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Abstract

Road congestion is a common problem worldwide. Intel-
ligent Transport Systems (ITS), in developed countries, seek
to alleviate this problem using technology. But such ITS are
mostly inapplicable in developing regions due to high cost
and assumptions of orderly traffic. Efforts in developing re-
gions have been few. We seek to develop low-cost ITS tech-
niques to detect road congestion which will work in disor-
derly road conditions. We propose techniques based on road
noise, especially vehicular honks, a characteristic feature of
Indian roads. We take Indian traffic conditions as an exam-
ple for our analysis but we believe that most of our claims
and experimental results can be extended to other develop-
ing countries too.

Our system comprises a pair of road side acoustic sen-
sors, separated by a known distance. If a vehicle honks
between the two sensors, its speed can be estimated from
the Doppler shift of the honk frequency. In this context, we
have developed algorithms for honk detection, honk match-
ing across sensors, and speed estimation.

We have done extensive experiments in semi-controlled
settings as well as three different real road scenarios un-
der different traffic conditions. From the road-side record-
ings, we have identified five possible metrics to characterize
traffic state: 70th percentile of vehicle speed, percentileof
speeds below 10 Kmph, number of honks, duration of honks
and noise level. Statistical divergence of congested and free
flowing traffic data, based on these five metrics, is verified at
99% confidence using the two sample KS and MWU tests. We
have designed a threshold based technique to classify traffic
state into congested and free flowing. n-fold cross validation
of this technique gives minimum classification accuracy of
75% for all five metrics.

1 Introduction

1.1 Need for ITS in India

Road traffic conditions in India have particularly wors-
ened in recent times as is evident from one of the statistics
which states that the average number of vehicles on Indian
roads is growing at an enormous rate of 10.16 percent annu-
ally since the last five years [1]. The condition is particularly
alarming in metropolitan cities like Mumbai, where vehicle

penetration has reached over 590 vehicles per km of road
stretch and in Bangalore, where about 5 million vehicles ply
on a road network that extends barely 3000 kms [2, 3]. This
is leading to higher levels of road congestion, longer and un-
predictable travel times, wastage of time and fuel for com-
muters and more cases of road accidents. Growth in infras-
tructure has been slow due to various reasons such as high
cost, lack of space, bureaucracy, etc. It thus needs to be sup-
plemented with ITS techniques that utilize existing infras-
tructure more efficiently to give better traffic management.
What is the congestion level at important road intersections?
Given a source and a destination, what is the route that will
take least travel time? How should new infrastructure such
as flyovers, freeways, etc be planned to minimize conges-
tion? There is an evident need of ITS based applications that
can answer such questions to make traveling on Indian roads
less cumbersome.

1.2 Inapplicability of Existing ITS Techniques in India

Many ITS applications have already been designed, im-
plemented, deployed and are being used in developed coun-
tries. But there are some major differences between the road
and traffic conditions that are prevalent there and in India.
For e.g. in USA, freeways and expressways extend to over
75,000 kms [4], while [1] claims that only about 200 kms
of expressways are present in India. The nature of traffic
is fundamentally different from that in the developed traf-
fic. The difference needs to be experienced to be fully un-
derstood, but an appreciation can be partially gleaned from
the representative video at [5, 6]. Unlike traffic in devel-
oped countries, traffic on Indian city-roads is characterized
by two aspects (1) There is high variability in size and speed
of vehicles. The same road is shared by 4-wheeled buses
and trucks, 4-wheeled cars and vans, 3-wheeled vans and
auto rickshaws, 2-wheeler motor-bikes, bicycles, often-times
pedestrians and bullock-carts too. (2) Partly as a corollary of
the variability, traffic is often chaotic, with no semblanceof
a lane-system common in developed countries [7]. Roads
are also generally not as well maintained, with potholes be-
ing common. Thus it is intuitive that the various techniques
that have been developed in the context of traffic conditions
in developed countries will not be applicable directly in an
Indian context. We elaborate more on this intuition in Sec-
tion 2.
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1.3 Our Proposed ITS Technique

The chaos on Indian roads cause traffic to be inherently
noisy. A characteristic feature of this traffic noise is exces-
sive use ofhonks. Honks are an integral part of driving on
Indian roads; cautioning pedestrians, alerting fellow drivers
– everything is expressed through honking. This gives rise
to a system of moving sources (vehicles) of sound (honks).
Speed of such vehicles can be estimated using Doppler shift
of the honk frequency. Our proposed ITS technique uses this
concept.

1.4 Thesis Goal

We envision a system where cheap acoustic sensors i.e.
recorders are placed on the roadside and vehicle speeds are
estimated from the Doppler shift of vehicular honks recorded
by the sensors. Till date, we have designed a two sensor ar-
chitecture to achieve this and designed algorithms for honk
detection, honk matching across the two sensors and fre-
quency extraction for speed estimation. Our speed estimates,
validated through experiments on university campus roads
and a pair of city roads show error under 6 Kmph. This level
of accuracy is enough to use the speed estimates in binary
classification of traffic states into congested and freeflow-
ing. We have designed five metrics, based on whose values,
we can do such binary classification. Two of the metrics
are speed based, namely70th percentile of speed and per-
centile of speed below 10 Kmph. The remaining three are
non speed based acoustic metrics - number of honks, dura-
tion of honks and noise level. Statistical divergence of con-
gested vs freeflowing traffic data has been verified at 99%
confidence level using MWU and two sample KS tests. We
have developed a threshold based technique for binary classi-
fication of traffic data into congested and freeflowing states.
Using 18 hours of city road data for both training and test-
ing and n-fold cross validation, we have achieved minimum
classification accuracy of 75% for each metric.

1.5 My Contributions

Prof. Bhaskar Raman had the idea of using Doppler shift
of honk frequency in vehicle speed estimation. Zahir Kora-
dia did the initial implementation and some semi-controlled
experiments for proof of concept of this technique. The de-
tails of Zahir’s work can be found in [8]. I have moved
forward the initial work through the following steps.

• Extensive study of existing ITS techniques and their ap-
plicability in India and other developing regions. This
was done as part of my seminar. An integration of this
seminar along with those of Vishal Sevani and Prashima
Sharma can be found in [8].

• Empirical data collection from real roads to see if suf-
ficient vehicles honk in practice and what are the com-
mon properties of honk like average duration and fre-
quency range. Details of this step can be found in Sec-
tion 5.

• Implementing a sound based synchronization technique
to time synchronize the recorder pairs. Details of this
step can be found in Section 4.5.

• Speed estimation using Doppler shift of honks has three
components - detecting honks in each sensor’s record-
ing, matching a honk as the same across the two sen-
sors, extracting appropriate frequencies from matched
honks to estimate speed. While Zahir had the basic im-
plementation of all these, his work was incomplete. The
algorithms had many manual aspects and most param-
eters were arbitrarily chosen. I refined the algorithms
manifold through in-depth study, semi-controlled ex-
periments and data analysis. Prashima Sharma has
worked with me throughout this step, the division of
work being 60% by me and 40% by her. Details of this
step can be found in Sections 6, 7, 8.

• Evaluation of the speed estimation technique using
semi-controlled experiments, both inside campus and
on real roads. The in-campus experiments and data
analysis were done along with Prashima Sharma. De-
tails of this step can be found in Section 9.

• Studying the application of the technique in traffic state
classification on real roads through experiments. This
involved 18 hours of data collection sitting on the road,
data analysis, design of proper metrics to do traffic state
classification, verifying statistical divergence of data of
congested vs freeflow based on these metrics, imple-
menting a simple threshold based technique to do a two-
way traffic state classification and validating the last
technique using n-fold cross validation. Details of this
step can be found in Section 10.

2 Related Work
ITS can be developed for many applications - monitoring

the road surface condition, predicting the arrival time of pub-
lic transport, estimating travel time between two places, au-
tomatic toll collection, detection of road congestion to redi-
rect commuters to less congested roads and so on. This work
is on developing acoustic sensor based techniques for road
congestion detection in developing regions. So we focus
specifically on existing road congestion detection techniques
and seek to gauge what advantages or disadvantages existing
approaches have in our context.

ITS techniques can be divided into two broad categories
- fixed sensor basedwhere the sensors, that gather various
road related information, are statically placed on or by the
side of the road. The second category isprobe vehicle based,
where the sensors are mobile and placed in a subset of vehi-
cles that ply the road.

2.1 Existing fixed sensing techniques

There are three main on-road sensing techniques as fol-
lows.
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2.1.1 Dual loop detectors

Technique Pairs of inductive loop detectors can be used to
identify vehicles based on their length [9]. Identifying
the same vehicle at the two detectors can give an esti-
mate of travel time between the two detectors. Devia-
tion from expected travel time can signal congestion.

Critique Widespread application of the technique in con-
gestion detection can be prohibitive in terms of infras-
tructure cost, as dual loop detectors need to be con-
structed at regular intervals along the road. As given
in [10], a vehicle loop detector costs $700 for a loop,
$2500 for a controller, $5000 for a controller cabinet,
$300000 for fiber optic cable per mile and 10% of the
original installation cost for annual maintenance as of
1999. Furthermore, the inherent assumption of lane-
based orderly traffic makes it inapplicable for chaotic
road conditions.

2.1.2 Image sensors

Technique Some papers [11] use image sensors, deployed
on road side and measure congestion level by image
processing techniques, where slower the images change
with time, higher is the level of congestion.

Critique These techniques have high installation and main-
tenance cost, [12, 8], running into $10-20K per instal-
lation.

2.1.3 Magnetic sensors

Technique [13] uses a single magnetic sensor to detect the
ontime of vehicles pasing it, calculates the length of
vehicle based on the ontime assuming constant speed
common to all vehicles. From a large number of sam-
ples of ontime and vehicle length, they calculate me-
dian of the two metrics and estimate median speed as
medianlength

medianontime
. If this median speed deviates from ex-

pected median speed, congestion is reported.

