Leveraging Programmable Dataplanes for a High

Performance 5G User Plane Function

Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku Shah,
Mythili Vutukuru

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

India

{abhik,diptyaroop,prateekag,nileshunhale,rinku,mythili}@cse.iitb.ac.in

ABSTRACT

Emerging 5G applications require a dataplane that has a high
forwarding throughput and low processing latency, in ad-
dition to low cost and power consumption. To meet these
requirements, the state-of-the-art 5G User Plane Functions
(UPFs) are built over high performance packet I/O mech-
anisms like the Data Plane Development Kit (DPDK), and
further offload some functionality to programmable data-
plane hardware. In this paper, we design and implement
several standards-compliant UPF prototypes, beginning with
a software-only DPDK-based UPF, progressing to designs
which offload different functions to programmable hardware.
We evaluate and compare the performance of these designs,
to highlight the costs and benefits of these offloads. Our re-
sults show that offload techniques employed in prior work
help improve performance in certain scenarios, but also have
their limitations. Overcoming these limitations and fully
realizing the power of programmable hardware requires of-
floading more complex functionality than is done today. Our
work presents a preliminary implementation towards a com-
prehensive programmable dataplane-accelerated 5G UPF.

CCS CONCEPTS

+ Networks — In-network processing; Programmable

networks; Network performance analysis; Mobile networks.

KEYWORDS

5G core, cellular networks, programmable networks, DPDK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APNet 2021, June 24-25, 2021, Shenzhen, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8587-9/21/06...$15.00
https://doi.org/10.1145/3469393.3469400

ACM Reference Format:

Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale,
Rinku Shah, Mythili Vutukuru. 2021. Leveraging Programmable Dat-
aplanes for a High Performance 5G User Plane Function. In 5th Asia-
Pacific Workshop on Networking (APNet 2021) (APNet 2021), June
24-25, 2021, Shenzhen, China. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3469393.3469400

1 INTRODUCTION

The growth in mobile services and subscribers has resulted
in an exponential increase in mobile signaling and data traf-
fic [3, 41, 47, 59]. The upcoming 5G standards aim to support
applications with diverse traffic characteristics and require-
ments like enhanced mobile broadband, dense deployments
of IoT devices, self-driving cars, and AR/VR [34, 54]. These
applications require high throughput, very low processing la-
tencies, and stringent Quality-of-Service (QoS) enforcement.
The mobile packet core, which connects the radio access
network to external networks, comprises of control plane
components that process signaling messages and a dataplane
that forwards user traffic. The User Plane Function (UPF)
is the main entity in the dataplane of the future 5G mobile
packet core, and has a significant impact on the performance
that users are going to perceive with 5G.

Most state-of-the-art UPFs are built as multicore-scalable
software packet processing appliances running over com-
modity servers, and process traffic using a high performance
packet I/O mechanism like the Data Plane Development Kit
(DPDK) [20]. However, given the stringent performance re-
quirements of 5G networks [34, 54], and ever increasing
network speeds running into hundreds of Gbps, offloading
some UPF packet processing to programmable dataplane
hardware can lead to improved performance, along with cost
and power savings. We establish this benefit of offload in
Table 1, which shows the data forwarding capacity per unit
cost/power for various programmable hardware platforms
as well as a general purpose server CPU core that all run
a UPF. We obtain this table as follows: the UPF throughput

Abhik Bose and Diptyaroop Maji are student authors with equal
contribution.

https://doi.org/10.1145/3469393.3469400
https://doi.org/10.1145/3469393.3469400

APNet 2021, June 24-25, 2021, Shenzhen, China

values for the first two columns (single core server and Agilio
CX 2x10GbE) were measured using our standards-compliant
UPF implementations (§3), while we assumed that the other
hardware platforms were capable of handling offloaded UPF
processing at linerate (a reasonable assumption from our
experience with one platform). The cost and power con-
sumption were obtained from the hardware specifications.
We see from the table that offloading UPF processing to pro-
grammable hardware can result in significant cost and power
savings across a wide variety of programmable dataplane
platforms. The idea of accelerating UPF using programmable
hardware is not new—prior work has proposed offloading
the logic of steering packets to multiple CPU cores of the
UPF [10, 12, 15, 42], as well as the dataplane forwarding it-
self [9, 12, 15, 24, 26]. However, to the best of our knowledge,
none of the existing works systematically enumerates all the
possible ways in which UPF functionality can be offloaded
to programmable hardware, nor do they precisely quantify
the costs and benefits of such offloads.

In this work, we begin with an industry-grade software
based UPF built over DPDK, and progressively offload func-
tions to programmable hardware, to come up with several dif-
ferent UPF prototypes (§3). We then measure the throughput
and latency characteristics of such UPFs to analyze the pros
and cons of offloading UPF functionality to programmable
hardware (§4). For example, we find that offloading the logic
of steering packets to the multiple CPU cores reduces UPF
processing latency by up to 37% and increases throughput by
45%. However, performing packet steering in hardware is less
flexible than doing so in software, and performs badly during
scenarios involving dynamic scaling and skewed traffic distri-
bution across users. Another interesting observation is that,
while forwarding data directly from the programmable data-
plane hardware (rather than via userspace) leads up to 24%
lower latency in the dataplane as expected, it significantly
worsens the control plane performance. This is because the
UPF continues to process signaling messages (from the con-
trol plane that configures forwarding rules) within userspace
itself, and in this split architecture, the communication be-
tween the UPF software and the programmable hardware
becomes the bottleneck.

