

An Intelligent Transport System (ITS) For Developing Regions

Motivation for ITS

- Too many vehicles, too little road
- Infrastructure growth slow due to lack of funds, space

Rijurekha Sen, Prashima Sharma, Bhaskaran Raman **Department of CSE, IIT Bombay**

System Architecture : Doppler Shift of

Honks

Algorithm Design : Challenges

How to *detect honks* in presence of significan road noise ?

How to *match honks* across two acoustic sensors?

Audio Analysis Softwares

Extensive semicontrolled experiments done inside IIT Bombay campus to design the speed estimation algorithm

al 😋 🎱 🛍 😵 🔊

Microsoft[®]

20

Recorder 2

Direction1

congeste

5 m

Number of honks <i>direction</i> <i>insensitiv</i> Duration honks (se in 10 mins	f Metric e Num. Honks of (sec) s	Hira Congested Free-flow mean (s.d) mean (s.d) [24 samples] [30 samples] 113 (30.4) 55.5 (21.1) 45.1 (12.4) 21.8 (9)	Adi Congested Free-flow mean (s.d) mean (s.d) [27 samples] [27 sample] 149.4 (27.8) 57.6 (21.2) 71.5 (21.4) 21.7 (9.2)		Metric70th perc. SpeedPerc. Speed < 10KmphNum. HonksHonk durationMaximum false posi	based # Fp (%) 24.1 20.9 10.7 7.1 tive is 27.2%	ira Fn (%) 8.3 25.3 17.4 19.6	A Fp (%) 12.1 27.2 0.0 0.0 0.0 0.0	di Fn (%) 5.6 18.3 5.9 5.9 5.9	Continuou road sound pm on 4 th De Adi Shanka showed t freeflow to d on all fo	us recording of d from 6 pm – 8 ecember, 2009, in aracharya Marg, ranstion from congestion, based our metrics.	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Contributions Can handle <i>chaotic</i> traffic; higher the chaos, more is the amount of honking, better is the performance. Our algorithm gives fairly <i>accurate speeds</i> in practice. Low cost; each acoustic sensing unit will cost around \$20. Two sample KS and MVU tests show statistical divergence of <i>congested and freeflow</i> states at 99% confidence level for each of the four metrics. Can differentiate traffic states in two <i>directions</i> on the same road. Can detect <i>onset of congestion</i>. 			king, ed and	 Future Work Deploying sensors for automated data collection. Planning optimal sensor placement. Developing algorithms for real time data classification based on historical values. Correlating data from various sensors to estimate travel time. Correlating data from consecutve sensor pairs to estimate vehicle queue length. Designing mobile applications to provide ITS. 				ation based on ravel time. stimate vehicle	 Publications Rijurekha Sen, Vishal Sevani, Prashima Sharma, Zahir Koradia, Bhaskaran Raman, "Challenges In Communication Assisted Road Transportation Systems for Developing Regions", 3rd ACM Workshop on Networked Systems for Developing Regions, (NSDR'09), a workshop in SOSP'09, Montana, USA, 11 Oct, 2009. Rijurekha Sen, Bhaskaran Raman, Prashima Sharma, "Horn-Ok- Please", Mobisys'10 (under submission) 			
											5	Conclusior