Critique While these techniques can be relatively inexpen-
sive, they also make assumptions of traffic orderli-
ness [8]. Secondly, detection of motorcycles is unre-
liable [13], which form a substantial part of road traffic
in developing regions. Thirdly, the assumption of low
variability in vehicle speeds also does not hold in de-
veloping regions where heavy slow moving trucks and
high speed motorbikes ply the same road.

2.2 Existing Probe-based Techniques

Techniques In probe based techniques, the main focus is
on GPS based sensing. A lot of work is being done
in developed countries to devise, implement and deploy
such systems. A small amount of work has been done to
use sensors available on smartphones. The basic details
of these works are discussed below.

• [12] considers GPS-enabled probe-vehicles. Us-
ing probe-vehicles’ GPS traces, they first clas-
sify the road network intosegmentsdelimited by
traffic signals. Temporal and spatial speed traces
within each segment are then analyzed, and a
thresholding technique is developed to catego-
rize traffic within the segment as congested versus
free-flowing.
Critique - Segments are bounded by signalized
intersections. In India, even within such a
segment, traffic conditions will vary as there will
many intermediate intersections, not signalized,
where drivers will follow random protocols to
decide who will go first.

• The Mobile Millennium project of UCBerke-
ley [14] includes a six month pilot deployment
of GPS technology, where thousands of GPS mo-
bile phones were placed in a subset of vehicle
within a focus area. Participating users agreed to
place these cell phones in their vehicles in order
to transmit positioning data. The phones received
live traffic information from a map application for
free. In context of this deployment, they have
developed algorithms for travel time estimation,
optimal sensor placement and protecting user pri-
vacy.

• [15] attempts to predict bus travel times in Chen-
nai, a metropolitan city of India. The authors de-
vise a system with GPS data and linear regres-
sion techniques using bus dwell times at intersec-
tions and bus stops, number of passengers, aver-
age speed of bus, lengths of 2 lane road, 4 lane
road and 6 lane road between start and target bus
stops.
Critique - There are three open issues with
this system– (a) deviation of the system from
linear regression model in case of road incidents,
(b) infeasibility of collecting passenger data
manually in case of practical deployments and (c)
recalibrating the linear model for each different
bus route.

• [16] develops techniques to augment sparse GPS
data with Wi-fi localization information from ur-
ban hotspots. Secondly it develops a new tech-
nique to map GPS traces to road segments us-
ing hidden Markov models with Viterbi matching.
Thirdly they experimentally quantify power con-
sumption in mobile devices if GPS sensing is kept
on.

• [17] tries to characterize traffic and road condi-
tions in the Indian city of Bangalore at low infras-
tructure cost using mobile phones that have sev-
eral sensing components like microphone, GPS
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receiver, accelerometer and camera. The main
contribution of their work is automatic reorien-
tation of accelerometer. They devise a triggered
sensing mechanism to save power on resource
constrained mobile devices. They roughly local-
ize using GSM, radio for which consumes low
power. If this rough localization shows the phone
to be in region of interest, say an impending road
intersection, GPS receiver is turned on to localize
more accurately. Accelerometer is next turned on
to detect braking and if there is sufficient braking,
microphone is turned on to detect honks. If honks
also are substantial, congestion is reported.

Critique - Accuracy and cost effectiveness of this
technique for road monitoring is yet to be judged
on the basis of how these mobile phone based
sensors will be deployed (scale and density), how
data from them will be aggregated, processed and
used to infer road conditions.

Issues with deploying probe based techniques in In-
dia:

Though probe based techniques are inexpensive and do
not assume traffic to be orderly, there are some general
issues in their deployment in the current Indian traffic
scenario for the following reasons.

• In India, proliferation of GPS receivers in vehicles
is quite low. Few fleet companies like Meru [18],
Easycabs [19] and state transport companies like
BMTC [20] have GPS units installed in their de-
vices. The first two fleet companies have ser-
vices only in Mumbai, Hyderabad, Bangalore and
Delhi and have around 5000 vehicles in each city.
BMTC has round 5500 vehicles in Bangalore. But
there are 42 cities in India with population exceed-
ing 1 million [21] where there is no such service.
Even for the cities which do have fleet services,
percentage of fleet vehicles is low compared to the
total vehicle number. Low percentage of probes
might cause sensed information to be outliers and
not representative of the general traffic trend.

• The fleet companies might have GPS information
about their vehicles, but since that location infor-
mation is the key to their business success, there
is little reason for them to share travel time in-
formation with other transport companies and the
common commuters.

• Smartphone penetration in India is also quite low,
is about only 2% as claimed by [22], though mo-
bile phone penetration is extremely high. Most
people have low end phones unable to take part in
participatory sensing.

• Even for the people who do have smartphones, it
is very difficult to think of a business model to

attract them to take part in participatory sensing
as that involves sensing as well as communication
costs. Power drainage figures, as reported in [16]
to keep GPS receivers in on mode is quite high.

Inspite of the above issues, probe based techniques are
definitely more promising than their fixed sensing counter-
part due to low cost and lack of unrealistic assumptions. If
coverage of any city by probe vehicles is high, practical ITS
techniques can be designed and deployed.

2.3 Existing Audio based Techniques

Technique Vehicle speed estimation using Doppler shift of
frequencies of vehicular sound is a well known idea.
Radars are based on this principle, and the adaptation
of the technique to police “speed-guns” is common.
Radars require the sound beam to be “aimed” at a spe-
cific moving vehicle.

Critique On a road where there are multiple vehicles of
various sizes (i.e. multiple sources of reflection), and
where the ambient noise is high, the use of radars is
questionable. Indeed, we are unaware of the use of
radars on Indian roads.

Technique [23] suggests a low cost technique of vehicle
speed estimation by classifying acoustic wave patterns,
recorded with a single roadside acoustic sensor. It uses
engine, tire, exhaust and air turbulence noise as vehic-
ular sound, Doppler shift of whose frequencies is used
to compute vehicular speed.

Critique Presence of highly noisy traffic and a huge variety
of acoustic signatures of vehicles will limit the applica-
bility of such techniques on Indian roads.

3 Our Approach: Vehicle Speed Estimation
Using Doppler Shift of Honks

Noise in Indian roads has a unique characteristic, namely
abundance of vehicular honks. Honks are present, in In-
dia, under all road conditions: congested or otherwise. They
are tightly knit with the driving “protocol”, so much so that
honking is considered an aspect of “safe” driving. And such
thinking is not without truth since, in many situations, honks
are expected by drivers/pedestrians to avoid accidents. We
seek to develop a vehicle speed estimation technique, us-
ing road-side acoustic sensors that record vehicular honks.
Based on the Doppler shift observed in the measured fre-
quencies of the honks, it is possible to estimate the speed
with which the honking vehicle is moving.

If source of sound moves with speedvs, receiver of sound
is stationary, emitted frequency of sound isf0 and speed of
sound isv, then

• when source moving away from the receiver, frequency
observed at receiver is given by,

f1 =
v

(v + vs)
f0 (1)
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• when source moving towards the receiver, frequency
observed at receiver is given by,

f2 =
v

(v − vs)
f0 (2)

If f0 is known,vs can be estimated easily from equations 1
and 2. But it is not easy to guessf0 as different honks have
different base frequencies. In absence off0, we thus need to
use an alternate arrangement using two sound receivers, as
shown in Fig.1. When a moving vehicle blows honk in be-
tween the two receivers, it is approaching one receiver and
receding from the other. Substituting value off0 from equa-
tion 1 in equation 2, we get following equation,

vs =
(f2 − f1)

(f1 + f2)
v (3)

Estimation ofvs is thus a three step process.

Detection of honk from the recording at each of the two
sensors in presence of background noise.

Matching honks across recordings in two sensors to iden-
tify the same honks recorded in both.

Extracting frequenciesf1 and f2 in Equation 3 from
each honk pair, matched as the same across the two sen-
sors.

Using thef1, f2 obtained through the above three step
process and taking speed of sound (v) = 340 m/sec, we can
estimatevs applying Equation 3.

The system we envision comprises of inexpensive
road-side acoustic sensors, collecting dynamic information
about vehicle movement on the roads, using the technique
discussed above. The sensors are wireless enabled, and
communicate with a central server to convey the learnt
information. This is shown in Fig. 1. Subsequent analysis
is used to extract information such as the road traffic state,
and this is conveyed to other mobile users. The traffic state
can be in terms of a simple free-flowing versus congested
classification, or finer grained.

The advantages of our approach are listed below.

• The wireless-enabled sensors are cheap. The compo-
nents needed are a recorder, a processor, a flash mem-
ory, a local radio, a clock and some connectivity like
GPRS/GSM. It is very similar to the mobile phone hard-
ware, which one can get as cheap as $20 in India.

• The technique is custom made for chaotic traffic. There
is no orderliness assumption, in fact, more the chaos,
more is the number of vehicles honking and higher is
the number of speed estimates obtained.

Figure 1. System Architecture
• The more used or congested a road is, the more the

reason to honk; indeed we observe this consistently in
our experimental data. So we have a nice property:
more the need for traffic updates, more are the vehic-
ular speed samples we get.

• The number of speed samples is likely to be far higher
than any probe-vehicle based mechanism. Furthermore,
we readily get speed samples from all kinds of vehicles
on the road (4-wheelers, 3-wheelers, 2-wheelers, etc.).
The lack of penetration of GPS receivers/ smartphones
in India, power drainage and privacy issues and lack of
incentives in participatory sensing have no role to play
here. Most vehicles honk, when traffic is chaotic and
congested.

Scope of this work - Till date, we have done some empiri-
cal analysis of road noise data to learn honk properties. We
have designed and implemented algorithms for the three step
speed estimation. Road experiments to evaluate our speed
estimation algorithm and verify its applicability in conges-
tion detection has been done. Some specific things we have
not done yetare as follows.

• We have used two N79 phones as recorders, and not yet
designed any acoustic sensor customized for our pur-
pose.