In this paper, we posit that truly leveraging the perfor-
mance of programmable hardware to accelerate the 5G dat-
aplane requires the UPF to process and respond to signal-
ing messages from the hardware itself, in order not be lim-
ited by the hardware configuring capacity of userspace soft-
ware. This is challenging to do for several reasons, including
the variable-sized message formats of UPF signaling mes-
sages. This paper provides a preliminary implementation
that solves some of these challenges, and provides initial re-
sults that show the promise of offloading these complex UPF
functions to programmable hardware. Our work paves the

Abhik Bose, et al.

Agilio CX SmartNICs [19, 55])
Server Tofino switch
[22,23] | [56] [57] [58] [21]
Mpps per USD 0.03 0.33 0.28 0.24 0.4
Mpps per Watt | 0.14 2.96 2.96 2.96 8.52

Table 1: Performance per unit cost and power.

— - Control plane
messages
- ’i' ’ \ ’ ~—— Data plane
H messages

i GTP tunneling
gNB/RAN:

Access, >E Core
network : network

Figure 1: 5G Architecture.

way towards a high-performance 5G UPF that fully leverages
the power of programmable dataplanes.

2 BACKGROUND & RELATED WORK

5G architecture. Figure 1 shows a high-level overview of
the 5G architecture [5]. A 5G network consists of the wire-
less radio access network (RAN), which includes the User
Equipment (UE) and the Base Station/g-NodeB (gNB), and
the wired packet core network. In the control plane of the
5G core, the Access and Mobility Function (AMF) deals with
registration and mobility management, and the Session Man-
agement Function (SMF) manages the UE’s data sessions.
The data plane comprises of one or more User Plane Func-
tions (UPFs) that forward user data through the packet core.
The control and data plane components communicate using
Packet Forwarding Control Protocol (PFCP) messages that
are exchanged between the SMF and UPF over UDP [4]. In
the dataplane, a UE’s IP datagram packets are encapsulated
in GPRS Tunnelling Protocol (GTP) headers when transit-
ing through the packet core; tunnelling aids easy mobility
among other things. The GTP-encapsulated IP datagrams are
transmitted over a UDP link between the gNB and the UPF.
The UPF is responsible for encapsulating downlink packets
entering the core with GTP headers and correspondingly de-
capsulating uplink packets leaving the core. The UPF is also
responsible for usage reporting and charging, and enforcing
Quality-of-service (QoS), e.g., via rate limiting.

This paper deals with UPF implementation, so we describe
the internal state and data structures at the UPF in more
detail. A UE sets up one or more “sessions” to forward data
through the core, and each data session will cause the SMF
to install one or more Packet Detection Rules (PDRs) at the
UPF via PFCP messages. A PDR helps associate an incoming
data packet to a session based on its GTP/IP packet headers.
A PDR has several types of actions associated with it, that

Leveraging Programmable Dataplanes for a High Performance 5G UPF

instruct the UPF on how to handle the packet. For exam-
ple, the Forward Action Rules (FARs) specify the forwarding
behavior of the packet (e.g., GTP tunnel identifiers for en-
cap), and the QoS Enforcement Rules (QERs) specify the QoS
processing to be performed. An example of a field in the
QER is the Aggregate Maximum Bit-Rate (AMBR) of the ses-
sion. On receiving a PFCP message from the SMF, the UPF
creates/updates the required rules, and sends an acknowl-
edgement back to the SMF. On receiving a data packet, the
UPF first identifies the matching PDR. For packets belonging
to a valid session, the UPF executes forwarding and QoS
behavior specified by the FARs and QERs linked to that PDR,
in addition to updating usage and charging counters. Packets
belonging to “oversubscribed” sessions that exceed the rate
limit specified in the QoS rules are buffered for an appropri-
ate duration, and scheduled for transmission suitably.
Programmable dataplanes. Programmable dataplanes al-
low networking hardware to be easily programmed to per-
form complex functions, via code written in a high-level lan-
guage like P4 [25]. Packet processing pipeline specifications
written in P4 can be compiled to a variety of programmable
dataplanes, e.g., programmable hardware ASICs [1, 2, 46, 48],
NPUs [8, 56], and FPGAs [7, 11]. The programmable hard-
ware platforms have several limitations put in place, in order
to ensure linerate processing. They have limited expressive-
ness in terms of the supported instruction set and program-
ming constructs, and lack dynamic data-structures. The pack-
ets cannot stall during the switch pipeline processing—they
have to be either forwarded or dropped. The amount of on-
board memory on such hardware is limited (~few tens of
MBs). Despite these limitations, researchers have observed
substantial performance benefits by offloading applications
to programmable hardware, via creative solutions that ad-
dress the hardware limitations [27, 29-33, 36, 37, 39, 40, 43—
45, 51, 53, 61].

