order of relative error.

Avg3Err is not shown in this graph for clarity of presen-
tation as Avg3Err = 2/3 Max3Err. The explanation for
this is as follows. Without loss of generality, let us assume
0 <= v12 <= v13 <= v23. Max3Err = max(v13−v12, v23−
v12, v23 − v13) = (v23 − v12). Avg3Err = average(v13 −
v12, v23 − v12, v23 − v13) = 2/3(v23 − v12). Hence the two
measures will follow similar pattern.

We see that both in terms of absolute and relative er-
ror, our mechanism is quite reliable, even in noisy city road
conditions. The Max3Err measures are mostly under 5-
10Km/h. The relative error is mostly under 10%. There
is one case of high relative error of about 65%. We verified
that this was a case where the absolute speed itself was low,
and hence the relative error is high.
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Figure 9: Speed estimate errors

5.5 Varying the position of vehicle honk:
While the above experiments varied the vehicle speed,

they kept the honk position fixed (near the middle of the
two recorders). We now vary the honk position, on our city-
road experiments at Hira and Adi. We consider 7 differ-
ent honk positions: this is depicted in Fig. 10. The vehicle
moves from position 1 to 7 at a fixed speed (as far as the
traffic would allow), and honks approximately at the given
positions. Three honk positions, (3,4,5), are between the
recorder positions. These 3 are in the honking zone of inter-
est. Two positions, (2,6), are at the two recorders and the
remaining two, (1,7), about 10m before and after Recorder-2
and Recorder-1 respectively.

Figure 10: Honking positions of bike
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Figure 11: Speed estimate errors at various honk
positions

There were a total of 6 honks each at each position except
4, which had a total of 12 honks. At a given position, some
honks are matched, while some are not. For each position,
Fig. 11 gives the average of the Avg3Err, Max3Err and rela-
tive error measures. The plotted value is averaged across the
various number of matched honks for each position. There
are no matches at position 7, and hence no data point is
shown at that position.



As earlier, the relative error is very low (under 5%) at
position 4; it is about 15% for positions 3, 5 and 6. The
Avg3Err is below 5 Km/h and the Max3Err is below 10
Km/h at 3, 4 and 5.

Ideally, our honk matching algorithm should not have
matched honks at positions 1, 2, 6, and 7, since the zone of
interest is between positions 3 & 5. While position 7 gives
no matches, as expected, position 1, 2, and 6 had matched
honks. They had 2, 4, and 2 honks matched each, out of a
total of 6 honks at each position.

The speed estimates at positions 1, 2, and 6 do show high
error. The relative error in speed estimates for positions 1 &
2 are as high as 60-100%. A closer look at the data revealed
that these are cases of incorrect low-speed estimates (in fact,
zero-speed estimates at position-1), when the honk is outside
the zone of interest. These are caused due to false positives
in the honk matching step.

5.6 Summary:
To summarize, our speed estimation technique performs

well in most situations (in honk positions 3, 4, 5, 6, & 7),
both in terms of absolute error as well as relative error.
There are however some honk positions (1 & 2) where the
speed estimates can be poor due to bad honk matches. In
the next section, we shall see how we can work around these,
and estimate traffic state despite some fraction of errors in
vehicular speed samples.

6. APPLICATION INTRAFFIC STATECLAS-

SIFICATION
Given various vehicular speed estimates, can we tell the

current traffic state? This would indeed be very useful to on-
road commuters, or those planning to commute shortly. In
this section, we focus on classifying traffic state into two cat-
egories: congested versus free-flowing. While there appears
to be promise for a finer grained classification, we leave this
for future work.