• All analysis has been offline, there has been no connec-
tivity or data transfer from the recorders in the experi-
mental site to any central server.

• Recorders have been positioned in places showing con-
gestion in peak hours and free flow otherwise. Places
were also chosen according to convenience of stand-
ing/sitting with the recorder. Optimal sensor placement
based on traffic criticality or road coverage has not been
studied yet.
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• The data analysis has been strictly in terms of detecting
patterns and designing metrics for differentiating con-
gested traffic data from that of freeflowing. Correlating
data from different sensor pairs to estimate travel time,
correlating data from consecutive sensor pairs to esti-
mate vehicle queue length, doing time series analysis to
detect congestion patterns at specific times of the day,
forecasting future traffic state from present state using
machine learning techniques on historical data have not
been done.

• No user level application has been designed to provide
information to commuters on the road.

All the above things, not done yet, provide interesting av-
enues of future work.

4 Details of Experimental Methodology
There are three distinct phases of the work done till now-

a) empirical study of road noise, b) designing and imple-
menting algorithms for speed estimation and c) designing
metrics to do traffic state classification and verifying its ap-
plicability on real road data.

In the empirical study of road noise, we seek to know
what is the average honk length and what is the peak fre-
quency range of a honk, so that we can use this knowledge
in our algorithm design. We also seek to learn how often
vehicles honk as that will decide the feasibility of practical
deployment of our system.

In the algorithm design phase, our main questions are as
follows: how can we detect honks in presence of substan-
tial background noise of roads? How can we match honks
recorded at the two sensors as one? How can we extractf1
andf2 in Equation 3 to estimate speed? How accurate are
our speed estimates thus obtained?

In the third phase, we ask questions like are the speed es-
timates obtained from real city roads representative of the
contemporary traffic state? Can we distinguish traffic states
as congested or freeflowing using some speed-based met-
rics? Can any non-speed based acoustic metric be used in
conjunction with speed-based metrics for traffic state classi-
fication? Is there a way to detect traffic state for individual
traffic directions on a bidirectional road? Will data for con-
gested and free-flowing traffic be statistically different based
on the metrics that we design? Is there any way to classify
new traffic data into congested or freeflowing state based on
historical data and if so, what is the classification accuracy?
Can we detect onset of congestion i.e. the transition from
freeflowing to congested state?

Extensive experiments, both on campus roads and city
roads have been done to find answers to the questions above.
The setups, hardware and software used in the experiments
are detailed in this section.

4.1 Experimental setups

We have used two kinds of experimental settings, which
we call campus-roadand city-road. The campus-roadex-

periments are within the IIT-Bombay campus, where there
is relatively little traffic. So we use a motorbike and control
when we honk. We however have no control over the fre-
quency pattern, the sound echoes, etc. So the campus-road
experiments are semi-controlled. This greatly helped us dur-
ing the algorithm development process.

Thecity-roadexperiments are on various city roads. We
term one set of roads asHira, which are from a residential
locality calledHiranandani. These roads were one-lane in
each direction, and about 10 m wide overall. We also have
a set of measurements on a much wider road, calledAdi
Shankaracharya Marg, which we abbreviate asAdi. This
road is 3 “lanes” each way: see [6]. BothHira andAdi are
known for their congestion at peak times, the latter more so
than the former.

4.2 Line of vehicle motion

In our architecture, we assume that the line of vehicle mo-
tion coincides with the line joining the two sensors. This
causes some inaccuracy, but there are several ways to reduce
it. (1) If the inter-sensor distance is large with respect to
the road width, the inaccuracy is low. Most city roads are at
most two “lanes” wide, or about 5m each way. So we ex-
pect the speed estimation inaccuracy due to this to be small.
(2) Further, our algorithms seek to restrict honk samples to
a sub-region near the middle of the two recorders; we call
this the “honking zone of interest” (see Fig. 1). The intuition
behind this is that near the middle of the two recorders, the
speed estimate inaccuracy due to distance between the line of
motion and the line joining the recorders, is minimized. (3)
Many roads have a divider separating the two directions of
traffic. In such cases, the pair of recorders could be deployed
on the divider, and not on the side of the road, to reduce the
inaccuracy.

Despite the above measures, some inaccuracy is unavoid-
able, but as we show, this inaccuracy does not matter when
we finally estimate the traffic state.

4.3 Sensor placement

There are several issues related to how far the sensors are
to be placed. The two sensors need to be sufficiently away
from one another for the primary reason that we get sufficient
honk samples in-between. An additional reason may be the
reduction of the above-mentioned inaccuracy. However, if
the two sensors are too far apart, the chances that the same
honk is heard at both places reduce. Furthermore, if a local
radio is used for communication between the two sensors in
future, its range is also a concern.

We have chosen an inter-sensor distance of 30m, and a
20m long honking zone of interest (see Fig. 1). This set-
ting gives a good number of honks in the zone of interest.
And if the sensors are mounted on light poles, the local ra-
dio range can be several tens of metres if not more, even for
the relatively high frequency of 2.4GHz [24] for 802.15.4 or
Bluetooth or 802.11.
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4.4 Hardware and Software Used

Our envisioned deployment will have custom-built hard-
ware for recording, which we have not worked on till
now. So we use the inbuilt voice recorder utility of Nokia
N79 phones for recording. Three open source softwares
–mp4tomp3converter v3.0, Praat and Audacity are used
for manual preprocessing and analysis of the recordings.
Though these are fairly complex audio processing softwares
having a wide array of functionalities, we use a limited set
of operations as follows.

• Voice recorder utility in N79 saves the recordings
in MP4 format. We convert MP4 to MP3 through
mp4tomp3converter v3.0converter.

• The recording is downsampled to 16 Khz from 48 Khz,
converted to mono channel from stereo channel and
saved as a 16 bit encoded wav file usingAudacity. The
wav format is easy for processing through open source
libraries like Libsndfile. According to [17], frequency
range of honks is within 2-4 Khz, so 8 Khz sampling
frequency would be enough according to Nyquist’s the-
orem. We double the sampling frequency to reduce
noise. Stereo channel and higher bit encoding do not
add any benefit to our analysis, so they are not used.

• Praat shows spectrogram of the recordings with time
on the x-axis and frequency on the y-axis with higher
amplitudes colored darker. We canseesound peaks in
the recording as dark bands as well ashear them by
playing. ThusPraat provides a two way identification
of characteristic sounds.

• The spectrogram of a characteristic sound inPraat, see
Fig.2, also shows the start time and the end time in mi-
crosecs level granularity.

• As seen in Fig.3,Audacitycan be used to see which fre-
quencies have the highest amplitudes in the recordings.

• Bandpassing is done usingAudacityto reduce ampli-
tude of sound outside frequency of interest.

4.5 Time Synchronization of Sensor Pair

Time synchronization of the audio files recorded in the
two recorders is an important subproblem for the following
reason. If Recorder1 starts at timet0 and Recorder2 starts
at time t1 according to some global clock andt1 − t0 =
∆t, then any event at timet according to the global clock in
Recording2, should be matched a) not with an event at timet
according to global clock in Recording1, but b) with an event
at timet+∆t. If we erroneously do a) instead of b), we might
have very bad consequences in our case where honks from
two different vehicles might get matched as the same. The
basic problem is Recorder1 has∆t time of extra recording
in the beginning that needs to be clipped. This is a precursor
for any further experiment or algorithm development. Hence
we give the details of this now.

Figure 2. Spectrogram in Praat

Figure 3. Spectrum in Audacity

Figure 4. Time synchronizing audio files

4.5.1 Synchronization Method

In practice, it is not possible to know which recorder started
early, let alone knowing the precise value of∆t. We thus
take the idea of node synchronization using wireless mes-
sages that the nodes receive at the same time and start count-
ing time = 0 from then. We seek to record a common sound
in the two recorders so that the two recorders can start count-
ing time = 0 from the time they record the common sound.
The common sound to be recorded needs to have two proper-
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ties i) it should have a distinct pattern to be distinguishedas
a special sound ii) the starting needs to be easily detectable,
so thattime = 0 in the two recordings can be assigned to
the two detected start times in the two recordings and they
should be within microseconds of each other.

For the common sound, we synthetically generate a wav
file usingMatlab that has 10 square waves, each of 250 Hz
frequency and 100 millisecs duration, separated from each
other by zeros whose durations increase from 100 millisecs
to 900 millisecs in steps of 100 millisecs (See Fig.4). When
we start Recorder1 and Recorder2, we initially play this wav
file. It gets recorded in the two recorders which then con-
tinue to do the recording of road data in the same audio file.
At the end of recording, we detect the start of the common
sound,t1 andt2 in the two files respectively,t2 being greater
thant1 and clipt2 − t1 part of the second file from the be-
ginning.

The common sound has a self non-repetitive pattern that
makes each crest-trough pair in the pattern unique. There is
no chance of matching one crest-trough pair in a recording
with another crest-trough pair in the other recording, thusre-
ducing chances of synchronization error. Secondly, even if
one or both recorders start so late that this common sound
has already started playing, still we can clearly identify the
crest-trough pair that the recorder starts to record as each
pair is unique. This allows us the late start of the recorders,
though the amount of delay after the common sound starts
playing should be less than the duration of the common
sound before the last crest-trough pair i.e. 5.5 ms.

We use this audio based approach for synchronization be-
cause we have to record anyway. So using other synchro-
nization mechanisms like Wi-Fi, Bluetooth or GPS based
techniques, each of which is available on the N-79, will need
extra effort with no added advantage. In actual deployments,
with automated data collections, no common sound playing
mechanism will be there. Then we will need to design a
different synchronization mechanism, maybe based on local
radio like Wi-Fi, Bluetooth or Zigbee.

4.5.2 Synchronization Error

The error in synchronization is the error in detecting the start
of the common sound. We seek to quantify this error in the
following way. The problem of detecting the start of the
common sound is same as the problem of detecting the start
of any of the 10 square waves. We know the expected dif-
ference between the start times of two consecutive square
waves. We take the absolute value of the difference between
this expected value and the calculated value as error (See
Fig.5).