State-of-the-art UPFs. Most production grade UPFs are
built over kernel-bypass techniques like DPDK to achieve
high dataplane throughput in software. Metaswitch [10] uses
a specialized processing engine (CNAP) in the software it-
self to achieve high throughput. Some UPFs also use pro-
grammable hardware or specialized processing engines to
offload some part of the UPF processing to hardware. Few
proposals [12, 15, 24, 26] offload the GTP encap/decap based
forwarding to hardware, while some [42] offload packet steer-
ing to cores via deep packet inspection (DPI) of the inner
IP header. Kaloom [9] offloads a subset of QoS processing
(bit rate policing) along with GTP processing to the pro-
grammable hardware. Our work explores more offload based
designs than those considered in prior work, and system-
atically analyzes the costs and benefits of the offloads. Tur-
boEPC [52] offloads the subset of 4G core signaling messages
to the programmable hardware, while our work explores the

APNet 2021, June 24-25, 2021, Shenzhen, China

Worker core

Worker core

Worker core 3 Control plane 3

packet 1| processsing core 1| packet

‘ : Lsteering
: :

Master Worker core ' i | Master
core ' i | core
Worker core ' Il Worker core | A Worker core

Polls Polls

NIC H 1 NIC

' ! Push packets
! Push packets : toNIC

' 1o NIC '

1| | packet i

| [steerin '
! Programmable |

network

Push packets

Network hardware (NIC)

network

(c) Dataplane offload design

! (b) Packet steering offload :
! (DPOffload)

(a) DPDK-based software UPF !
design (SteerOffload) '

design (SoftUPF)
UPF Dataplane Functions: UPF Control Plane Functions 1
| DP-1: GTP encap/decap; verify bit rate CP-1: Control plane packet

1 DP-2: Queuing for oversubscribed processing

network : sessions CP-2: Install dataplane rule

(d) Control plane offload design
(cpPoffload)

Figure 2: 5G User Plane Function designs.

signaling message offload problem in the context of 5G which
has a different architecture.

3 DESIGN & IMPLEMENTATION

This section describes the various UPF prototypes compared
in this paper, beginning with a software-based UPF, and
progressively moving towards UPFs that offload more func-
tionality to programmable hardware, as shown in Figure 2.

3.1 DPDK-based software UPF

We begin with describing our purely software DPDK-based
UPF (Figure 2a) that is representative of the most common
UPF design used in production networks today. Our imple-
mentation is based on a fully standards-compliant UPF ob-
tained from [16, 17]. Our UPF supports GTP-based forward-
ing and AMBR-based QoS enforcement (using a variant of
the algorithm in [50]), among other features. Our imple-
mentation spans 6.5K lines of code. Our UPF has a pipeline-
based design, with multiple master and worker threads, each
pinned to separate CPU cores. The master threads receive
packets from the NIC via the polling-based DPDK APIs, and
distribute them to the worker threads for further processing.
PFCP packets and dataplane packets are processed by sepa-
rate worker cores. The inter-core communication between
the master and workers is done via the lockless shared rings
provided by DPDK, for efficiency and high performance.
The worker threads continuously poll the shared rings for
received packets, process them, and transmit the output.
When steering packets to worker cores, we would like
to ensure that the traffic of a UE is processed by the same
worker, in order to avoid splitting the state of a particular
UE (forwarding rules, buffered packets, and so on) across
multiple workers. This steering is achieved by using the hash
over the TCP/IP headers of the“inner” IP datagram (the data-
gram originated by the UE, which has been encapsulated
within GTP for transit through the core) to partition traffic
to worker cores. Note that we cannot simply use a hash over
the “outer” UDP/IP header fields because dataplane traffic of

APNet 2021, June 24-25, 2021, Shenzhen, China

all UEs between a gNB-UPF pair arrives on the same UDP
link, so the outer IP header fields cannot be used to differenti-
ate UEs. Most modern NICs have the capability to distribute
packets to multiple CPU cores via RSS [60]; however, the
set of header fields used for RSS is restricted to the outer
IP header fields. Therefore, a purely software-based DPDK
design cannot rely on the NIC to perform packet steering
based on the inner IP header fields, and must perform this
steering in software. (RSS based on outer header fields is
still useful to distribute traffic to multiple master cores for
performance scaling.) Packet steering in software also allows
the UPF to efficiently rebalance load across worker cores in
case some worker cores are more overloaded than others,
and to dynamically scale to more worker cores quickly on
demand. In our design, the master cores periodically moni-
tor the queue lengths of the lockless rings shared with the
worker cores, and reassigns UEs across workers if it finds
that a worker core is overloaded (as inferred from a per-
sistently high queue length), and another underloaded. If
all worker cores are overloaded, the master can spawn a
worker on new CPU core (when available). We have only
implemented a simple load balancing algorithm, but more
complex algorithms that assign special classes of UEs (e.g.,
high priority UEs) to specific worker cores are also possible.

