
DEBS Grand Challenge: In-Memory, High Speed Stream
Processing

Rohit Gupta
Indian Institute of Technology

Bombay, India

rohitg@cse.iitb.ac.in

Rinku Shah
Indian Institute of Technology

Bombay, India

rinku@cse.iitb.ac.in

Apurva Mhetre
Indian Institute of Technology

Bombay, India

apurva@cse.iitb.ac.in

ABSTRACT
To enable load prediction we require three ingredients; Data
acquisition, Accurate prediction algorithms and timely pre-
diction. This work is focused on the third ingredient i.e.
Timely prediction. Timely prediction is required for proper
functioning of smart grid. Towards this we offer a scalable,
distributed and incremental solution.

We present a solution that utilise multiple techniques to
evade performance degradation maintaining timing require-
ments. These techniques include:(1) Splitting the nested
processing into stages to maintain high throughput. (2)
Customised median finding algorithms to generate timely
output from high volume data. (3) Pre-fetching to elimi-
nate disk access time for accessing the historical data. Im-
plementing these together, our technique is able to perform
11K predictions per sec, and 2.5K outlier computations per
sec.

Categories and Subject Descriptors
[DEBS Grand Challenge]: 2014; [DEBS]: Metrics—
complexity measures, performance measures

General Terms
DEBS Grand Challenge

Keywords
demand forecast, distributed, scalable, outlier

1. INTRODUCTION
Our problem statement comes from ‘DEBS Grand Chal-

lenge 2014’ [4] and falls under the smart grid domain. It ad-
dresses the analysis of energy consumption, and targets on
the following problems: (1) Load-forecasting and (2) Outlier
detection

Power demand is continuously fluctuating, however when
power is demanded it should be made available. To tackle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS’14, May 26-29, 2014, MUMBAI, India.
Copyright 2014 ACM 978-1-4503-2737-4/14/05_..$15.00.
http://dx.doi.org/10.1145/2611286.2611332.

this uncertainty, we need to use power-generating resources
effectively. Currently to meet this fluctuating demand power
generating stations have to maintain huge standby produc-
tion capacity. Accurate load and generation forecasting
would solve the above problem.

There are twelve queries required to be processed[4]. Ten
queries are used to provide load prediction for houses , and
individual plugs. Prediction is computed over slice sizes of
1min, 5min, 15min, 60min and 120min. Prediction output
is updated every 30 seconds. Two queries are used to detect
and report outliers. This query has a sliding window of 1
hour and 24 hours. Outlier result is computed for every
incoming/outgoing event, and updated whenever there is
change in the percentage of anomalous plugs, for that house.

Challenges
Challenges handled in this paper include:

1. The data set is collected in real-world environment
which implies the possibility of malformed data as well
as missing measurements. Using the data-set as it is,
may lead to inaccurate predictions and outliers.

2. Simultaneous processing for thousands of plugs, within
strict deadline.

3. Median computation on dynamic data-set containing
millions of records, within strict deadline.

4. Efficient data storage and retrieval, without causing
system performance loss.

Main Contribution
Main contribution of this paper include:

1. We implemented two new techniques for median com-
putation: (a) Hash based (b) 2 Binary search tree
method. These techniques reduce the median com-
putation complexity to O(1) and is in the range of few
milliseconds. These techniques have trade-off between
space-complexity and record-insertion-time complex-
ity. Hash based technique fits best for Global Me-
dian computation, and 2 Binary Search tree method
[3] technique fits best for House-level Median compu-
tation.

2. We improved data access performance by implement-
ing: (1)Smart reuse of in-memory data, that eventu-
ally reduces the number of disk access cycles, (2)Pre-
diction of next data-block to support pre-fetching.

306

This paper is organised into following sections: Section
2 points out the method used to handle data quality issues.
Section 3 describes the System Architecture. Section 4 dis-
cusses system evaluation. Section 5 concludes the work.

2. DATA QUALITY ISSUES
As data given by ‘DEBS Grand Challenge 2014’ [4] is col-

lected from uncontrolled and real environment it has some
missing and duplicate measurements. Incoming data goes
through a preprocessor, that resolves duplication and miss-
ing data issues. Duplicates are eliminated. Missing data is
regenerated by obtaining missing power values, using accu-
mulated energy values.

