
Fighting Chaotic Road Congestion

Rijurekha Sen, Pankaj Siriah, Bhaskaran Raman, Swaroop Roy, Swanand Kulkarni, Puru Kulkarni CSE, IIT Bombay

PUNE 2011

techvista

Prototype Hardware Horn-Ok-Please (Mobisys'10) **RoadSoundSense (submitted to SECON'11)** (1) f1 = (v * f0) / (v + vs) (2) f2 = (v * f0) / (v - vs)ens **GPRS ANTENNA** (3) vs = ((f2 - f1) * v) / (f2 + f1) **Usability Issues Implementability Issues Developed heuristics for** b) Honk Detection a) Recorder Synchronization • Will the system be able to detect • Can computation intensive acoustic c) Honk Matching d) Frequency Extraction RECORDER **RECORDER 2 signal processing** be implemented on congestion on a **wide variety of roads**? embedded sensor platform? • Will the traffic classification model Extensive in-campus and on-road experiments to test speed accuracy (Worst error 5 Kmph, average error 1.24 • Can the sensing and processing be done in S T vary from road to road? Kmph) • What will be the **training overhead** of **near real-time**? • Will the **cost** be low enough? **Percentile speed < 10 Kmph : clearly** our system on a new road? High speed in • Can we do without training using distinguishes congested from freeflow **Congestion ??** unsupervized learning? 0.90.9 +**** ABS PLASTIC BOX AUDIO CONNECTOR In this work, we seek answer to the above questions 0.8 0.8 J Packaging 0.70.6 Hardware Block Diagram **System Architecture** EMALE MONO FM RECEIVER MICROPHONE 7:15pm-7:25pm ------30pm-5:40pm :40pm-5:50pm - - 🗰 - -7:25pm-7:35pm - -+---**RECORDER 1** FLASH **RECORDER 2** 0.3 1 7:35pm-7:45pm ---*---5:50pm-6:00pm ---**----**--SERVER 7:45pm-7:55pm -6:00pm-6:10pm 0.2 7:55pm-8:05pm -----6:10pm-6:20pm · MICROPHONE MICROPHONE 8:05pm-8:15pm ---e---6:20pm-6:30pm ---@-0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 MONO LEFT CHANNEL MONO Vehicle Speed (Kmph) Vehicle Speed (Kmph) Zero speeds in **IGHT CHANNE 70th percentile speed : clearly** freeflow ?? distinguishes congested from freeflow STEREO-IN UART FM **FM TRANSMITTER** MALE FEMALE DSP TRANSMITTER

	Dual loop detector	Magnetic sensing	Image sensing	GPS in public transport	Smartphones	Acoustic sensing	RF sensing
Handles non-laned traffic	no	no	yes	yes	yes	yes	yes
Cost (infrastructure/computation)	high	low	high	low	low	low	low
Disruption while installation/	yes	yes	no	no	no	no	no
maintenance							
Needs commuters'	no	no	no	no	yes	yes	no
participation							
Commuters incur cost	no	no	no	no	yes	no	no
Commuters have privacy issues	no	no	no	no	yes	no	no
Proliferation in	low	low	low	low	moderate	-	-
developing countries							

Microsoft[®]

DSP module

GPRS modem

FM tx-rx

Microphone

nterfacing PCB

Battery

Enclosure

Flash

Connectors

Total

Research

Unit Price (\$) | Quantity

1

2

1

1

5

Prototype Cost Breakup

50

15

5

20

5

0.4

india

Cost (\$)

50

50

15

10

5

20

5

2

160

DSP MODULE GPRS MODEM

Conclusion