3.2 Packet steering offload

In our next design (Figure 2b), the steering of UE traffic to
cores happens not in software but within the NIC itself. This
design relies on advanced NICs that allow RSS based on inner
IP headers. For example, Intel NICs support the Dynamic
Device Personalization [49] feature on 40Gbps+ NICs, which
enables parsing of the GTP header and inner TCP/IP header
fields for hash computation. Because the input to the hash
function now contains the UE’s IP address and GTP tunnel
identifier, the packets of a UE are redirected to the same
receive queue and CPU core via RSS. The multiple worker
threads of the DPDK-based software UPF are assigned ded-
icated hardware receive queues and directly receive traffic
from their corresponding queues. The worker threads then
process the received packets in a run-to-completion model.
The control plane traffic is redirected to (and processed on)
dedicated cores as before. This design represents the simplest
possible offload that can be done to programmable hardware,
and is used by state-of-the-art UPFs [10, 12, 15, 42].
Offloading packet steering to hardware provides higher
throughput and lower latency, due to minimal inter-core
communication in software and faster hash computation in
hardware. However, this design is also less flexible as we have
lesser control on assigning UEs to cores. For example, the
DPDK i40e poll mode driver [13] does not support dynamic
load balancing by remapping queues to cores based on load.
Further, dynamic scaling is also complicated by the fact that

Abhik Bose, et al.

one needs to stop and reconfigure the port in order to change
the number of receive queues.

3.3 Dataplane offload

Our next design (Figure 2c) offloads the complete dataplane
processing of the UPF to a programmable hardware-based
NIC or switch that can intercept packets destined to the soft-
ware UPF. Without loss of generality, we assume that the
dataplane is offloaded to a programmable NIC; our current
implementation uses the Agilio CX 2x10GbE smartNIC [56].
In this design, the on-NIC programmable parser extracts 5G
header fields from incoming packets. The control plane PFCP
messages are directed to the software UPF and processed
by the control plane worker thread. After processing the
PFCP messages, the worker thread communicates with the
NIC firmware to install/update session forwarding rules in
the match-action tables. The worker-NIC communication
happens via our custom C++ library that invokes the NIC’s
Thrift API [18] to install hardware rules. The incoming dat-
aplane packets are matched against these rules for suitable
forwarding. Note that the number of concurrent active user
sessions that can be supported by such a system is inher-
ently limited by the amount of memory available to store
forwarding rules in the hardware; our current prototype can
store the forwarding state of only 10K users but higher-end
programmable hardware [46] can do more.

Prior work has also proposed similar designs that offload
GTP-based forwarding to programmable hardware [9, 15, 24,
26], but does not provide much detail on how rate limiting
for QoS is handled in the offloaded design. In our design,
all traffic that is within the QoS-prescribed rate limit is for-
warded directly from hardware, and traffic that cannot be
transmitted immediately is sent to the userspace for buffer-
ing. Our implementation presently supports enforcement of
session-wide AMBR (aggregate maximum bit rate), which
requires us to rate limit the aggregate traffic of a user’s data
session (across all flows) to a maximum value and queue
up the traffic that exceeds this limit. One key challenge we
had to overcome in this implementation was to identify the
packets that exceeded a session’s rate limit. Our initial im-
plementation started with using P4 register arrays (stateful
memory available for packet processing in programmable
hardware) to track incoming rates of various sessions. Be-
cause these hardware registers can be accessed concurrently
by multiple packets across different stages of the packet pro-
cessing pipeline, we must use mutual exclusion in accessing
and updating these registers. Unfortunately, we found that
updating P4 registers under mutual exclusion significantly
impacted the performance of our UPF (dropping to 350 Mbps
from the linerate of 10Gbps). To overcome this limitation,
we moved to using the P4 meter primitive [28, 38] to identify
packets exceeding the rate limit. P4 meter is implemented as

Leveraging Programmable Dataplanes for a High Performance 5G UPF

a device specific extern, that sets the “color” of a packet in its
metadata to different values based on whether the session’s
rate exceeds a pre-defined rate limit. While there was no
slowdown due to P4 meters, we found that the hardware dat-
aplane can no longer compute the time that a packet needs
to be buffered for correctly, because the meter interface does
not expose any rate calculations beyond the color. There-
fore, once a session exceeds its rate limit, we forward all
subsequent packets of that session to userspace, and let the
software handle the session’s dataplane processing.

3.4 Control plane offload

In the dataplane offload design (Figure 2c), signaling mes-
sages that configure the dataplane are still handled in userspace.
As a result, a workload with a large number of signaling
messages may slow down the hardware dataplane, due to a
bottleneck at the software that configures hardware rules. To
overcome this limitation, we implement a UPF design which
offloads signaling message processing also to programmable
hardware (Figure 2d). In this design, we move away from
storing forwarding/QoS rules of a session in match-action
tables (which need to be updated via the controller running
in userspace), and store them instead in P4 register arrays.
The register data structure supports update operations to
register array state within the dataplane pipeline at linerate,
but cannot perform key-based lookup. When a control plane
PFCP message for a particular session arrives, we map the
64-bit session identifier to a 24-bit index into the register
array. We can then access or manipulate the corresponding
session state directly from within the dataplane, without
requiring the intervention of the userspace controller. Since
our index calculation is (currently) not collision-free, we
store additional state in the register array to validate if we
are accessing the correct session. In case of a collision or
session mismatch, the control plane message is forwarded to
the userspace for processing. We also make a few simplifying
assumptions when parsing PFCP messages in our current
implementation. For example, we assume a PFCP header
with fixed structure that fits within the hardware memory;,
whereas in practice, the PFCP header comprises of a variable
length component that consists of recursive PDR, FAR, and
QER (§2) headers. We defer the comprehensive handling of
complex PFCP messages to future work.

4 EVALUATION

We now evaluate our various UPF designs and quantify the
performance gains of offloading UPF functionality.