6.1 Experimental Setup
We performed 18 hours of experiments on city-roads over

the month of Nov-2009. Of these 9 hours were in Hira and 9
were in Adi. We did the experiments in 1-hour chunks, over
different days. The times were chosen such that we, by visual
observation, were able to clearly classify the ground truth as
congested versus free-flowing. Of the 9 hours in Hira, 5 were
free-flowing and 4 were congested. Even during the 4 hours
of congestion, only one side of the road was congested; the
other direction was free-flowing. We thus have 9 hours of
free-flowing data and 4 hours of congested data from Hira.

At Adi, we collected 4.5 hours of free-flowing data and 4.5
hours in congested state. The road here was wider, and the
road noise so high, that we mostly sense traffic in only one
direction, near the side where we placed the sensors. There
are almost no honks recorded and matched for traffic in the
other direction.

As mentioned earlier, both roads experience heavy con-
gestion during peak times, with the congestion in Adi far
more severe. Adi also has a wider variety of vehicles, large
buses and heavy trucks, in addition to two-wheelers, auto-
rickshaws and cars, which are prevalent in Hira.

6.2 Speed Distribution Plots
Prior to presenting possible metrics for traffic classifica-

tion, we first get a feel for our data. The primary mea-
surement from a 2-sensor deployment is the set of vehicular
speeds. This is what we look at first, from our experiments.

From our recordings, we clip each 1 hour recording into
6 blocks of 10 minutes each. The intuition behind using
10-min chunks is that the underlying traffic characteristic
could change significantly from one 10-min period to the
next. For each 10-min data, we do honk detection, honk
matching and speed estimation from the matched honks,
using our algorithms (Sec. 4).

We plot the CDF of speed estimates for each 10-min block.
The number of such CDF plots is too many to present here,
so we show some representative samples. For instance, Fig. 12
and Fig. 13 show 6 sample CDF plots each (10min×6 = 1hr
each), under congestion and free-flowing traffic, on Adi.
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Figure 12: Speed CDF samples: congested traffic in
Adi
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Figure 13: Speed CDF samples: free-flowing traffic
in Adi

6.2.1 Observations:

From the various CDFs of 10-min durations (only 12 of
which are shown in Fig. 12 & 13), we observe the following.

1. First, it is striking to see the clear, visually observable
difference in the CDFs for the congested versus free-
flowing scenarios; we observed this in all of our data.

2. The CDFs under congestion are generally smoother
than CDFs under free-flow. This is due to the larger
number of speed estimates obtained under congestion.



That is, people honk more under congestion, increasing
the number of matched honks.

3. There are a few high values of speed under congestion.
We manually analyzed the recordings, and identified
three possible reasons for this. (a) Many 2-wheelers
overtake the stagnant vehicle queue at relatively high
speed on the wrong side, sometimes even coming onto
the pavement; during such overtaking, each vehicle
honks several times (see [3]). (b) Sometimes the honk-
recording, in one or both the recorders, gets mixed
with human voice, police whistle or an overlapping
honk, each of which has components in the 2-4KHz
range. This changes f1 or f2 or both, giving erro-
neous high speed values. (c) The final possible reason
is wrongly matched honks from two different vehicles,
getting wrong f1 or f2.

4. There are a few low values of speed under free flow.
One reason for this is that there is a natural tendency
for vehicles to honk if they have to slow down for some
reason, such as to warn a pedestrian crossing the road.
That is, there is an inherent bias toward lower speeds
in our speed sampling mechanism. Another reason is
that, like in Fig. 10, some low speed estimates come
from (badly-matched) honks outside the zone of inter-
est.

Observations (3) and (4) essentially mean that there are
some outlier speed values in our speed CDF. The next sec-
tion (Sec. 6.4) shows how we can work around this.
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Figure 14: North-South Direction on Normal Day
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Figure 15: South-North Direction on Normal Day
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Figure 16: North-South Direction on Rainy Day
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Figure 17: South-North Direction on Rainy Day

6.3 Direction sensitivity of speed estimates:
Our speed estimates are direction sensitive: each non-zero

estimate is signed. The sign indicates whether the vehicle is
moving from Recorder-1 to Recorder-2 or vice versa. Four
hours of data collected in Hira was on a road which had
traffic in both directions. The north-south direction always
had free-flowing traffic, and during these four hours, the
south-north direction was congested, due to queue build up
prior to a congested intersection.