We do the above procedure for 70 pairs of square waves
in eight different recordings. The results are shown in Fig.6.
The maximum error is of concern here which is 62 or 63
microsecs. Majority of the errors are zeros.

Figure 5. Method to calculate synchronization error

Figure 6. Synchronization error

5 Empirical Data on Honks

In this section, we seek answers to three important ques-
tions: (1) are there indeed enough honks? (2) what are typ-
ical honk durations? (3) what frequencies have highest am-
plitudes in a honk?

We performed several road-side recordings atHira, us-
ing an N79 mobile-phone. The recordings are in terms of
10-minute clips. We recorded in various conditions (morn-
ing, noon, evening, night), and at different roads inHira.
Since this was a precursor to our honk detection algorithm,
we sought to detect honks “manually”, using a two-step pro-
cess, to establish ground-truth. We first look for dark regions
in the spectrogram of the recording inPraat. Such dark re-
gions indicate a sound peak. An example is shown in Fig. 2.
We then verify that this is indeed a honk by hearing the iden-
tified region of recording. The dark region also gives us a
measure of the honk duration, within an estimated error of
a few milliseconds. We can only guess the error here, since
we aredeterminingground-truth.

5.1 How often do vehicles honk?

For the 18 ten-minute clips we recorded, we found an av-
erage of 30 honks per clip. The median was 27 honks, the
minimum 15, and the maximum 63 honks per clip. Note
that these honks were those within the recording range of
the recorder we used. While these numbers can clearly vary
with the road and the conditions, there appear to be a large
enough number of honks to get several vehicle speed sam-
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ples per minute.

5.2 How long do vehicles honk?

Fig. 7 shows the CDF of the honk durations, as visually
detected in the spectrogram, for the 18 x 10-min = 3 hours
of recordings. We see that over 90% of the honks are at least
100ms long. The median honk length is about 200ms. And
there are some honks which are more than 1-2 seconds long.
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Figure 7. CDF of honk length

5.3 What is the audio frequency of honks?

We use the Discrete Fast Fourier Transform (FFT) [25]
tool in theAudacitysoftware to determine the honks’ dom-
inant audio frequencies. Nericell [7] claims that honk fre-
quency range is between 2-4 KHz. We verify this claim in
our data: out of approximately 300 honks in the recordings,
only 3 have a dominant frequency outside of this range.

6 Honk Detection
The first of our three-step speed estimation process is

honk detection.
Nericell [7] uses the following simple honk detection al-

gorithm. The recording is broken up into 100ms windows.
A Discrete Fast Fourier Transform (FFT) [25] is performed
on each window. A discrete FFT transforms a sample set in
time domain to frequency domain. A 100ms window is said
to be a honk if there are at least twospikes, with at least one
spike in the 2-4KHz range. A spike is defined as a frequency
whose amplitude in the FFT is at least a thresholdT times
the average amplitude across all frequencies. Values of 5-10
are reported to work well forT .

While we use Nericell’s basic approach, we adapt it in
several subtle yet significant ways.

Band-pass filtering: Actual road experiments produce
highly noisy data. The noise level varies from road to road
and from time to time. Since detection of honk involved
identifying some frequencies whose amplitudes are above
average amplitudes by a certain threshold, that threshold be-
comes difficult to be ascertained if the average amplitudes
varied. This is exactly the problem posed by variable noise
which makes average amplitude to fluctuate. Hence band-
pass filtering, that reduces amplitude of frequencies outside
the honk frequency range of 2-4 Khz is done inAudacity
prior to further processing.

Breaking time into small windows: Unlike [7], in our
case, the problem is not only to detect the presence or the
absence of a honk. In case we detect the presence, we also
need to detect the start and end times of the honk as pre-
cisely as possible. The first reason for this is matching two
honks recorded in two recorders as the same will be difficult
if boundaries are imprecise. Secondly, if we do not get the
entire honk frequency spectrum,f1 andf2, extracted from
the spectrum, might not be correct. Hence we decide to di-
vide time into small windows to get precise time values.

The algorithm choices for honk detection that we discuss
next, involve frequencies in the recording and hence we need
to compute FFT. The number of samples in a time window,
to be used in FFT computation of that time window, is re-
quired to be equal to the number of FFT points. For a given
sampling frequency (16 Khz in our case), the number of sam-
ples in a time window is directly proportional to the size of
the time window, which we want to decrease. This will de-
crease number of samples and hence decrease usable number
of FFT points. Reducing number of FFT points reduces fre-
quency resolution. Thus, though from the viewpoint of im-
proving time granularity of detected honk, decreasing time
window size seems necessary, the effect of decrease in fre-
quency resolution in detection needs to be analyzed. We do
this after stating the algorithm choices of honk detection.

6.1 Algorithm choices

We considered three possible choices for the algorithm.
(1) PeakVsAvgAllFreq: This algorithm, similar to [7],

considers a time window to be a honk if a frequency in the
2-4 KHz range has an amplitude at leastT times the average
of all frequenciesin that time window. We have found that
T = 10 works uniformly well for all roads,after the band-
pass filtering step; without the band-passing, we were unable
to find one uniform threshold for all situations.

(2) PeakVsAvgHonkFreq: This algorithm is similar to
PeakVsAvgAllFreq, except that we compare the peak against
the average of the amplitudes in the honk frequency (2-
4KHz). The intuition behind this is the same as the intuition
being bandpassing. We wish to remove effect of noise in the
spectrum outside honk spectrum on deciding honk detection
thresholds.

(3) PeakAbsAmp:This labels a time window as a honk if
the absolute threshold of any frequency in 2-4KHz range ex-
ceeds -20dB. We saw the amplitudes of frequencies in honk
spectrum from the empirical data and saw that a honk typi-
cally has amplitudes> -20dB in the honk spectrum.

6.2 Choosing the time window size

Returning to the question of what time window size to
use, we observe the following. In the honk detection al-
gorithms above, the exact value of frequency is unimpor-
tant. Whether a peak exists with the property stated in the
heuristic is all that matters. Thus high frequency resolu-
tion and hence high number of FFT points are not required.
We choose to use 128 FFT points (128 is the minimum FFT

9



points supported by the open source FFT implementation we
use). With 16 Khz sampling frequency and 128 samples per
time window, we have time window size as 8 millisecs which
is enough for time granularity.

6.3 Experimental evaluation of algorithm choices

To evaluate the above algorithm choices, we use the same
3 hours of road-side recording as given in Sec. 5, where we
manually (visually and through hearing) labeled 257 honks.
A false-positive is an 8ms window which is labeled as not
a honk in the ground-truth, but is detected as a honk by the
algorithm. And a false-negative is a window which is la-
beled as a honk in the ground truth, but not detected by the
algorithm.

Table 1 tabulates the results for the three algorithms. As
we can see from the first row, the initial results are quite poor.

6.3.1 Honk length bounding

On closer look, we found that most of the false positives
were due to stray windows i.e. some stand alone windows
accidentally matching the criteria of the detection algorithm.
Since our CDF in Fig. 7 shows that over 90% of the honks
are longer than 100ms, we use this as a lower-bound in our
honk boundary detection. That is, any 8ms window which is
not part of a train of at least 14 such windows, is classified as
nota honk. This lower-bounds the honk length to be at least
14 × 8ms = 112ms. The second row in Tab. 1 shows the
effect of honk length bounding. False positives are largely
reduced.

6.3.2 Honk merging

Furthermore, in our various in-campus experiments, we
found that the honk detection algorithms many timessplit
the same honk as several shorter honks. To correct this, we
introduced amergingstep, where two trains of 8ms windows
(detected as honks) are merged if they are separated by not
more than 3 intervening non-honk 8ms windows. The last
row in Tab. 1 shows the effect of this merging step. We see
that the false negatives come down further, with almost no
effect on the false positive rate. This honk merging step was
implemented by Prashima Sharma.

More than the reduction in the false negative rate, honk
merging ensures that we do not have spurious honk bound-
aries (start/end), which is important for honk matching, as
we shall see.

6.3.3 Algorithm choice

PeakVsAvgHonkFreqhas a high rate of false negatives. The
reason is, in a honk window, most frequencies in honk range
have fairly high amplitudes. So the peak cannot exceed the
average amplitude of the honk frequency range by a thresh-
old T. In fact, these values are for T=2, instead of T=10 as
in PeakVsAvgAllFreq. Still the false negatives are so high.
The false positives forPeakVsAvgHonkFreqare low, but hav-
ing high false negative is a more serious offense in our sce-
nario. Having same false positives in both recorders is very

unlikely, so they will get filtered out in the honk matching
step. But a false negative cannot be rectified in any way.

The other two algorithms have comparable performances,
with PeakVsAvgAllFreqbeing the better of the two. So we
choosePeakVsAvgAllFreqas our honk detection algorithm.

Table 1. Comparison of honk detection algorithms

6.4 The final honk detection algorithm

(1) Perform band-passing to filter out (reduce the ampli-
tude of) sounds outside 2-4KHz. (2) Break time into 8ms win-
dows, and usePeakVsAvgAllFreq (with T = 10) to classify
each window as a honk or non-honk. (3) Use honk length
lower bounding followed by honk window train merging to
arrive at the final set of honks, along with their time bound-
aries.

6.5 An alternate algorithm choice

Prof. Preeti Rao of speech processing group in the Elec-
tical Engineering Department of IIT Bombay suggested an
alternate algorithm of honk detection as follows.

Equidistant maximas Frequencies in 2-4 Khz having
highest amplitudes form an arithmetic progression series.
See Fig.8, where the arrows between two successive max-
imas are approximately of equal length.

Figure 8. Equidistant peaks

But when frequency spectrum of different honks were
seen inAudacityandSonic-Visualizer, the number of maxi-
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mas varied from honk to honk, the distances between consec-
utive maximas pairs were approximately equal instead of be-
ing exactly same and this distance also varied among honks.
These factors made it difficult to decide uniform thresh-
olds. Furthermore, high frequency resolution was needed
that came into conflict with the need of high time resolution
in detection. Hence the algorithm was not used.