Experiment Setup. All our experiments run on three servers
with Intel Xeon processors (2.2Ghz, 24 cores) and 128GB
RAM. The first server runs a RAN emulator/load generator
that generates emulated traffic to the UPF, comprising of con-
trol plane PFCP messages and uplink/downlink dataplane

APNet 2021, June 24-25, 2021, Shenzhen, China

traffic from a large number of UEs. The RAN emulator runs
over DPDK to generate traffic at a high rate and we ensure
that it can generate enough load to saturate the control/data
plane of the UPF in all experiments. The second server in our
setup runs one of the versions of our UPF. The third server
runs a sink application that generates downlink traffic and
consumes uplink traffic from the RAN emulator. Our RAN
emulator and sink span 12K lines of code. We use two sets
of NICs in our experiments. For experiments which evalu-
ate the impact of offloading packet steering, we connect the
servers using Intel XL710 i40e 40Gbps NICs that are capable
of offloading packet steering. For the rest of the experiments,
we use Agilio CX 2x10GbE programmable NICs [56].
Parameters and metrics. We generate different traffic mixes
for dataplane experiments by varying the packet sizes, across
64B, 1400B and a typical traffic mix (“IMIX”) found in real
user traffic [14]. We use an uplink to downlink traffic ra-
tio of 1:2 [6, 35]. Control plane traffic consists of sets of
session creation, modification, and deletion PFCP messages
processed one after the other—we refer to this set as a control
plane “procedure”. All results reported are for an experiment
conducted for 300 seconds, unless mentioned otherwise. We
show error-bars that denote the maximum and minimum val-
ues where applicable. The performance metrics measured are
the dataplane throughput (bps or pps), control plane through-
put (procedures/sec), and average end-to-end response la-
tency (RTT, where the response is mirrored by sink for data
packets, and is generated by the control plane processing for
signaling packets), as measured at UPF saturation. For ex-
periments evaluating the effect of offloading packet steering,
we send data from 65K concurrent users. For experiments
involving dataplane and control plane offload to smartNICs,
we emulate 1K concurrent users.

Packet Steering Offload. We begin by evaluating the im-
pact of packet steering to programmable NICs, and compare
a pure software-based UPF (§3.1) with a UPF that offloads
packet steering to programmable hardware (§3.2). Figure 3
shows the throughput and latency of both the designs when
we dedicate 2 cores for dataplane processing—one for uplink
traffic and another for downlink traffic. As expected, we find
that offloading packet steering leads to 45% higher through-
put and up to 37% lower latency (except when both designs
saturate linerate at maximum packet size), due to lesser over-
head of intercore communication and packet steering in the
offloaded design. However, the performance gains due to
this offload also come with a loss in flexibility. We consider
a scenario where a UPF has to dynamically scale the number
of cores it is running on due to an increase in incoming traf-
fic. Figure 4 shows the UPF throughput during scaleup, and
we see the adverse impact of having to restart the port and
reconfigure hardware queues in the offload design. Next, we
configure our RAN emulator in such a way that 20% of the

APNet 2021, June 24-25, 2021, Shenzhen, China

Latency (in us) with packet size
UPF design y (in ps) P

64B IMIX 1400B
SoftUPF 138 176 294
DPOffload 130 140 222

Table 2: SoftUPF vs. DPOffload: Dataplane latency.

Performance metric SoftUPF DPOffload | CPOffload
Throughput (messages/sec) | 5.1K 666 2.05M
Latency (us) 113 1646 26

Table 3: Control plane performance.

SoftUPF Throughput Ezzzzz
SteerOffload Throughput m—

SoftUPF latency ©=—==3
SteerOffload latency zzza

Latency (us)

Throughput (Mpps)
O = MNWH U N

Payload size

Figure 3: SoftUPF vs. SteerOffload: Performance.

6000 [|ncbmi§gﬂlﬁgg ——
o - -
5000 - SteerOffload - - - -

4000 | o
3000 | P
2000 & -

1000 -
0

Throughput (Mbps)

60
60.2 |
60.4 ¢
60.6 -
60.8

«
[}
wn

Time (in secs)

Figure 4: SoftUPF vs. SteerOffload: Dynamic scaling.

UEs processed by a single worker core generate a sudden
burst of traffic, and Figure 5 shows how the offload design
suffers high latency due to its inability to balance load across
cores in the presence of such “heavy-hitter” UEs. In sum-
mary, we find that offloading packet steering to NICs leads to
significant performance gains, but comes at a loss of flexibility
that can hurt operators that expect to perform dynamic scaling
frequently or see skewed traffic across users.

Dataplane Offload. Next, we evaluate the benefits of of-
floading dataplane processing to programmable hardware
by comparing the performance of the pure software UPF
(§3.1) with one that offloads dataplane processing to a pro-
grammable NIC (§3.3). We find that both designs saturate the
10Gbps linerate in our setup, and Table 2 shows end-to-end
latency measurements for the various traffic scenarios. As
expected, dataplane offload improves latency by up to 24%.
Control Plane Offload. Next, we compare the control plane
performance of three designs: the pure software UPF (§3.1),
the design that offloads only the dataplane forwarding to
programmable hardware but processes control plane packets
in userspace (§3.3), and our preliminary implementation of

Abhik Bose, et al.