In such a scenario, we saw that our speed estimates were
able to represent the two different traffic states, after re-
moval of all the zero-speed estimates (which had ambiguity
in the direction). A sample set of 6-plots for each direction
is given in Fig. 14 and Fig. 15 respectively. The difference
between the two sets of plots is apparent visually.

Rainy day: On the same road, a striking result is ob-
tained from the data on 11th Nov. There was unseasonal
rain, due to a cyclone in the Arabian sea, and this made the
traffic slow in both directions. This is clearly identified by
our speed estimates, as seen from Fig. 16 and Fig. 17.

6.4 Metrics for traffic state classification
What metrics can we use to classify traffic state as con-

gested versus free-flowing? The metric should be resilient to
speed sample outliers like those in Fig. 12 & 13. We present
two kinds of metrics: (a) speed-based and (b) non-speed
based acoustic metrics.



6.4.1 Speed-based metrics:

From observing all our 10-min CDF plots, we arrive at
the following two metrics: (1) 70th percentile speed and (2)
P (vs < 10Km/h). Both these metrics showed clear differ-
ence between the plots in congested and free-flowing traffic
states. The visual difference can be readily seen in the plots
of Fig. 12 versus Fig. 13. The 70th percentile horizontal line
and the 10Km/h vertical line are given for visual aid.

We observed similar differences in all of our other CDF
plots too. We summarize our data as follows. From each
10-min data, we get one sample of each of the above two
metrics. The number of such samples obtained, their mean,
and standard deviation, are given in Tab. 2.

Table 2: Speed based metrics

We can see a clear difference between congested and free-
flowing states, for either road. The difference is much more
stark for Adi, which is also what we observed visually.

6.4.2 Non-speed based acoustic metrics:

The several hours we spent by the road-side, collecting
data, was tiring but gave us useful intuition about road
noise. Congested traffic was inherently more noisy than free
flowing: vehicles braking, engines revving, excessive honk-
ing, etc.. We now consider whether non-speed based acous-
tic metrics can be used to differentiate traffic states. We
consider the following three metrics, computed over 10-min
recording clips as earlier. (1) The number of honks detected.
(2) The total duration of honks in 10-min (sum of durations
of each honk detected). (3) And finally, the average noise
level (across all frequencies), in dB.

Table 3: Non speed based acoustic metrics

Tab. 3 shows the mean across the various 10-min samples
as well as the standard deviation, of the three metrics for
the two roads under the two traffic states. All three metrics
are averaged across recorders R1 and R2. For the first two
metrics, we see that there is a clear difference between the
values in congested versus free-flowing states. This is true for
both Hira and Adi. For the third metric, the average noise
level, although there is a difference, it is not as significant
as in the other two non-speed metrics, especially in Adi.

6.5 Statistical divergence tests
For the above five metrics, is the difference between their

values in congested versus free-flowing states statistically
significant? To answer this, we employ two non paramet-
ric statistical hypothesis tests: the Mann-Whitney U test
and the two sample Kolmogorov-Smirnov (KS) test. Non
parametric tests are used to avoid assumptions about the
underlying distributions of the metric samples.

For each of the metrics, we conjecture an appropriate null
hypothesis. For instance, for the 70th percentile metric, for
Hira, we have the null hypothesis that the 24 samples from
the congested state and 30 samples from the free-flowing
state come from the same distribution. We thus have a total
of twenty such hypotheses: five metrics x two roads x two
statistical tests.

Tab. 4 lists the p-values from these 20 tests. We see that
other than the noise metric in Adi, all p-values are very
low. Thus the null hypotheses are rejected even at very low
significance levels for these p-values.