3. SYSTEM ARCHITECTURE
Our system is developed in C++ using standard libraries.

It consists of two parallel, multi threaded subsystems; for
forecasting and outlier detection. It has an independent lis-
tener that reads the input, and replicates it for both systems.
Inter-thread communication is supported through custom
queues; that hold the data structure, and are also capable of
handling concurrency issues. Data structures implemented
are capable of adjusting with new plug data received, there-
fore system should not be restarted to add new plug, house-
hold or house. System also stores its current and historical
data in a database, to enable continuation of its execution
from its previous state. Our system is divided into following
parallel subsystems viz. 1) Listener, 2) Forecasting System,
3) Outlier Detection System.

Figure 1: System Architecture

3.1 Listener
Input data is acquired by a Listener module, that gener-

ates various input streams of pre-processed data. Listener is
parametrized to specify number of copies of input stream to
be generated. This helps in distributing and scaling our sys-
tem. Listener module transmits pre-processed input stream
into all the queues connected to it.

3.2 Forecasting System

Figure 2: Forecasting System

This module is responsible to forecast the power con-
sumption, for every house, and plug. Forecasting System is
divided into three modules viz. a) Aggregator, b) Database
Reader, c) Forecaster

3.2.1 Aggregator Module
Power data is aggregated for 30 seconds; and used for

further processing. This reduces the disk space required to
store the data; and the retrieval is also fast. We call each 30
second interval, a slot. We assigned value of 0 to 2879 for
each slot for a the day. Aggregator module is responsible of
adding up the power consumed during 30 seconds interval
and send it to Forecasting and Database modules.

3.2.2 Database Module
Sqlite is used to store historical data. A separate module

takes care of all data read and write operations.

3.2.3 Forecaster Module
This module take recent and historical data to compute

predicted power. Historical data is stored on disk, data is
fetched in advance to avoid frequent disk access delays.

This module holds per slot aggregate power for the last
2 hour data. It also holds aggregate historical slot data of
next 4 hours. Previous data is reused in next prediction to
achieve reduction of disk access by 480 to 1.

3.3 Outlier System

Figure 3: Outlier System

Our system is capable of supporting any window size for
outlier detection. Each window size is executed by parallel
threads. To slide the oldest power readings are removed,
and new readings are added, to the median computation
data. We save the old data in disk based or in-memory
sqlite database which act as a large queue. Outlier System
consist of following modules:

3.3.1 Plug Median module
It uses 2 equal sized binary search tree structure for me-

dian computation. This module is expected to hold 3600
power samples per plug for 1 Hour processing, and 86400
samples per plug for 24 Hour processing.

3.3.2 Global Median module

307

This module computes median for all plug data received.
As the distinct values for the power is limited, and signifi-
cantly less than the number of samples, hash based median
computation is used. In this way we accommodate 172.8
Million values in array of size 10 Million. As the number
sample increases, the empty space in the array decreases,
and the cost of insertion/deletion of keys reduces. This
makes the module perform better for higher volume of data.

3.3.3 Outlier module
This module receives the median; and computes outlier

by simple comparison in a hierarchical structure.

4. EVALUATION

4.1 Analysis of Median computation methods
Median should be computed for prediction on a small

historic data (one per day). Median is required to be com-
puted for each plug whenever an event is received for that
plug. the data set for this computation will be in the range
of 3.6 thousand to 86.4 thousand. We tested different me-
dian computation methods to find the best method for each
of the above objectives.

10000 50000 100000 500000 1000000 5000000 10000000 50000000
0.0001

0.001

0.01

0.1

1

Median Computation Techniques - Evaluation of Insertion Time

Insertion Time(Array Based Structure)

Insertion Time (2-Btree Structure)

Insertion Time(Binary Search Tree-STL)

Number of Elements

T
im

e(
in

 S
ec

o
nd

s)

Figure 4: Evaluation of Insertion Time

10000 50000 100000 500000 1000000 5000000 10000000 50000000
0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Median Computation Techniques - Evaluation of Median Computation Time

median time(array based)

median time(2b tree)

median time(stl)

Number of Elements

T
im

e
in

 S
ec

on
ds

Figure 5: Evaluation of Median Computation Time

Balanced Binary tree (STL)
STL multiset is used to sort the power values. Median is
computed by scanning the multiset.

Space complexity is O(n), one key insertion cost is O(log
n). Median retrieval cost is O(n) as half of the tree is tra-
versed.

Hash based technique
An array is used to store the number of occurrences of each
power value (key). A reference of the key holding the me-
dian value is maintained. Whenever a new value of power
is added, the occurrence count for that key is incremented.
To find new value of median, sequential scan of the array is
performed to find the next key with non-zero occurrence.