800 [T T T
700 | Traffic burst q
g ggg: S ._._.__._._.__._._._._._._._.T
3 400 F y SoftUPF —— |
$ 300 | SteerOffload - - - 1
& 200 i
100 covessess
n D n o wn — o n (92 n < n n

n n © © © ©

Time (in secs)
Figure 5: SoftUPF vs. SteerOffload: Heavy hitters.

a UPF that offloads even control plane processing to pro-
grammable hardware (§3.4). Table 3 shows the average rate
of processing signaling messages, and the processing latency,
for all three designs. We observe that only offloading data-
plane processing to hardware has a significant adverse im-
pact on control plane performance, because the performance
is limited by the overheads of control plane message process-
ing in software and the subsequent communication with NIC
firmware. Therefore, the design that offloads only dataplane
processing has 86% lower control plane throughput and 15X
higher control plane latency, as compared to the pure soft-
ware UPF. However, the UPF that offloads control plane pro-
cessing has 402X higher throughput as compared to the pure
software design, and 3K X higher throughput as compared to
the dataplane offload design. It also has 77% latency reduc-
tion compared to the pure software design, and 98% latency
reduction compared to the dataplane offload design. This
result points to the conclusion that offloading GTP-based
dataplane processing alone to programmable hardware is
likely to cause additional performance concerns for signal-
ing message processing, especially for future 5G networks
that expect to have frequent signaling with IoT devices. A
comprehensive programmable dataplane accelerated UPF must
offload signaling message processing to hardware as well, in
addition to offloading dataplane processing.

5 CONCLUSION AND FUTURE WORK

Our work evaluates several designs of the 5G user plane func-
tion (UPF) that leverage programmable dataplane hardware
in different ways to improve performance. Our evaluation
highlights the costs and benefits of each offload strategy, and
provides lessons for future research in this area. We find that
UPF offload designs proposed in prior work improve perfor-
mance, but hurt flexibility in dynamic workload scenarios,
and cannot process signaling traffic efficiently. To fully real-
ize the power of programmable hardware offload for UPFs,
we need to overcome the technical challenge of being able
to parse complex 5G signaling messages in hardware. Our
work is a first step towards using programmable dataplanes
to realize the vision of 5G.

ACKNOWLEDGMENTS

We thank the 5G testbed project, funded by the Department
of Telecommunications, Govt. of India, for access to 5G UPF.

Leveraging Programmable Dataplanes for a High Performance 5G UPF

REFERENCES

[1] Cisco highlights next big switch. (2013). https:
//www .biztechafrica.com/article/cisco-announces-next-big-
switch/5448/

[2] Cavium Xpliant ethernet switch product line. (2015). https://

people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf

[3] Ericsson Mobility Report. (2016). http://mb.cision.com/Main/15448/
2245189/661253.pdf

[4] 3GPP Ref #: 29.244. System architecture for the 5G System (5GS). (2017).

https://www.3gpp.org/ftp/Specs/archive/29_series/29.244/

[5] 3GPP Ref #:23.501. System architecture for the 5G System (5GS). (2017).

https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/

[6] Minimum requirements related to technical performance for IMT-

2020 radio interface(s). (2017). https://www.itu.int/dms_pub/itu-

r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf

Altera. (2019). https://www.mouser.in/manufacturer/altera/

EZchip. (2019). https://www.radisys.com/partners/ez-chip

The Kaloom 5G User Plane Function (UPF). (2019). https:

//www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-

Brief-Kaloom-5G-UPF-v1.0.pdf

Lighting Up the 5G Core with a High-Speed User Plane on Intel

Architecture. (2019). https://builders.intel.com/docs/networkbuilders/

lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-

architecture.pdf

[11] Xilinx. (2019). https://www.xilinx.com/

[12] 5G User Plane Function (UPF) - Performance with ASTRIL
(2020). https://networkbuilders.intel.com/solutionslibrary/5g-user-
plane-function-upf-performance-with-astri-solution-brief

[13] I40E Poll Mode Driver. (2020). https://doc.dpdk.org/guides/nics/

i40e.html

Internet Mix (IMIX) Traffic. (2020). https://en.wikipedia.org/wiki/

Internet_Mix

[15] Optimizing UPF performance using SmartNIC offload.
(2020). https://mavenir.com/wp-content/uploads/2020/11/
Mavenir_UPF_Solution_Brief.pdf

[16] 5G testbed at IIT Bombay. (2021). https://www.cse.iitb.ac.in/
~5gtestbed/

[17] 5G testbed, DoT, Govt. of India. (2021). https://5gtestbed.in/

[18] Apache Thrift - Home. (2021). https://thrift.apache.org/

[19] Cost of Agilio CX SmartNICs. (2021). https://colfaxdirect.com/store/
pc/showsearchresults.asp?IDBrand=38&iPageSize=50

[20] DPDK Overview. (2021). https://doc.dpdk.org/guides/prog_guide/

overview.html

Edgecore Networks AS9516-32D (Tofino-2). (2021). https:

//stordirect.com/shop/switches/400g-switches/edgecore-networks-

as9516-32d/

[22] Intel Xeon E5-2670 V3 Dodeca-core (12 Core) 2.30 Ghz Processor.