For the noise level metric, for the Adi road, the null hy-
pothesis is not rejected at the 0.001 significance level, but
is rejected at the 0.01 significance level. This matches with
our observation that the Adi road is noisy even in the free-
flowing traffic state, due to several buses and large trucks.

Table 4: p-values of statistical tests

6.6 Threshold based traffic state classification
Given the above high statistical difference, we propose a

simple threshold-based traffic state classification, as follows.
For a given metric, say 70th percentile speed, we compute
the mean value of this metric across all congested 10-min
windows. Denote it as, say Xcong. Similarly we compute
the mean across all 10-min windows marked as free-flowing,
and denote it as Xfree. For the data we have collected,
Xcong and Xfree are given in Tab. 2 & 3 for the 5 metrics.

We take the threshold for traffic state classification based
on that metric as Xthr = (Xcong + Xfree)/2. For instance,
for the 70th percentile speed metric, Xthr = (7.7+21.1)/2 =
14.4Km/h for Adi. Essentially, we have trained the clas-
sification algorithm using our data set, and any further 10-
min data would be classified as congested versus free-flowing
based on this threshold. For the 70th percentile speed metric,
if a future 10-min measurement has a metric value > 14.4
Km/h, it would be classified as free-flowing, and as con-
gested otherwise.

The various metric mean values, as seen from Tab. 2 & 3,
are different for the different roads. So the thresholds we
calculate should be road specific.

How effective is this threshold-based classification? To de-
termine this, we have used the following method. For each
experimental 10-min run, marked with ground truth (con-
gested versus free-flowing) in our data, we seek to classify it



using the above threshold-based mechanism. The threshold
itself is determined using all the data on that road, except
that 10-min run itself. If our classification detects congestion
for that 10-min window, whereas the ground-truth is marked
as free-flowing, this constitutes a false positive in congestion
detection. The vice-versa case is a false-negative.

Table 5: Threshold based congestion detection

Computing across all 10-min samples, we can thus calcu-
late the false-positive and false-negative rate, for our traffic
congestion detection mechanism. Tab. 5 summarizes the
false-positive and false-negative rates for the various met-
rics, on the two roads.

We see that we achieve reasonably good accuracy; in most
cases, the false positive and false negative rates are under
20%, and in many cases under 10%. We believe that such ac-
curacy is significant, especially given that the ground-truth
labeling was just by visual observation. The current state-
of-the-art in widespread use is highly coarse-grained radio
announcements for traffic updates. We believe that our clas-
sification mechanism will provide similar or better updates
automatedly.

In Tab. 5, the classification accuracy for the metrics based
on number and duration of honks, is especially good on Adi.
However, as noted earlier, non-speed based metrics are di-
rection insensitive.

We believe that there is scope for various metrics to be
used in conjunction with one another to better decide traffic
state. For example, during free flow, it might happen that,
there are few honk samples from fast moving vehicles, due
to which the speed based metrics give a pessimistic view of
the traffic. But if the total duration of honks is considered,
the classification could be more accurate.

One final point we note from Tab. 5 is that the metric
choice could itself be specific to a road stretch; for instance,
noise level is a more useful metric at Hira than at Adi.

6.7 Detecting the onset of congestion
We present one final experiment to show that our tech-

nique can detect the onset of congestion. For this, we present
data from a continuous two-hour recording, 6pm-8pm, on 4th

Dec, 2009, on Adi. The traffic state is initially free flowing.
It starts becoming congested from about 6.35pm. Heavy
congestion set in by 7.10pm. The values of the four metrics
(1) Number of honks, (2) Duration of honks in secs, (3) 70th

percentile speed and (4) Percentile of speeds < 10 Km/h
are plotted in Fig. 18. There are 12 values for each metric,
corresponding to 12 clips of 10 mins, over 2 hours.

