HORN-OK-PLEASE

An *Acoustic* Sensor Based Road *Congestion Detection* technique in *Developing Regions*

Rijurekha Sen, Bhaskaran Raman, Prashima Sharma
Department of Computer Science,
IIT Bombay
Why is solving this problem important?

“Congestion in Developing Regions”
Armenia
Bangladesh: Dhaka
Brazil : Sao Paolo
China
Egypt : Cairo
Pakistan : Karachi
Mexico
Nepal : Kathmandu
Sri Lanka : Candy
India: Delhi
India : Mumbai
India : Chennai
India : Bangalore
India : Hyderabad
Why is solving this problem interesting?

“Issues with Existing Solutions”
Intelligent Transport Systems (ITS)

- Infrastructure growth slow due to lack of funds & space, bureaucracy
- ITS uses technology to alleviate problems

State of the art in ITS

- **Fixed sensor based**
 - Sensors placed on or under road
 - *Eg. - Dual loop detector, Image sensor, Magnetic sensor*

- **Mobile sensor based**
 - Sensors placed in probe vehicles
 - *Eg. - GPS receiver, smartphone's accelerometer & microphone*

Challenges in developing regions

- ❌ High installation and maintainance costs
- ❌ Assumption of lane based system
- ❌ Assumption of low variability in vehicle speed
- ❌ *Low proliferation* of GPS and smartphones
- ❌ *Lack of incentive* in participatory sensing
- ❌ *Power drainage* issue of phones
- ❌ *Privacy* issues

No one technique can be used to solve an issue of this magnitude. Techniques have to be used in conjunction with one another, based on *applicability* and *ease of deployment*
Our Approach: Using *Acoustic* Sensors

Chaotic Traffic is Noisy!!

Can we exploit this??
System Architecture: Doppler Shift of Honks

Envisioned Architecture

- Raw or processed data from deployments on other roads
- Dynamic traffic info to mobiles (pushed/pulled)
- Honking zone of interest
- Recorder 1: 5 m
- Recorder 2: 20 m
- Local radio (optional): 802.15.4 or Bluetooth or 802.11

Underlying Theory

Receding honk

\[f_1 = \frac{v}{(v + v_s)} \times f_0 \]

Approaching honk

\[f_2 = \frac{v}{(v - v_s)} \times f_0 \]

Vehicle speed

\[v_s = \frac{(f_2 - f_1)}{(f_2 + f_1)} \times v \]
Work Done (Jul-Dec, 2009)

Empirical Data Collection
- Are there enough honks on road?
- What is the honk frequency range?
- What is the average honk length?

Algorithm Design & Evaluation
- How to detect honks in the presence of road noise?
- How to match honks across the two recorders?
- How to extract f_1 & f_2 from a pair of matched honks?
- How accurate are our speed estimates?

Testing Applicability on Real Roads
- Do speed estimates from city roads represent traffic state?
- Can some metrics distinguish congestion from freeflow?
- Can we detect traffic state for individual directions on a bidirectional road?
- Will metric values for congested and freeflow be statistically different?
- Can we classify new traffic data into based on historical data? What is the classification accuracy?
- Can we detect the onset of congestion?

Experimental approach used all through
Hardwares and Softwares used

- Voice recorder of Nokia N79
- 16 KHz sampling frequency
- Mono channel
- 16 bit encoding
- Wav format
- Audio based synchronization

Empirical Data

3 hours of data = 18 clips of 10 mins each
manually detected 257 honks

- Honk frequency range – 2-4 Khz
- Average number of honks per clip - 30
- Honk length - CDF
Phone Synchronization

Method

- Audio based synchronization
- Square wave pattern generated in matlab
- Evaluation done across 70 pairs

Evaluation

Expected difference = 700 ms
Calculated difference = t1 ms
Error = |700 – t1| ms

Expected difference = 1 s
Calculated difference = t2 s
Error = |1 – t2| s

Part of recording to be clipped from recording1
Recording started early
Synchronization pattern in recording1