As the number of distinct values of power is limited,
Space complexity is O(k), where k is the size of the array.
One key insertion cost is O(1), additionally a cost of O(e)
is incurred to find the new position of median. here e is the
number of continuous free elements in the array that need
to be traversed to move median pointer. Median retrieval
cost is O(n). For high data volume the value of e becomes
very small therefore this method is suitable.

2 equal sized Binary tree with median stored separately
It holds median in one / two variables and rest of the data
is stored in two equal sized threaded binary. When a new
power value is inserted, it is compared with the median to
identify whether it should be inserted to the left, right tree
or it is in between the two median.

If the value is inserted to one of the trees, one of the
following action is performed to maintain equal size of two
trees. (1) If there are two medians, one of the median is
inserted to other tree. (2) If there is one median, first/last
element is removed from the tree, in which the new value is
inserted.

Space complexity is O(m), where m is the distinct value
of keys. insertion cost is O(Log n), additionally a tree op-
eration could be required to make the two three equal size.
this cost will also be O(log n). Median retrieval cost is O(1).

We also analysed few other methods to find median like
Boost multiset, B tree [1], and B+ tree [2]. but these were
not used because of their complexity.

4.2 System Performance

Experimental Setup
We have performed our experiments on a system of following
configuration. Ubuntu 12.04.4 LTS, Linux 3.8.0.29 generic
(x86-64) kernel running on 8x Intel(R) Core() i7-3770 CPU
@ 3.40 Ghz.

Our system reads complete data file, processes the re-
quired data (10, 20, 30, or 40 house), and ignores data for
remaining houses. It start processing next data immediately
after finishing for one data. This enabled us to process en-
tire month data in few days. Time-stamp was logged while
reading next time-stamp data from the file. Times-tamp
was also logged while generating each output. These time-
stamps were used to compute various performance matrices.

Figure 6 show that average throughput increases, with
the increase in the number of houses. This is because disk
access cost is amortised over more plugs. This effect should
be because of accelerated execution where disk access is the
main bottleneck .

Figure 7 show that throughput varies within limits. This
should be because of the median computation algorithm.
If data is more the array is more densely filled, therefore
processing time is less. Figure 8 shows that the per query
prediction latency (average) increases with the increase in
number of houses.

Figure 9 shows that the per query outlier latency (aver-

308

10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Prediction Query : Throughput

Average

10th percentile

90th percentile

Work Load (Number of Houses)

N
um

be
r

of
 P

re
d

ic
tio

ns
 P

er
 S

ec
on

d

Figure 6: Per Query Throughput Performance: Pre-
diction

10 20 30 40
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Outlier Query : Throughput

Average

10th percentile

90th Percentile

Work Load (Number of Houses)

N
um

be
r

of
 O

ut
lie

rs
 P

e
r

se
co

nd

Figure 7: Per Query Throughput Performance:
Outlier

10 20 30 40
0

1000

2000

3000

4000

5000

6000

Prediction Query : Latency

Average

10th percentile

90th Percentile

Work Load (Number of Houses)

La
te

nc
y

in
 m

ill
is

ec
on

d

Figure 8: Per Query Latency: Prediction

age) is almost constant. This is because the median compu-
tation time complexity of the algorithm used is O(1).

Above experimental results show that our system per-
formance is not affected with the increase in the workload.

10 20 30 40
0.1

1

10

100

1000

10000
Outlier Query : Latency

Average

10th Percentile

90th Percentile

Work Load (Number of Houses)

La
te

nc
y

in
 m

ill
is

ec
on

ds

Figure 9: Per Query Latency:Outlier

Average, 10th percentile as well as 90th percentile values for
both queries does not vary significantly with workload.

5. CONCLUSION
This paper presents a design to process high frequency

plug sensor data. Modular design presented could be easily
extended to implement other algorithm. Test results shows
that the presented solution could be utilised in processing
larger volume of data.

6. ACKNOWLEDGEMENTS
The authors would like to acknowledge the discussions

with Prof. Krithivasan Ramamritham and Prof. Umesh
Bellur which helped in evolving the solution approach.

7. REFERENCES
[1] Donald Knuth. The art of computer programming,

volume 3: Sorting and searching, second edition.
addison-wesley, 1998.

[2] Ramez Elmasri Navathe and Shamkant B.
Fundamentals of database systems, 6th edition, 2010.

[3] Internet Source.
http://www.ardendertat.com/2011/11/03/programmi
ng-interview-questions-13-median-of-integer-stream.

[4] Holger Ziekow and Zbigniew Jerzak. The DEBS 2014
Grand Challenge. In Proceedings of the 8th ACM
International Conference on Distributed Event-based
Systems, DEBS ’14, New York, NY, USA, 2014. ACM.

309