(2021). https://www.amazon.com/Intel-Xeon-E5-2670-Dodeca- core-

Processor/dp/BOONFA7ILQ#HLCXComparisonWidget_feature div

Intel XL710-BM2 Dual-Port 40G QSFP+ PCle 3.0 x8, Ethernet Network

Interface Card. (2021). https://www.fs.com/products/75604.htm]l

Ashkan Aghdai et al. 2018. Transparent Edge Gateway for Mobile

Networks. In IEEE 26th International Conference on Network Protocols

(ICNP).

[25] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker. 2014. P4: Programming Protocol-

independent Packet Processors. SIGCOMM Computer Communication

Review 44 (2014).

Carmelo Cascone and Uyen Chau. 2018. Offloading VNFs to pro-

grammable switches using P4. In ONS North America.

—_ r——
O 00 3
o

—
[
(=}

=

(14

[l

[21

—

[23

[t

[24

[l

[26

=

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

APNet 2021, June 24-25, 2021, Shenzhen, China

Eyal Cidon, Sean Choi, Sachin Katti, and Nick McKeown. 2017. App-
Switch: Application-layer Load Balancing Within a Software Switch.
In Proceedings of the Asia-Pacific Workshop on Networking (APNet).
Edgar Costa. P4 Meter Application. (2020). https://github.com/nsg-
ethz/p4-learning/tree/master/examples/meter

Huynh Tu Dang et al. 2018. Consensus for Non-Volatile Main Memory.
In IEEE 26th International Conference on Network Protocols (ICNP).
Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. 2015. NetPaxos: Consensus at Network Speed. In
Proceedings of the the Symposium on SDN Research (SOSR).

Hans Giesen, Lei Shi, John Sonchack, Anirudh Chelluri, Nishanth
Prabhu, Nik Sultana, Latha Kant, Anthony J McAuley, Alexander
Poylisher, André DeHon, et al. 2018. In-network computing to the
rescue of faulty links. In Proceedings of the 2018 Morning Workshop on
In-Network Computing (NetCompute).

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. 2018.
Network-wide heavy hitter detection with commodity switches. In
Proceedings of the Symposium on SDN Research (SOSR).

Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross Teixeira, S
Muthukrishnan, and Jennifer Rexford. 2020. Carpe Elephants: Seize
the Global Heavy Hitters. In Proceedings of the Workshop on Secure
Programmable Network Infrastructure (SPIN).

R. E. Hattachi. Next Generation Mobile Networks,
NGMN. (2015). https://www.ngmn.org/wp-content/uploads/
NGMN_5G_White_Paper_V1_0.pdf

Harri Holma and Antti Toskala. LTE Advanced: 3GPP Solution for
IMT-Advanced. (2012). https://www.oreilly.com/library/view/lte-
advanced-3gpp/9781118399422/c0lanchor-3.html

Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast
Connectivity Recovery Entirely in the Data Plane. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
Symposium on Operating Systems Principles (SOSP).

Jaco Joubert. P4 Loadbalancer and Metering. (2017). https:/
github.com/open-nfpsw/p4_basic_lb_metering_nic

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. HULA: Scalable Load Balancing Using Pro-
grammable Data Planes. In Proceedings of the the Symposium on SDN
Research (SOSR).

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Ad-
vait Dixit, and Lawrence] Wobker. 2015. In-band network telemetry
via programmable dataplanes. In ACM Special Interest Group on Data
Communication (SIGCOMM).

Dr. Kim. 5G stats. (2017). https://techneconomyblog.com/tag/
economics/

DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan,
and Michael Lynch. Towards achieving high performance in
5G mobile packet core’s user plane function. (2018). https:
//builders.intel.com/docs/networkbuilders/towards-achieving-high-
performance-in-5g-mobile-packet-cores-user-plane-function.pdf
Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-
Direct: High-Performance In-Memory Key-Value Store with Pro-
grammable NIC. In Proceedings of the Symposium on Operating Systems
Principles (SOSP).

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Cheap Using Switching ASICs. In Proceedings of the the ACM Special
Interest Group on Data Communication (SIGCOMM).