Recording started late
Synchronization pattern in recording2
Synchronization pattern in recording
Honk Detection

Preprocessing
1) Bandpassing
2) Windowing time
3) FFT computation

Algorithms
1) PeakVsAvgAllFreq
2) PeakVsAvgHonkFreq
3) PeakAbsAmp

Postprocessing
1) Length bounding
2) Honk merging

Evaluation:
- 257 honks from empirical data used
- An 8 ms window marked as **honk & not detected** -> fn++
- An 8 ms window marked as **non-honk & detected** -> fp++
- $\text{fn}/(\text{total number of honk windows}) \times 100 = \text{fn(\%)}$
- $\text{fp}/(\text{total number of non-honk windows}) \times 100 = \text{fp(\%)}$

<table>
<thead>
<tr>
<th>Stage</th>
<th>PeakVsAvgAllFreq</th>
<th>PeakVsAvgHonkFreq</th>
<th>PeakAbsAmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>22.3</td>
<td>0.2</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>length bounding</td>
<td>5.6</td>
<td>0.7</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>74.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.04</td>
</tr>
<tr>
<td>honk merging</td>
<td>5.7</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
</tr>
</tbody>
</table>

fp(\%) falls
- 22.3%
- 5.6%
- 5.7%

fn(\%) falls
- 0.2%
- 0.7%
- 0.4%

T = 10
T = 2
Experimental Setup

Honk Matching

Criteria:
1) starttime_difference
2) duration_ratio

\[
\frac{d_1 f_1}{d_2 f_2} = \frac{d_2}{d_1} = \frac{f_1}{f_2} = \frac{v - v_s}{v + v_s}
\]

Start time difference should be 28-30 ms at 10 m and 57-59 ms at 20 m with sound speed 340-350 m/sec

Duration ratio should be 1 for stationary bike, which is not so. So only starttime_difference is used for matching.

To be done: Analyze cause
Frequency Extraction

2048 point FFT used (1024 point FFT for honks < 128 ms length)