7 Honk Matching
Honk detection can be done independently by each

recorder. After detection, the same honk has to bematched
across the two recordings. In our honk-matching step, we
also seek to ensure that we match only honks in the “zone of
interest” (Fig. 1).

To match honks, we consider the following two intuitions.
(1) StartTimeDiff: For two honk windowsh1 andh2, at

recorders R1 and R2 respectively, to have originated from
the same honk, within the zone of interest, the difference
between the start times ofh1 andh2 must be bounded. For
instance, in Fig. 1, suppose the honking vehicle is at distance
x1 andx2 respectively from the two recorders, when it starts
honking. And if the vehicle is within the zone of interest at
this time, then|x1 − x2| < 20m. So ideally, the start times
of h1 andh2 must differ by not more thanD = 20

v
, wherev

is the speed of sound.
(2) DurnRatio: This criterion bounds the ratio of honk

durations in the two recorders to be aboveR. Ideally, if
d1 andd2 are the honk durations at recorders R1 (honking
vehicle receding this recorder) and R2 (honking vehicle ap-
proaching this recorder) respectively,d1f1 = d2f2, since the
number of wavelengths (lambdas) seen by both the recorders
is the same (also same as the number of wavelengths gener-
ated at source). So,d2

d1

= f1

f2

= v−vs

v+vs

wherev is speed of
sound andvs is speed of vehicle. Sincev is fixed, this ratio
will decrease with increasingvs. The maximum value ofvs

on Indian roads is about 50Kmph. Thusd2

d1

> 0.92 i.e. R =
0.92.

Sources of error: There are two main possible sources
of error. First, there may be environment-dependent echoes.
The second source of error is something we realized after
experimenting: the honk amplitude is different at the two
recorders. This is especially so when the vehicle is in-
between the two recorders: most honk installations are di-
rectional by design. That is, they give a higher amplitude in
front of the vehicle than behind it. Such amplitude difference
in turn means that one recorder willdetectit earlier than the
other, for any given value ofT in our detection algorithm.

Experimental evaluation of honk matching heuristics:
We use semi-controlledcampus-roadexperiments to test the
usability ofStartTimeDiffandDurnRatio. For this, we place
Recorder-1 near a stationary bike. This is shown in Fig. 9.
Recorder-2 is first at a distance of 10m and then at a distance
of 20-m from Recorder-1. For the first position of Recorder-
2, we blow the bike honk 15 times, for the second position 10
times and record in both the recorders. This experiment was
conducted and data analysis was done along with Prashima

Sharma.

Figure 9. Evaluation setup for StartTimeDiff& DurnRatio

Verifying StartTimeDiff: For sound speed ofv =
340m/s, the expected start time difference is29ms at 10m
and59ms at 20m. We measure the actual start time differ-
ence for the 25 honks recorded in the above experiment using
our honk detection algorithm. Fig. 10 shows the results.

We can see that most of the start time differences are close
to what we expect. But there can be errors as much as a few
tens of milli-seconds, due to the various reasons listed ear-
lier. Given this experiment, we take theStartTimeDiffthresh-
old value ofD = 80ms, keeping some allowance from the
expected value of59ms at 20m.

Figure 10. Start time difference values (ms) for 25 honks

Verifying DurnRatio: To evaluate the DurnRatio heuris-
tic, we calculate the durations of the 25 honks using our de-
tection algorithm. The speed of the bike being 0, the dura-
tions of the same honk in the two recordings, should be the
same; i.e. we expectd1 = d2, or d1

d2

= 1. But at a dis-

tance of 10m, we found thatd1

d2

varied all the way from 0.43
to 1.75 for the 15 honks. At a distance of 20m, the values
varied from 0.38 to 0.96. In both cases, most values were
significantly different from the expected value of 1.

We viewed each honk pair inAudacity and found a sig-
nificant trailing pattern after each honk in Recorder-2 (see
Fig. 11). This is likely due to echoes. The cases where
d1 > d2 are likely due to the fact that the honk source was
near Recorder-1. Since there is no discernible pattern to the
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Figure 11. Trailing honk pattern in Recorder-2

variation of d1

d2

, we decide not to use it at all in the honk
matching algorithm.

The final honk matching algorithm: is thus as follows.
If the start time of a honk (h1) recorded in one recorder is
greater or less than the start time of a honk (h2) recorded
in second recorder by at mostD = 80ms, h1 and h2 are
matched; i.e. taken to be from the same honk.

8 Frequency Extraction
From a pair of honks, matched across the two recorders,

we need to findf1 and f2 and calculate speed. With 16
Khz sampling frequency, we have frequencies varying from
0-8Khz in each of the two matched honks after FFT compu-
tation. We are thus left with the question of how to choose a
singlef1 and a singlef2 from this range. In this section, we
concentrate on this problem of frequency extraction.

8.1 Choosing FFT Points

In Section 6, we reduce the FFT points to 128 for (a) in-
creasing time resolution at the expense of (b) decreasing fre-
quency resolution. In the detection algorithm, (a) is neces-
sary for accurate honk boundary detection and (b) does not
cause problem as precise frequency values are irrelevant.

Can 128 points be used here?- N point FFT computation
clubs

n = (samplingfrequency)/N (4)

frequency values into one bin and the central frequency
of that bin represents all then frequency values. So in
Fig.12, frequencies0 to n will be represented in FFT
output asn/2 andn to 2n as3n/2. So if we havef1 =
n/2 andf2 = 3n/2, we calculate the speed value as

vs =
(f1 − f2)

(f1 + f2)
v (5)

while the actual values of the frequencies might be (a)
F1 = 0 andF2 = 2n, in which case correct value of
speed should be

(F1 − F2)

(F1 + F2)
v =

(f1 − n/2)− (f2 + n/2)

(f1 − n/2) + (f2 + n/2)
v

=
(f1 − f2) − n

f1 + f2
v (6)

or (b) F1 = F2 = n, in which case correct vlue of
speed should be

(F1 − F2)

(F1 + F2)
v =

(f1 + n/2)− (f2 − n/2)

(f1 + n/2) + (f2 − n/2)
v

=
(f1 − f2) + n

f1 + f2
v (7)

Since(f1 − f2) is negative, in the former case, we are
under estimating speed and in the latter case, over esti-
mating it. The lower the value ofN , higher is the value
of n and more is the error in speed calculation. So here
we should use high value of N. The corresponding de-
crease in time resolution is not an issue now, as we have
already detected the honk windows precisely. So we
can compute a high point FFT on the honk windows to
extractf1 andf2 as precisely as possible.

Figure 12. Effect of FFT points on speed

So what N to use?- In choosing high value of N, we need
to fulfill two criteria mandated by the FFT computation
– (a) N should be a power of 2 and (b) each time win-
dow passed to the FFT computation algorithm should
have N samples. If we choose N = 4096, we need
time window of 256 ms as our sampling frequency is
16 KHz. From Fig.7, about 65% of the honks in each
sound clip is less than 250 ms in length, so we will have
very few honks with 256 ms time window. Hence we
choose N = 2048, which needs 128 ms time window.
If a honk has more than one 128 ms windows, then we
do 2048-point FFT for each individual window and av-
erage out the amplitudes of each frequency across the
multiple windows. According to Section 6, the mini-
mum honk duration for us is 112 ms. So for the few
honks with duration 112 ms or 120 ms (our honk du-
ration always is a multiple of 8 as detection uses time
window of 8 ms), we will use N = 1024.

8.2 Algorithms

1) peak remains peak - Spectrum of several pairs of
matched honks inAudacity show local maximas re-
main similar across matches (see Fig. 13). Based on
this observation, we argue that if a certain frequency
has highest amplitude in a honk and another frequency
has the highest amplitude in its matched counterpart,
these two frequencies are the Doppler shifted version
of the same frequency in the original honk. This is in-
tuitive theoretically as well. Doppler shift changes the
value of a frequency based on speed of source or re-
ceiver of sound, it does not affect the amplitude of that
frequency in any way. So we choose frequency having
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highest amplitude from one honk asf1 and frequency
having highest amplitude from its matched counterpart
as f2. Using these, we compute speed according to
Equation 3.

Figure 13. Local maximas remaining unchanged after

Doppler shift

2) peak1peak2 exchange- After analyzing data from
the experimentcampusspeedvary described in Sec-
tion 9.2.1, Prashima Sharma observed that in 3 cases
out of 25, the second highest peak in one honk becomes
highest peak in its corresponding match. We call this
situationpeak1 peak2 exchange, which is described
in Fig. 14. We argue that since

f1/f2 = (v − vs)/(v + vs) (8)

wherev is speed of sound andvs is speed of the honk
source, we can find a lower bound off1/f2 by assum-
ing an upper bound forvs. The latter on most Indian
roads is about 50Kmph, though it can be varied from
historical knowledge of speed values of any road. For
example, withv = 340 m/sec and upper bound ofvs as
50 Kmph,f1/f2 has lower bound of 0.92.

So we first seek to use the highest amplitude peaks in the
two recordings. If this gives a value off1

f2

< 0.92, then
we assume that the local maximas have been exchanged in
the two Doppler shifted recordings. We then consider all the
other three possible combinations of the highest and second
highest peaks among the two recordings. We take the com-
bination which gives0.92 ≤ lowerFreq

higherFreq
≤ 1 as the final

frequencies for speed estimation.
The final frequency extraction algorithm: is thus as

follows. Compute 2048 point FFT for a matched pair of
honks, for honk length≥ 128ms. Compute 1024 point FFT
if honk length is between112ms and 128ms. Consider
frequenciesf1 and f2 as per thepeak1 peak2 exchange
heuristic, and use Eqn. 3 for speed estimation.