https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/
https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/
https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
http://mb.cision.com/Main/15448/2245189/661253.pdf
http://mb.cision.com/Main/15448/2245189/661253.pdf
https://www.3gpp.org/ftp/Specs/archive/29_series/29.244/
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdf
https://www.mouser.in/manufacturer/altera/
https://www.radisys.com/partners/ez-chip
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://www.xilinx.com/
https://networkbuilders.intel.com/solutionslibrary/5g-user-plane-function-upf-performance-with-astri-solution-brief
https://networkbuilders.intel.com/solutionslibrary/5g-user-plane-function-upf-performance-with-astri-solution-brief
https://doc.dpdk.org/guides/nics/i40e.html
https://doc.dpdk.org/guides/nics/i40e.html
https://en.wikipedia.org/wiki/Internet_Mix
https://en.wikipedia.org/wiki/Internet_Mix
https://mavenir.com/wp-content/uploads/2020/11/Mavenir_UPF_Solution_Brief.pdf
https://mavenir.com/wp-content/uploads/2020/11/Mavenir_UPF_Solution_Brief.pdf
https://www.cse.iitb.ac.in/~5gtestbed/
https://www.cse.iitb.ac.in/~5gtestbed/
https://5gtestbed.in/
https://thrift.apache.org/
https://colfaxdirect.com/store/pc/showsearchresults.asp?IDBrand=38&iPageSize=50
https://colfaxdirect.com/store/pc/showsearchresults.asp?IDBrand=38&iPageSize=50
https://doc.dpdk.org/guides/prog_guide/overview.html
https://doc.dpdk.org/guides/prog_guide/overview.html
https://stordirect.com/shop/switches/400g-switches/edgecore-networks-as9516-32d/
https://stordirect.com/shop/switches/400g-switches/edgecore-networks-as9516-32d/
https://stordirect.com/shop/switches/400g-switches/edgecore-networks-as9516-32d/
https://www.amazon.com/Intel-Xeon-E5-2670-Dodeca-core-Processor/dp/B00NFA7ILQ#HLCXComparisonWidget_feature_div
https://www.amazon.com/Intel-Xeon-E5-2670-Dodeca-core-Processor/dp/B00NFA7ILQ#HLCXComparisonWidget_feature_div
https://www.fs.com/products/75604.html
https://github.com/nsg-ethz/p4-learning/tree/master/examples/meter
https://github.com/nsg-ethz/p4-learning/tree/master/examples/meter
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.oreilly.com/library/view/lte-advanced-3gpp/9781118399422/c01anchor-3.html
https://www.oreilly.com/library/view/lte-advanced-3gpp/9781118399422/c01anchor-3.html
https://github.com/open-nfpsw/p4_basic_lb_metering_nic
https://github.com/open-nfpsw/p4_basic_lb_metering_nic
https://techneconomyblog.com/tag/economics/
https://techneconomyblog.com/tag/economics/
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf

APNet 2021, June 24-25, 2021, Shenzhen, China

[45] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. 2020. AccelTCP: Accelerating Network Applications
with Stateful TCP Offloading. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

Barefoot networks. NoviWare 400.5 for Barefoot Tofino chipset.
(2018). https://noviflow.com/wp-content/uploads/NoviWare-Tofino-
Datasheet.pdf

[47] David Nowoswiat. Managing LTE Core Network Signaling Traf-
fic. (2013). https://www.nokia.com/en_int/blog/managing-lte-core-
network-signaling-traffic

Recep Ozdag. Intel Ethernet Switch FM6000 Series - Software Defined
Networking. (2019). https://people.ucsc.edu/~warner/Bufs/ethernet-
switch-fm6000-sdn-paper.pdf

Brian Johnson Robin Giller, Andrey Chilikin. Intel® Ethernet
Controller 700 Series GTPv1 - Dynamic Device Personalization. (2018).
https://builders.intel.com/docs/networkbuilders/intel-ethernet-
controller-700-series- gtpv1-dynamic-device-personalization.pdf/
Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable traffic
shaping at end hosts. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM).

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K.
Ports, and Peter Richtarik. Scaling Distributed Machine Learning with
In-Network Aggregation. (2020). arXiv:cs.DC/1903.06701

Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulka-
rni. 2020. TurboEPC: Leveraging Dataplane Programmability to Accel-
erate the Mobile Packet Core. In Proceedings of the Symposium on SDN
Research (SOSR).

[46

—

[48

[t

[49

[

[50

=

[51

—

(52

—

Abhik Bose, et al.

[53] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S.
Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection
Entirely in the Data Plane. In Proceedings of the the Symposium on SDN
Research (SOSR).

[54] Gabor Sobs, Ferenc Nandor Janky, and Pal Varga. 2019. Distinguishing
5G IoT Use-Cases through Analyzing Signaling Traffic Characteristics.
In 2019 42nd International Conference on Telecommunications and Signal
Processing (TSP).

[55] Netronome systems. Agilio CX SmartNICs. (2018). https://
www.netronome.com/products/agilio-cx/

[56] Netronome systems. Agilio CX 2x10GbE SmartNIC. (2020). https:
//www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-
7-20.pdf

[57] Netronome systems. Agilio CX 2x25GbE SmartNIC. (2020).
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=
3144&idcategory=0

[58] Netronome systems. Agilio CX 2x40GbE SmartNIC. (2020). https:
//colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871

[59] Sami Tabbane. Core network and transmission dimen-
sioning. (2016). https://www.itu.int/en/ITU-D/Regional-
Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-
Iran/Wirelessbroadband/core%20network%20dimensioning.pdf

[60] Amy Viviano, David Coulter, Nick Schonning, Duncan
MacMichael, and Bill Latimer. Receive Side Scaling
(RSS). (2017). https://docs.microsoft.com/en-us/windows-
hardware/drivers/network/introduction-to-receive-side-scaling

[61] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Ma-
chine Learning? Toward In-Network Classification. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks (HotNets).

https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization.pdf/
https://builders.intel.com/docs/networkbuilders/intel-ethernet-controller-700-series-gtpv1-dynamic-device-personalization.pdf/
https://arxiv.org/abs/cs.DC/1903.06701
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3144&idcategory=0
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3144&idcategory=0
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://www.itu.int/en/ITU-D/Regional-Presence/AsiaPacific/SiteAssets/Pages/Events/2016/Aug-WBB-Iran/Wirelessbroadband/core%20network%20dimensioning.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Design & Implementation
	3.1 DPDK-based software UPF
	3.2 Packet steering offload
	3.3 Dataplane offload
	3.4 Control plane offload

	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