Local maxima same after Doppler shift

Exchange of top two local maxima
How accurate are the speed estimates?
Setup

Speeds in Kmph

<table>
<thead>
<tr>
<th>Type</th>
<th>V12</th>
<th>V13</th>
<th>V23</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>0.89</td>
<td>7.57</td>
<td>3.77</td>
<td>4.41</td>
<td>2.89</td>
</tr>
<tr>
<td>SLOW</td>
<td>11.2</td>
<td>14.79</td>
<td>7.53</td>
<td>11.17</td>
<td>3.63</td>
</tr>
<tr>
<td>SLOW</td>
<td>13</td>
<td>18.38</td>
<td>7.5</td>
<td>12.96</td>
<td>5.44</td>
</tr>
<tr>
<td>SLOW</td>
<td>14.88</td>
<td>18.38</td>
<td>11.3</td>
<td>14.85</td>
<td>3.54</td>
</tr>
<tr>
<td>SLOW</td>
<td>14.93</td>
<td>18.43</td>
<td>11.33</td>
<td>14.9</td>
<td>3.55</td>
</tr>
<tr>
<td>SLOW</td>
<td>16.82</td>
<td>18.43</td>
<td>15.16</td>
<td>16.8</td>
<td>1.64</td>
</tr>
<tr>
<td>MED</td>
<td>20.55</td>
<td>19.03</td>
<td>22.03</td>
<td>20.53</td>
<td>1.5</td>
</tr>
<tr>
<td>MED</td>
<td>20.56</td>
<td>22.05</td>
<td>19.01</td>
<td>20.54</td>
<td>1.52</td>
</tr>
<tr>
<td>MED</td>
<td>20.56</td>
<td>19.01</td>
<td>18.93</td>
<td>19.5</td>
<td>0.92</td>
</tr>
<tr>
<td>MED</td>
<td>22.39</td>
<td>22.81</td>
<td>21.99</td>
<td>22.4</td>
<td>0.41</td>
</tr>
<tr>
<td>MED</td>
<td>22.39</td>
<td>22.81</td>
<td>21.99</td>
<td>22.4</td>
<td>0.41</td>
</tr>
<tr>
<td>MED</td>
<td>23</td>
<td>15.62</td>
<td>25.19</td>
<td>21.27</td>
<td>5.01</td>
</tr>
<tr>
<td>MED</td>
<td>23</td>
<td>25.08</td>
<td>26.27</td>
<td>24.78</td>
<td>1.65</td>
</tr>
<tr>
<td>MED</td>
<td>24.22</td>
<td>22.81</td>
<td>25.58</td>
<td>24.2</td>
<td>1.38</td>
</tr>
<tr>
<td>MED</td>
<td>25.5</td>
<td>26.04</td>
<td>24.98</td>
<td>25.51</td>
<td>0.53</td>
</tr>
<tr>
<td>MED</td>
<td>25.5</td>
<td>20.83</td>
<td>29.98</td>
<td>25.44</td>
<td>4.57</td>
</tr>
<tr>
<td>HIGH</td>
<td>27.99</td>
<td>20.83</td>
<td>20.23</td>
<td>23.02</td>
<td>4.32</td>
</tr>
<tr>
<td>HIGH</td>
<td>27.99</td>
<td>20.83</td>
<td>34.83</td>
<td>27.88</td>
<td>7</td>
</tr>
<tr>
<td>HIGH</td>
<td>30.73</td>
<td>29.98</td>
<td>31.52</td>
<td>30.74</td>
<td>0.77</td>
</tr>
<tr>
<td>HIGH</td>
<td>33.36</td>
<td>34.97</td>
<td>31.66</td>
<td>33.33</td>
<td>1.66</td>
</tr>
<tr>
<td>HIGH</td>
<td>33.36</td>
<td>31.66</td>
<td>34.97</td>
<td>33.33</td>
<td>1.66</td>
</tr>
<tr>
<td>HIGH</td>
<td>33.36</td>
<td>29.98</td>
<td>36.93</td>
<td>33.42</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Error Measures

- 30 honks
- 25 matched across all three
- stddev(|v12|,|v13|,|v23|)
- max(|v12-v13|,|v12-v23|,|v13-v23|)
- avg(|v12-v13|,|v12-v23|,|v13-v23|)
- |v12|/(|v13|+|v23|)*100
road_speed_vary