Figure 14. Exchange of first and second maximas after

Doppler shift

9 Experimental evaluation of speed estima-
tion technique

Next we seek to experimentally evaluate our three step
speed estimation technique. We do semi-controlled experi-
ments in campus and on real roads, bothAdi andHira, using
our own bike and honks from it.

9.1 Ground Truth

9.1.1 Detection and matching

In evaluating honk detection and honk matching, simple
manual annotation of the recording suffices. For example,
when experiments are done on real roads, there are many
vehicles honking, other than our own bike. We wish to eval-
uate honk detection and matching based on the honks of our
own bike. So every time our bike honks, one of the two per-
sons holding N79s, speaks into the phone giving details of
that honk. Later these manual annotations are used to filter
out the extra honks. Fig. 15 shows how a honk followed by
manual annotation looks inPraat.

9.1.2 Speed ground truth issues

But speed ground truth is more difficult to ascertain.
Speedometer errors, parallax error while reading make it dif-
ficult for even drivers of our bike to tell the speed with con-
fidence. It is risky to do the three tasks of maintaining a
constant speed, blowing a honk and reading the speedome-
ter simultaneously while driving on a real road with other
vehicles around.

In our setup, apart from the on-road recorders, we place
a third recorder, called Recorder-3 (R3), on the moving ve-
hicle. Since this recording has no Doppler shift, it should
give f0 as in Eqns. 1 & 2. Thus now we can have three es-
timates of speed for each honk: one from Recorder-1 and
Recorder-2, using Eqn. 3, which we termv12. We also get
an estimate from Recorder-1 and Recorder-3, using Eqn. 2,
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Figure 15. Honk and manual annotations in Praat

which we termv13. We getv23 similarly from Recorder-2
and Recorder-3, using Eqn. 1.

Intuitively, less the difference between the three speed es-
timates from the same honk, more is the reliability of our
technique. However it might happen that though the three
estimates are close to each other, all three are in large er-
ror in terms of the actual ground truth. Hence we do a san-
ity check by comparing the mean of the three speeds to the
speed intuitively estimated by the driver.

9.2 Experimental setup

9.2.1 Campus-road experiments (campusspeedvary)

On a campus road, our bike was driven past the sensors at
various speeds. We varied the speed from 0 Kmph (station-
ary), to slow (about 10 Kmph), to medium (about 25 Kmph)
to high (about 35 Kmph). The vehicle blows a honk near the
middle of the two recorders. A total of 30 honks are blown in
30 different experimental runs. The experiments were done
on 24th Sept and14th Oct, 2009 late in the night, to ensure
absence of other vehicles.

9.2.2 City-road experiments (roadspeedvary)

We conducted similar experiments at roadsHira andAdi too.
Here too, we varied the motorbike speed between 0 Kmph
and about 40 Kmph (the actual speed here was also deter-
mined by the traffic situation at that instant). We have 18
honk samples each fromHira & Adi, making a total of 36
honks. In these experiments, there are several other vehicles’
honks too in the same recording. To distinguish our own mo-
torbike’s honk from these (which is necessary to evaluate the
speed estimation), we annotated the recording by speaking
into one of the recorders. These experiments were done on
28th Nov, 2009.

9.2.3 Varying the position of vehicle honk
(road position vary)

While the above experiments varied the vehicle speed, they
kept the honk position fixed (near the middle of the two
recorders). We now vary the honk position, on our city-road

experiments atHira andAdi. We consider 7 different honk
positions: this is depicted in Fig. 16. The vehicle moves from
position 1 to 7 at a fixed speed (as far as the traffic would al-
low), and honks approximately at the given positions. Three
honk positions, (3,4,5), are between the recorder positions.
These 3 are in the honking zone of interest. Two positions,
(2,6), are at the two recorders and the remaining two, (1,7),
about 10m before and after Recorder-2 and Recorder-1 re-
spectively. These experiments were done on28th Nov, 2009.

Figure 16. Honking positions of bike

9.3 Results

9.3.1 Detection and matching in the cam-
pus speedvary and road speedvary experiments

In thecampusspeedvary experiment, out of the 30 honks
blown, 25 are matched across all the three pairs of recorders,
while the remaining 5 are not detected in one of the three
recorders. Inroad speedvary experiment, 4 out of the 36
honk samples were lost due to manual annotation errors.
And 26 out of the remaining 32 honks were matched across
all the three recorders.

9.3.2 Speed estimates in the campusspeedvary and
road speedvary experiments

Table 2 show the speed estimates for the 25 honks matched
across all three recorders in thecampusspeedvary exper-
iment. The mean speeds conform to the intuitive speed esti-
mates given by the driver in most cases. The maximum stan-
dard deviation acrossv12, v13 andv23 is 5.44 Kmph which
shows that the three estimates are fairly close. Table 3 show
the speed estimates for the 26 honks matched across all three
recorders inroad speedvary experiment. The mean speeds
conform to the intuitive speed estimates given by the driver
in most cases. The maximum standard deviation acrossv12,
v13 andv23 is 3.69 Kmph which shows that the three esti-
mates are fairly close.

9.3.3 Speed error metrics for the campusspeedvary
and road speedvary experiments

Apart from standard deviation, we use three different mea-
sures of error in the speed estimates. We defineAvg3Err
as the average of the three error quantities|v12 − v13|,
|v13 − v23|, and|v23 − v12|. AndMax3Err as the maximum
of these three quantities. Apart from these two measures of
error, we estimate therelative error by taking the ground
truth of the speed to be the average ofv13 andv23.

For each of the 25 matched honks in thecam-
pus speedvary experiment, Fig. 17 shows the three mea-
sures of error.Avg3Err andMax3Err are given on the left
y-axis, while the relative error is given on the right y-axis.
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Table 2. Speed Estimates in Kmph the cam-
pus speedvary experiment

Table 3. Speed Estimates in Kmph for the

road speedvary experiment

The points on the x-axis are sorted in increasing order of rel-
ative error.

Similar error plots are shown for the 26 matched honks in
theroad speedvary experiment in Fig. 18.

We see that both in terms of absolute error and the relative
error, our mechanism is quite reliable, even in noisy city road
conditions. TheAvg3ErrandMax3Errmeasures are mostly
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Figure 17. Speed estimate errors on campus road
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Figure 18. Speed estimate errors on city road

under 5-10Kmph. The relative error is mostly under 10%.
There is one case of high relative error of about 65%. As can
be seen, theAvg3ErrandMax3Err are low for these cases.
We also verified that this was a case where the absolute speed
itself was low, and hence the relative error is high.

9.3.4 Speed error metrics for the roadposition vary ex-
periment

There were a total of 6 honks each at each position except
4, which had a total of 12 honks. At a given position, some
honks are matched, while some are not. For each position,
Fig. 19 gives the average of theAvg3Err, Max3Errand rela-
tive error measures. The plotted value is averaged across the
various number of matched honks for each position. There
are no matches at position 7, and hence no data point is
shown at that position.

As earlier, the relative error is very low (under 5%) at po-
sition 4; it is about 15% for positions 3, 5 and 6. TheAvg3Err
is below 5 Kmph and theMax3Err is below 10 Kmph at 3, 4
and 5.

Ideally, our honk matching algorithm should not have
matched honks at positions 1, 2, 6, and 7, since the zone of
interest is between positions 3 & 5. While position 7 gives
no matches, as expected, position 1, 2, and 6 had matched
honks. They had 2, 4, and 2 honks matched each, out of a
total of 6 honks at each position.

The speed estimates at positions 1, 2, and 6 do show high
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Figure 19. Speed estimate errors at various honk positions

error. The relative error in speed estimates for positions 1&
2 are as high as 60-100%. A closer look at the data revealed
that these are cases of incorrect low-speed estimates (in fact,
zero-speed estimates at position-1), when the honk is outside
the zone of interest. These are caused due to false positives
in the honk matching step.

9.4 Discussion

• Detection and frequency extraction steps in the three
step speed estimation process are seen to be working
well according to the above results. The matching algo-
rithm is somewhat naive, just comparing the start time
differences to a threshold. Even deciding this threshold
is difficult due to the variability of propagation delay of
sound. We plan to study speech processing techniques
that match the same sound based on frequency patterns
and see their applicability in honk matching.

• Some better mechanism to ascertain speed ground truth
needs to be developed. Only then we can quantify the
true accuracy of our speed estimates.

In the next section, we shall see how we can work around
the wrong speed values coming from bad matches, and esti-
mate traffic state despite some fraction of errors in vehicular
speed samples.

10 Traffic state classification

Now if we put the roadside recorder pairs on real roads
and record honks from actual road vehicles, will the speed
estimates obtained from these recordings portray the con-
temporary traffic state? If that is possible, then useful mo-
bile applications can be developed to give traffic updates and
travel time estimates to on-road commuters or those plan-
ning to commute shortly. In this section, we focus on classi-
fying traffic state into two categories: congested versus free-
flowing based on speed estimates. We eventually develop
some non speed based acoustic metrics that can be used in
conjunction with speed based metrics in traffic state classifi-
cation.

10.1 Experimental Setup

We performed 18 hours of experiments on city-roads over
the month of Nov-2009. Of these 9 hours were inHira and
9 were inAdi. We did the experiments in 1-hour chunks,
over different days. The times were chosen such that we, by
visual observation, were able to clearly classify the ground
truth as congested, (see Figure 20), versus free-flowing (see
Figure 21).

Figure 20. Congested traffic in Adi

Figure 21. Free-flowing traffic in Adi

The details of dates and times of experiments inHira are
given in Table 4. ’u’ denotes uncongested or freeflowing and
’c’ denotes congested traffic. Hira1 refers to one road inHira
that always has freeflowing traffic in both directions. Hira2
refers to a road inHira that has congested traffic in one di-
rection and free flowing in the other direction sometimes. In
case of Hira2, traffic state is thus represented as combination
of two states, one in each direction. AtAdi, we collected 4.5

Table 4. Experiment date and time at Hira

hours of free-flowing data and 4.5 hours in congested state.
The road here was wider, and the road noise so high, that
we mostly sense traffic in only one direction, near the side
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where we placed the sensors. There are almost no honks
recorded and matched for traffic in the other direction. The
details of dates and times of experiments with corresponding
traffic states are given in Table 5. As mentioned earlier, both

Table 5. Experiment date and time at Adi

roads experience heavy congestion during peak times, with
the congestion inAdi far more severe.Adi also has a wider
variety of vehicles, large buses and heavy trucks, in addition
to two-wheelers, auto-rickshaws and cars, which are preva-
lent in Hira.