The figures also show as horizontal lines, the classification
thresholds computed, as per Sec. 6.6. For this, we use all
other data on Adi, except these two hours, as training set.
The plots in Fig. 18 show that according to each metric, we
start in free-flow state, and finally move to congested state in
the 2-hour duration. The four metrics 70th percentile speed,
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Figure 18: Change in metric values in two hours

P (vs < 10Km/h), number of honks, and duration of honks
detect congestion at clip numbers 9, 6, 4, and 4 respectively.

The number and duration of honks show an early increase
because, even as congestion is setting in, traffic becomes
more chaotic. Thus there is a state where vehicles are mov-
ing yet honking more due to the increasing disorder. Even
though the four metrics do not agree on the classification
when the traffic congestion is setting in, they all finally re-
port congestion.

The first plot also shows the number and duration of honks
at recorders R1 and R2 separately. We plot this to show that
R1 consistently shows more number and duration of honks
compared to R2. This supports our earlier observation that
vehicle honks are directional, with bias toward the direction
of motion.

We make a final observation using the above data; which
supports our earlier conjecture that metrics used in conjunc-
tion with one another provide more information than using
them individually. Clip number 10 shows relatively fewer
honks and lower honk duration, as compared to other clips
in congestion. But a look at the speed-based metrics for this
clip tells that the 70th percentile speed is 0 Km/h, and 80%
of the speeds are < 10 Km/h. Thus the clip clearly belongs
to congested state. Such use of metrics in conjunction with
one another is part of our future work.

7. DISCUSSION AND CONCLUSION

7.1 Practical difficulties:
We faced several practical issues in the course of the ex-



periments. With respect to the use of the phones for record-
ings, we found during our initial several weeks of experi-
ments that the phones used to go out of synchrony for sev-
eral honks. We conjectured various possible causes for this:
echoes, other interfering applications in the N79 phones,
the WiFi or Bluetooth interface activity, on-phone GPS etc.
The behavior was sporadic and non-repeatable. After a lot
of heart-burn, we finally diagnosed the problem to be as in-
nocuous as button-presses on the phone! If the user pressed
a button to light-up the sleeping display, just to see if all
was well, it caused a large delay (1-2 sec) in the recording.

In the aftermath of the terrorist strikes in Mumbai, our
activities using laptops, phones, external microphones, etc.
aroused a lot of suspicion. While this caused procedural
delay for us, it was nice to see that people were vigilant!
They were also quite helpful once we showed our credentials
and explained our goals.

7.2 Future work:
(1) Going forward, we are working on a hardware pro-

totype which can be installed at several locations for data
collection. (2) Some aspects of our algorithm can be fur-
ther enhanced, such as filtering the spurious honk matches.
(3) The threshold based classification is naive, but effective;
more powerful SVM classifiers can be designed. (4) A finer
grained traffic state classification, (5) using consecutive sen-
sor pairs to estimate traffic queue length, and (6) the use
of traffic state information over several roads for providing
travel time estimates, are other interesting aspects.

7.3 Conclusion:
In conclusion, this paper has considered the important

problem of providing dynamic information about road traf-
fic to users on the move. Our technique is focused on chaotic
traffic conditions. We develop an inexpensive mechanism for
vehicle speed estimation using the Doppler shift of honks
from moving vehicles. We use two sensors (audio recorders).
The speed estimation consists of three steps: honk detec-
tion, honk matching, and frequency extraction. Based on ex-
tensive experiments, we have presented and evaluated algo-
rithms for each of these three steps. We design five different
metrics: 70th percentile speed, P (vs < 10Km/h), number
of honks, duration of honks, and the average noise level, to
classify traffic state as congested versus free-flowing. MWU
and two sample KS tests on these five metrics show statisti-
cal divergence at the 0.1% significance level for two different
city roads. Thus a threshold based traffic state classification
is straightforward: our results show that such classification
matches with ground truth 75-100% of the time. This indi-
cates promise for widespread deployment of our technique.
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