- 36 honks
- 4 lost due to annotation errors
- 26 matched across all three

<table>
<thead>
<tr>
<th>type</th>
<th>v12</th>
<th>v13</th>
<th>v23</th>
<th>mean</th>
<th>s.d</th>
</tr>
</thead>
<tbody>
<tr>
<td>sta</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>slow</td>
<td>9.50</td>
<td>8.75</td>
<td>11.46</td>
<td>9.9</td>
<td>1.4</td>
</tr>
<tr>
<td>slow</td>
<td>13.95</td>
<td>10.58</td>
<td>17.96</td>
<td>14.16</td>
<td>3.69</td>
</tr>
<tr>
<td>slow</td>
<td>13.95</td>
<td>10.58</td>
<td>17.24</td>
<td>13.92</td>
<td>3.33</td>
</tr>
<tr>
<td>slow</td>
<td>14.11</td>
<td>17.43</td>
<td>15.15</td>
<td>15.56</td>
<td>1.7</td>
</tr>
<tr>
<td>slow</td>
<td>14.11</td>
<td>17.44</td>
<td>10.71</td>
<td>14.08</td>
<td>3.37</td>
</tr>
<tr>
<td>slow</td>
<td>14.15</td>
<td>13.99</td>
<td>14.32</td>
<td>14.15</td>
<td>0.16</td>
</tr>
<tr>
<td>slow</td>
<td>14.15</td>
<td>13.99</td>
<td>14.32</td>
<td>14.15</td>
<td>0.16</td>
</tr>
<tr>
<td>slow</td>
<td>14.15</td>
<td>13.99</td>
<td>14.32</td>
<td>14.15</td>
<td>0.16</td>
</tr>
<tr>
<td>slow</td>
<td>15.30</td>
<td>12.39</td>
<td>17.29</td>
<td>14.99</td>
<td>2.46</td>
</tr>
<tr>
<td>med</td>
<td>17.49</td>
<td>17.24</td>
<td>17.74</td>
<td>17.49</td>
<td>0.25</td>
</tr>
<tr>
<td>med</td>
<td>19.10</td>
<td>17.63</td>
<td>17.95</td>
<td>18.23</td>
<td>0.77</td>
</tr>
<tr>
<td>med</td>
<td>21.04</td>
<td>18.93</td>
<td>17.84</td>
<td>19.27</td>
<td>1.63</td>
</tr>
<tr>
<td>med</td>
<td>22.00</td>
<td>24.27</td>
<td>21.60</td>
<td>22.62</td>
<td>1.44</td>
</tr>
<tr>
<td>med</td>
<td>22.00</td>
<td>24.20</td>
<td>21.54</td>
<td>22.58</td>
<td>1.43</td>
</tr>
<tr>
<td>med</td>
<td>22.96</td>
<td>20.75</td>
<td>21.80</td>
<td>21.84</td>
<td>1.11</td>
</tr>
<tr>
<td>med</td>
<td>24.60</td>
<td>24.14</td>
<td>21.47</td>
<td>23.4</td>
<td>1.69</td>
</tr>
<tr>
<td>high</td>
<td>26.42</td>
<td>24.14</td>
<td>28.80</td>
<td>26.45</td>
<td>2.33</td>
</tr>
<tr>
<td>high</td>
<td>26.42</td>
<td>27.51</td>
<td>28.80</td>
<td>27.57</td>
<td>1.19</td>
</tr>
<tr>
<td>high</td>
<td>29.00</td>
<td>34.19</td>
<td>28.80</td>
<td>30.66</td>
<td>3.06</td>
</tr>
</tbody>
</table>

Errors Measures

- Frequency (Hz)
- Time (secs)

Annotations
Wrong matches at 1 and 2

R2 does not detect honks at 7

Vehicle honks are **directional**

To be done:
- Improve matching algorithm
- Ascertain accurate speed ground truth
Can we apply these speed estimates on real city roads to detect congestion?
Road Experiments

- 18 hours of road data collection
- 2 different roads

- Different times of the day
- Different weather conditions

4.30 pm : Freeflowing

7.30 pm : Highly Congested

Adi Shankaracharya Marg (outside IITB, notorious for congestion)
Empirical Speed CDFs

Percentile speed < 10 Kmph: clearly distinguishes congested from freeflow.

High speed in congestion??

Zero speeds in freeflow??

70th percentile speed: clearly distinguishes congested from freeflow.

Freeflowing Traffic
Congested Traffic
(1) Speed estimates give traffic direction (2) Show freeflow and congestion in opposite directions on a normal day (3) On a rainy day, both directions show congestion, as rain causes vehicles to be slower.
Congested vs Freeflowing : Metrics

70th Percentile Speed (Kmph)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Hira Congested mean (s.d) [24 samples]</th>
<th>Hira Free-flow mean (s.d) [54 samples]</th>
<th>Adi Congested mean (s.d) [27 samples]</th>
<th>Adi Free-flow mean (s.d) [27 samples]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70th perc. speed (kmph)</td>
<td>12.2 (4.0)</td>
<td>18.2 (6.2)</td>
<td>7.7 (6.1)</td>
<td>21.1 (6.1)</td>
</tr>
<tr>
<td>Perc. speed < 10 Kmph</td>
<td>65.6 (11.6)</td>
<td>51.1 (16.3)</td>
<td>79.5 (16.1)</td>
<td>37.6 (20.2)</td>
</tr>
</tbody>
</table>