10.2 Speed Distribution Plots

Prior to presenting possible metrics for traffic classifi-
cation, we first get a feel for our data. The primary mea-
surement from a 2-sensor deployment is the set of vehicular
speeds. This is what we look at first, from our experiments.

10.2.1 Granularity of classification

From our recordings, we clip each 1 hour recording into 6
blocks of 10 minutes each. The intuition behind using 10-
min chunks is that the underlying traffic characteristic could
change significantly from one 10-min period to the next. For
each 10-min data, we do honk detection, honk matching and
speed estimation from the matched honks, using our algo-
rithms.

We plot the CDF of speed estimates for each 10-min
block. The number of such CDF plots is too many to present
here, so we show some representative samples. For in-
stance, Fig. 22 and Fig. 23 show 6 sample CDF plots each
(10min×6 = 1hr each), under congestion and free-flowing
traffic, onAdi. The congested plots are of16th Nov, 2009,
7.15-8.15 pm, and free-flowing are of18th Nov, 2009, 5.30-
6.30 pm.

Thus when we do traffic classification later, we do it in
blocks of 10 mins. We take a 10 min block and classify it as
congested or free-flowing based on some metric values.

10.2.2 Observations from CDF plots

From the various CDFs of 10-min durations (only 12 of
which are shown in Fig. 22 & 23), we observe the follow-
ing.

1. First, it is striking to see the clear, visually observable

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Vehicle Speed (Kmph)

7:15pm-7:25pm
7:25pm-7:35pm
7:35pm-7:45pm
7:45pm-7:55pm
7:55pm-8:05pm
8:05pm-8:15pm

Figure 22. Speed CDF samples: congested traffic in Adi

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50  55

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Vehicle Speed (Kmph)

5:30pm-5:40pm
5:40pm-5:50pm
5:50pm-6:00pm
6:00pm-6:10pm
6:10pm-6:20pm
6:20pm-6:30pm

Figure 23. Speed CDF samples: free-flowing traffic in Adi

difference in the CDFs for the congested versus free-
flowing scenarios; we observed this in all of our data.

2. The CDFs under congestion are generally smoother
than CDFs under free-flow. This is due to the larger
number of speed estimates obtained under congestion.
That is, people honk more under congestion, increasing
the number of matched honks.

3. There are a fewhigh values of speed under conges-
tion. We manually analyzed the recordings, and iden-
tified three different reasons for this. (a) Many 2-
wheelers overtake the stagnant vehicle queue at rela-
tively high speed on the wrong side, sometimes even
coming onto the pavement; during such overtaking,
each vehicle honks several times (see [6]). (b) Some-
times the honk-recording, in one or both the recorders,
gets mixed with human voice, police whistle or an over-
lapping honk, each of which has components in the 2-
4KHz range. This changesf1 orf2 or both, giving erro-
neous high speed values. (c) The final possible reason
is wrongly matched honks from two different vehicles,
getting wrongf1 or f2.

4. There are a fewlow values of speed under free flow.
One reason for this is that there is a natural tendency for
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vehicles to honk if they have to slow down for some rea-
son, such as to warn a pedestrian crossing the road. That
is, there is an inherent bias in our honk-based speed
sampling, towards lower speeds. Another reason is that,
like in Fig. 16, some low speed estimates come from
(badly-matched) honks outside the zone of interest.

Observations (3) and (4) essentially mean that there are some
outlier speed values in our speed CDF. The next section
(Sec. 10.3) shows how we can work around this.

10.2.3 Direction sensitivity of speed estimates

Our speed estimates are direction sensitive: each non-zero
estimate is signed. The sign indicates whether the vehicle is
moving from Recorder-1 to Recorder-2 or vice versa. Four
hours of data collected inHira was on a road which had traf-
fic in both directions. The north-south direction always had
free-flowing traffic, and during these four hours, the south-
north direction was congested, due to queue build up prior to
a congested intersection.

In such a scenario, we saw that our speed estimates were
able to represent the two different traffic states, after removal
of all the zero-speed estimates (which had ambiguity in the
direction). A sample set of 6-plots for each direction is given
in Fig. 24 and Fig. 25 respectively which belong to9th Nov,
2009, 6.20-7.20 pm. The difference between the two sets of
plots is apparent visually.

Rainy day: On the same road, a striking result is obtained
from the data on11th Nov, 2009. There was unseasonal rain,
due to a cyclone in the Arabian sea, and this made the traf-
fic slow in both directions. This is clearly identified by our
speed estimates, as seen from Fig. 26 and Fig. 27.

10.3 Metrics for traffic state classification

What metrics can we use to classify traffic state as con-
gested versus free-flowing? The metric should be resilient
to speed sample outliers like those in Fig. 22 & 23. We
present two kinds of metrics: (a) speed-based and (b) non-
speed based acoustic metrics.

10.3.1 Speed-based metrics

From observing all our 10-min CDF plots, we arrive at the
following two metrics: (1)70th percentile speedand (2)
P (vs < 10Kmph), that is percentile of speed samples less
than 10 Kmph. Both these metrics showed clear difference
between the plots in congested and free-flowing traffic states.
The visual difference can be readily seen in the plots of
Fig. 22 versus Fig. 23. The 70th percentile horizontal line
and the 10Kmph vertical line are given for visual aid.

We observed similar differences in all of our other CDF
plots too. We summarize our data as follows. From each
10-min data, we get one sample of each of the above two
metrics. The number of such samples obtained, their mean,
and standard deviation, are given in Tab. 6.

We can see a clear difference between congested and free-
flowing states, for either road. The difference is much more
stark forAdi, which is also what we observed visually.
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Table 6. Speed based metrics

10.3.2 Non-speed based acoustic metrics

The several hours we spent by the road-side, collecting data,
was tiring but gave us useful intuition about road noise. Con-
gested traffic was inherently more noisy than free flowing:
vehicles braking, engines revving, excessive honking, etc..
We now consider whether non-speed based acoustic metrics
can be used to differentiate traffic states. We consider the fol-
lowing three metrics, computed over 10-min recording clips
as earlier. (1) The number of honks detected. (2) The total
duration of honks in 10-min (sum of durations of each honk
detected). (3) And finally, the average noise level (across all
frequencies), in dB.

Tab. 7 shows the mean across the various 10-min samples
as well as the standard deviation, of the three metrics for
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Table 7. Non speed based acoustic metrics

the two roads under the two traffic states. All three metrics
are averaged across recorders R1 and R2. For the first two
metrics, we see that there is a clear difference between the
values in congested versus free-flowing states. This is true
for bothHira andAdi. For the third metric, the average noise
level, although there is a difference, it is not as significant as
in the other two non-speed metrics, especially inAdi.

10.3.3 Discussions on metric choice for binary traffic
classification

After seeing the five metrics, two speed based and three non
speed based, we conclude the following.

• The non speed based metrics are direction insensitive.
So we cannot use them for the directionwise traffic state

classification.

• Two or more the metrics should be used in conjunc-
tion with one another to decide the traffic state. Any
one can give false alarms. For example, during free
flow, it might happen that, none of the drivers of fast
moving vehicles honk. Only one or more vehicles, that
slow down or stop for some reason, blow honk. Our
speed based metrics will give very pessimistic view of
the traffic state in this case. But if the non speed based
metrics are also considered, the actual scenario will be-
come apparent.

• Metric should be chosen specific to road stretch, noise
level can be a metric inHira, but not inAdi.

• The metric mean values, as seen from the tables, in-
dicate that thresholds for each metric should be road
specific. If we always use number of honks under con-
gestion inAdi as threshold,Hira will always seem to
have free flow, as traffic load is much less there, even
under congestion.

10.4 Statistical divergence tests

For the above five metrics, is the difference between their
values in congested versus free-flowing states statistically
significant? To answer this, we employ two non parametric
statistical hypothesis tests: the Mann-Whitney U test and the
two sample Kolmogorov-Smirnov (KS) test. Non paramet-
ric tests are used to avoid assumptions about the underlying
distributions of the metric samples.

For each of the metrics, we conjecture an appropriatenull
hypothesis. For instance, for the70th percentilemetric, for
Hira, we have thenull hypothesisthat the 30 samples from
the congested state and 48 samples from the free-flowing
state come from the same distribution. We thus have a to-
tal of twenty such hypotheses: five metrics x two roads x
two statistical tests.

Tab. 8 lists the p-values from these 20 tests. We see that
other than the noise metric inAdi, all p-values are very low.
Thus the null hypotheses are rejected even at very low sig-
nificance levels for these p-values.

For the noise level metric, for theAdi road, the null hy-
pothesis is not rejected at the 0.001 significance level, butis
rejected at the 0.01 significance level. This matches with our
observation that theAdi road is noisy even in the free-flowing
traffic state, due to several buses and large trucks.

10.5 Threshold based traffic state classification

Given the above high statistical difference, we propose a
simple threshold-based traffic state classification, as follows.
For a given metric, say70th percentile speed, we compute
the mean value of this metric across all congested 10-min
windows. Denote it as, sayXcong. Similarly we compute
the mean across all 10-min windows marked as free-flowing,
and denote it asXfree. For the data we have collected,
Xcong andXfree are given in Tab. 6 & 7 for the 5 metrics.
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Table 8. p-values of statistical tests

We take the threshold for traffic state classification based
on that metric asXthr = (Xcong + Xfree)/2. For in-
stance, for the70th percentile speedmetric,Xthr = (7.7 +
21.1)/2 = 14.4Kmph for Adi. Essentially, we have trained
the classification algorithm using our data set, and any fur-
ther 10-min data would be classified as congested versus
free-flowing based on this threshold. For the70th percentile
speedmetric, if a future 10-min measurement has a metric
value> 14.4 Kmph, it would be classified as free-flowing,
and as congested otherwise.