Speed based metrics

Number of honks

<table>
<thead>
<tr>
<th>Metric</th>
<th>Hira Congested mean (s.d) [24 samples]</th>
<th>Hira Free-flow mean (s.d) [30 samples]</th>
<th>Adi Congested mean (s.d) [27 samples]</th>
<th>Adi Free-flow mean (s.d) [27 samples]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. Honks</td>
<td>113 (30.4)</td>
<td>55.5 (21.1)</td>
<td>149.4 (27.8)</td>
<td>57.6 (21.2)</td>
</tr>
<tr>
<td>Honk duration (sec)</td>
<td>45.1 (12.4)</td>
<td>21.8 (9)</td>
<td>71.5 (21.4)</td>
<td>21.7 (9.2)</td>
</tr>
</tbody>
</table>

Non speed based metrics

Noise level (db) can be used in Hira but not in Adi.
Statistical divergence of congested vs freeflowing data, based on all four metrics, is verified at 99.9% confidence using the Mann-Whitney U and two sample Kolmogorov-Smirnov tests.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mann-Whitney U test</th>
<th>Kolmogorov-Smirnov test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hira</td>
<td>Adi</td>
</tr>
<tr>
<td>70th perc. Speed</td>
<td>2.00E-006</td>
<td>7.48E-007</td>
</tr>
<tr>
<td>Perc. Speed < 10 Kmph</td>
<td>1.05E-005</td>
<td>2.28E-004</td>
</tr>
<tr>
<td>Num. Honks</td>
<td>5.33E-015</td>
<td>2.13E-014</td>
</tr>
<tr>
<td>Honk duration</td>
<td>3.86E-014</td>
<td>3.89E-014</td>
</tr>
</tbody>
</table>

Statistical divergence of congested vs freeflowing data, based on all four metrics, is verified at 99.9% confidence using the Mann-Whitney U and two sample Kolmogorov-Smirnov tests.

Threshold based congestion detection

<table>
<thead>
<tr>
<th>Metric</th>
<th>Hira</th>
<th>Adi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Fp (%)</td>
<td>*Fn (%)</td>
</tr>
<tr>
<td>70th perc. Speed</td>
<td>24.1</td>
<td>8.3</td>
</tr>
<tr>
<td>Perc. Speed < 10Kmph</td>
<td>20.9</td>
<td>25.3</td>
</tr>
<tr>
<td>Num. Honks</td>
<td>10.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Honk duration</td>
<td>7.1</td>
<td>19.6</td>
</tr>
</tbody>
</table>

Maximum false positive is 27.2% and maximum false negative is 25.3%
Continuous recording of road sound from 6 pm – 8 pm on 4th December, 2009, in Adi Shankaracharya Marg, showed transition from freeflow to congestion, based on all four metrics.

- Directionality of honks, road fork
- Non-speed based metrics show earlier rise than speed based
- Metrics to be used in conjunction (clip 10)
Ongoing Work
Sensor Platform Design

- **C5505 EZDSP** will sample and process road noise.
- Results will temporarily be stored in flash memory.
- Stored results will be sent to server over GPRS.
Enhancements

1. Reducing hardware
 - Mic + FM receiver with C5505 stick (bottom) instead of first phone.
 - Mic + FM transmitter (left) at 30 m instead of second phone.

2. Beyond acoustic sensor
 - Using RSSI and LQI variation, packet error rates between Zigbee tx-rx pair (bottom) across road as metrics to measure congestion.
 - Using magnetic sensor module SBT80 from Honeywell (right).

3. Beyond honks
 - Using characteristic road sounds other than honks.
 - Auto engine (left) and heavy vehicle sound (right).
Thank You

Questions??