The various metric mean values, as seen from Tab. 6 & 7,
are different for the different roads. So the thresholds we
calculate should be road specific.

How effective is this threshold-based classification? To
determine this, we have used the following method. For each
experimental 10-min run, marked with ground truth (con-
gested versus free-flowing) in our data, we seek to classify
it using the above threshold-based mechanism. The thresh-
old itself is determined using all the data on that road, except
that 10-min run itself. If our classification detects congestion
for that 10-min window, whereas the ground-truth is marked
as free-flowing, this constitutes a false positive in congestion
detection. The vice-versa case is a false-negative.

Table 9. Threshold based congestion detection

Computing across all 10-min samples, we can thus cal-
culate the false-positive and false-negative rate, for ourtraf-
fic congestion detection mechanism. Tab. 9 summarizes the
false-positive and false-negative rates for the various metrics,
on the two roads.

We see that we achieve reasonably good accuracy; in most
cases, the false positive and false negative rates are under
20%, and in many cases under 10%. Noise level metric in
Adi gives high error as expected.

10.6 Detecting The Onset of Congestion

We present one final experiment to show that our tech-
nique can detect the onset of congestion. For this, we present

data from a continuous two-hour recording, 6pm-8pm, on
4th Dec, 2009, onAdi. The traffic state is initially free flow-
ing. It starts becoming congested from about 6.35pm. Heavy
congestion set in by 7.10pm. The values of the four metrics
(1) Number of honks, (2) Duration of honks in secs, (3)70th

percentile speed and (4) Percentile of speeds< 10 Kmph
are plotted in Fig. 28. There are 12 values for each metric,
corresponding to 12 clips of 10 mins, over 2 hours.
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Figure 28. Change in metric values in two hours

The figures also show as horizontal lines, the classifica-
tion thresholds computed, as per Sec. 10.5. For this, we use
all other data onAdi, except these two hours, as training set.

10.6.1 Observations

The main observations from the figures are as follows.

• The plots in Fig. 28 show that according to each met-
ric, we start in free-flow state, and finally move to con-
gested state in the 2-hour duration. The four metrics
70th percentile speed, P (vs < 10Kmph), number of
honks, andduration of honksdetect congestion at clip
numbers 9, 6, 4, and 4 respectively.

• The number and duration of honks show an early in-
crease because, even as congestion is setting in, traffic
becomes more chaotic. Thus there is a state where vehi-
cles are moving yet honking more due to the increasing
disorder. Even though the four metrics do not agree on
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the classification when the traffic congestion is setting
in, they all finally report congestion.

• The first plot also shows the number and duration of
honks at recorders R1 and R2 separately. We plot this to
show that R1 consistently shows more number and du-
ration of honks compared to R2. This supports our ear-
lier observation that vehicle honks are directional, with
bias toward the direction of motion. Another possible
reason for the number of honks detected at R1 being
higher is the presence of an impending fork in the road
just ahead of R1. Vehicles honk more as they approach
the fork.

• We make a final observation using the above data. Clip
number 10 shows relatively fewer honks and lower
honk duration, as compared to other clips in conges-
tion. But a look at the speed-based metrics for this clip
tells that the70th percentile speed is 0 Kmph, and 80%
of the speeds are< 10 Kmph. Thus the clip clearly
belongs to congested state. This supports our earlier
conjecture that metrics used in conjunction with one
another provide more information than using them in-
dividually.

10.6.2 Inferences

Observing the onset of congestion manually, we could in-
tuitively understand the reason for the rapid change in the
traffic state and even think of some simple and obvious so-
lutions to it. The road had an impending signal about 300 m
ahead of our recorders’ position. At a signal, red light dura-
tion is the time when the traffic queue builds up, and green
light duration is the time, when the traffic queue is cleared.
Initially, in the non peak hours, the small number of vehi-
cles that join the queue during a red light, get enough time
to leave the queue during the next green light. Gradually
fill rate starts growing while service time remains same and
the queue cannot be cleared within that service time. The
vehicles remaining to be cleared in each green cycle add to
the queue length to be cleared in the next green cycle and
the situation worsens rapidly with a long queue building up.
Gradually when fill rate again comes down, the vehicles get
cleared. Given that the peak hours when people go to work
in the morning or return from work in the evening span 2-3
hours, conditions at important traffic signal points is bound
to be grave, which is what we regularly observe in reality.

In case of this particular road stretch,Adi, the road per-
pendicular to it, that shares the same signal and operates in
the alternate cycles, is a low vehicle load road and the load
remains mostly constant throughout the day. It does not con-
nect any important points that will cause traffic to grow dur-
ing peak hours. On the other hand, traffic onAdi, as we have
noted, increases drastically in the peak hours. So a simple ar-
rangement to adjust the signal timer, to have a longer green
cycle in Adi during peak hours, than on its perpendicular
road stretch can improve the situation. Another purpose the

signal serves is to allow people to crossAdi. A foot bridge or
a subway is all that is needed to remove this second factor.

11 Some Problems Faced
Certain issues slow down the course of our work at times.

We discuss two such problems here.

11.1 Why Does Recording Stop?

On certain occasions, the recordings in the two N79s,
even after synchronization using the method discussed in
Section 4.5.1, became unsynchronized after recording for a
while. We first detected this problem when the same honk,
recorded in the two phones held close to each other, showed a
start time difference as high as about 2 secs in the two record-
ings. Multipath reflection or variability of sound propagation
speed would not cause such high delay. The problem seemed
to be that any one N79, in course of recording, stopped
recording for say∆t time and then resumed to record. This
resumed point of recording in this N79 was∆t time behind
its corresponding point in the other N79 recording. The be-
havior was sporadic and hence difficult to reproduce and ana-
lyze. With the intuition that some other process is interfering
with the recording, we turned off processes like screen reori-
entation using accelerometer and Wi-Fi access point prob-
ing, searched for unnecessary background processes running
on the phones using a softwareTaskman and killed them.
We tried to see if moving the phones causes the problem. Fi-
nally we realized that lighting up the display by pressing the
scroll key stopped recording. 40 sets of experiments were
done to validate that the problem occurred if key is pressed
and another 40 sets to validate that problem did not occur
if key is not pressed. These experiments and analysis were
done along with Prashima Sharma.

11.2 Are We Terrorists?

All our road experiments were done in Mumbai, an In-
dian city that has undergone a number of terrorist attacks
in the recent past. So sitting with mobile phones on the
roads, doing recording for hours, naturally raised suspicion
of pedestrians who informed security officers that we were
doing something fishy. Explaining our goal to such individu-
als and convincing them by showing our credentials required
time and patience.

12 Conclusions
The important conclusions of our work are as follows.

• ITS techniques are needed in developing regions to al-
leviate traffic issues. Existing ITS techniques are dif-
ficult to deploy in developing regions for several rea-
sons. Hence designing and implementing a new ITS
technique is an important problem to solve. The chaotic
nature of traffic and low cost constraints in developing
regions, make the problem challenging and hence inter-
esting.

• We can estimate speed of vehicles from honks using
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a two sensor architecture and suitable algorithms for
honk detection, honk matching and frequency extrac-
tion. The matching algorithm is somewhat naive and
gives some false matches. Still the estimated speeds
have error under 6 Kmph, if we take the standard devi-
ation among three estimates of the same speed as error.

• The empirical CDF of speed values estimated from city
road recordings over 18 hours duration, in blocks of 10
minutes, brings out the traffic state of those 18 hours as
congested or freeflowing.

• Though there are some outliers in the speed CDF’s,
metrics like a)70th percentile speed and b) percentile
of speed< 10 Kmph can be used to do binary classi-
fication of traffic states into congested and freeflowing.
Some non speed based acoustic metrics like c) number
of honks d) duration of honks and e) noise level can also
be used for such classification. Metrics should be used
in conjunction with one another to increase classifica-
tion accuracy.

• Directionwise traffic state identification is possible on a
bidirectional road using the speed based metrics as our
speed estimates are signed, the sign giving the direction
of vehicle motion.

• The values of all the metrics for congested and freeflow-
ing states are statistically different. This has been ver-
ified at 99% confidence level using Mann-Whitney U
test and two sample Kolmogorov-Smirnov tests.

• A threshold based classification of traffic state into
congested and freeflowing has been trained and tested
with n-fold cross validation using 18 hours of city road
data where minimum classification accuracy was about
75%.

• Onset of congestion can be detected based on rise or
fall of metric value above or below the threshold for
that metric.

• Our system will be low cost - with each sensor costing
around $20.

13 Future Work
There are several things that are needed to be done. We

divide them into short and long term goals. The short term
goals should be met in the next 4-5 months time. The long
term goals should be studied and understood in parallel to
implementing the short term goals and gradually worked on
in the next 2-3 years.

Short Term Goals:

• Implementing a better matching algorithm or at least
tuning the matching parameters more carefully to filter
out spurious matches.

• Implementing a technique to know vehicle speed
ground truth accurately.

• Designing low cost acoustic sensors customized for our
purpose.

• Implementing connectivity and data transfer from the
recorders in the experimental site to central servers for
real time analysis.

Long Term Goals:

• Optimal sensor placement based on traffic criticality or
road coverage.

• Automating the threshold calculation for different met-
rics on new roads using some clustering mechanism.

• Correlating data from different sensor pairs and design-
ing algorithms to estimate travel time.

• Correlating data from consecutive sensor pairs to esti-
mate vehicle queue length

• Time series analysis to detect congestion patterns at
specific times of the day.

• Forecasting future traffic state from present state using
machine learning techniques on historical data.

• Designing user level applications to provide informa-
tion to commuters on the road.
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