
pcube: Primitives for network data plane
programming

Rinku Shah*, Aniket Shirke*, Akash Trehan*, Mythili Vutukuru, Purushottam Kulkarni
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{rinku, anikets, atrehan, mythili, puru}@cse.iitb.ac.in

Abstract—P4 is a domain specific language to configure packet
processing pipelines in programmable dataplane switches, and is
a powerful idea towards realizing the goal of flexible software-
defined networks. This paper presents pcube, a framework
that provides a set of primitives to simplify the development of
P4-based dataplane applications. pcube provides primitives for
loops, summations, and other common operations on indexed
state variables, which can be embedded within P4 code and
unrolled by the pcube preprocessor. pcube also provides primi-
tives to synchronize state variables across switches in distributed
dataplane applications, which are automatically translated into
P4 code to send and receive synchronization messages across
multiple switches by pcube. We build example dataplane appli-
cations such as a distributed load balancer in our framework,
and show that using pcube reduces the programming effort (in
term of lines of code) significantly—by a factor of up to 5.4x.

Index Terms—programmable data plane, P4, programming
API

I. INTRODUCTION

Recent advances in Software Defined Networking (SDN)

have expanded the scope of software control on network

devices by enabling programmability in the data plane. Re-

search on programmable data planes has come up with new

forwarding plane architectures that enable programmability

at line rate [1], [2] and languages that can be used to

easily program such dataplanes [3], [4]. Researchers have

demonstrated that several applications can be significantly

accelerated using programmable dataplanes, e.g., key-value

caches [5], [6], load balancers [7], [8], network monitoring [9],

consensus protocols [10], performance diagnosis [11] and

heavy hitter detection [12]. Across all such applications, P4 [3]

has emerged as the most popular language for specifying

packet processing pipelines on programmable dataplanes. P4

programmers write code to customize packet parsing and

the logical flow of packets through match-action tables, all

while being agnostic to the hardware platform on which the

dataplane will be run. P4 compilers (e.g., [13]) then compile

the target-independent P4 code to run on multiple hardware

and software programmable dataplane platforms. Several re-

searchers have looked at the problem of optimizing P4-based

dataplanes, e.g., by using hardware accelerators to optimize the

packet processing pipeline [14], and by caching match-action

rules of flows [15]. The key observation of our work is that the

problem of easing software development using P4 itself has

* Student authors with equal contribution.

received lesser attention. ClickP4 [16] proposed a modular

approach for P4 programming, using a library of reusable

modules that can be easily composed to reduce development

time. However, there exists significant scope for automating

P4 development effort in dataplane applications.

To understand the problem better, consider a simple load

balancing application that assigns incoming flow requests

to one of the application backend servers by rewriting the

destination IP address of packets. If this application were to

be implemented in a programmable dataplane switch, each

switch would maintain per-server state (e.g., count of flows

currently assigned to the server), and for every incoming

request, picks a backend server based on a policy (e.g., the

least loaded server). We found that writing P4 code for such

an application involves significant repetition of code patterns.

For example, P4 does not have an easy way to loop over a

set of indexed state variables (e.g., load at the set of backend

servers) for initialization or updates. P4 also has no support

to perform operations such as summations or finding the

minimum/maximum across a set of indexed variables. Further,

if the simple load balancer application described above were

to be distributed across multiple switches for scalability, the

switches would need to exchange information about server

load levels amongst themselves in order to balance load

suitably. P4 currently has no easy way to synchronize state

across switches, and developers must manually write code to

generate and process messages to exchange such information.

Because P4 can be compiled to a wide variety of platforms,

including hardware switches that run at line rate, the language

has a minimal set of abstractions that can be supported, and

does not support loops and other primitives with unknown

execution time. However, the absence of such abstractions

to manipulate and synchronize indexed state variables makes

P4 code development tedious and prone to manual errors,

especially when the number of variables involved is large.

Note that the problems described above are not specific to

the load balancer application, and similar code patterns are

found across a wide range of dataplane applications like heavy-

hitter detection, congestion control, and INT (In-band network

telemetry).

We propose pcube, Primitives for improving P4 Produc-
tivity, a preprocessor that reduces P4 development effort

by providing primitives for easily accessing, manipulating,

and synchronizing a set of indexed state variables across

430

2018 IEEE 26th International Conference on Network Protocols

978-1-5386-6043-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICNP.2018.00060

distributed programmable dataplane devices. pcube provides

abstractions such as loops, min/max computation, summation,

and conditional statements over a set of state variables, which

are unrolled into regular P4 code by the preprocessor. Further,

pcube provides abstractions to synchronize variables across

switches, both across a multicast group or with specific

switches. Our framework takes the network topology as input,

and automatically expands the synchronization primitives into

P4 code to send/receive synchronization messages to other

switches based on network topology. P4 code generated by

the pcube preprocessor is then compiled and deployed on to

programmable switches much like regular P4 code.

The main contributions of our work are as follows: (i) the

design and implementation of pcube, a preprocessor that

provides primitives to ease the development of P4 applications

(§II), (ii) evaluation of the benefits of pcube using sample

dataplane applications, showing that our framework leads to

up to 5.4x reduction in developer effort (§III), and (iii) an

opensource codebase of pcube and it’s use cases [17].

II. PCUBE DESIGN AND IMPLEMENTATION

A. The pcube framework

pcube provides primitives for P4 developers to enable them

to write more concise P4 code. Figure 1 shows the overall

framework for designing data plane applications with pcube.

P4 programmers write dataplane applications using both P4

and pcube constructs. This script, along with network topology

information (#switches, #hosts, link information, and switch

connection information) is the input to the pcube preprocessor.

The preprocessor unrolls the pcube primitives such as loops

and converts the user source code to P4 code. In addition

to simple unrolling, the preprocessor also creates headers,

tables, and actions for pcube synchronization primitives. These

headers are used to carry synchronization information between

switches, whereas the actions specify the action to be taken

upon the receipt of such messages. In addition to P4 code,

the preprocessor also generates runtime commands for switch

related setup and configuration. If the data plane application

runs on multiple switches, we generate separate code for each

switch, by considering the topology information as input. The

translated P4 code, including logic specified via pcube prim-

itives is then translated to a target specific binary using a

standard P4 compiler. The runtime configuration is transferred

to the switch via the controller interfaces.

The macro-like framework of pcube is non-intrusive to

the basic P4 functionality, and provides various additional

abstractions to build custom data plane logic (especially

related to event-based inter-switch communication). While

an enhancement to P4 itself to support some primitives of

pcube is possible, this would require changes to the P4

language specification and the compiler, and is subject to

its acceptance across a wide variety of backends that P4

compiles to. The focus of this work is to demonstrate the use

of the new primitives and the integration of these features

in to the P4 specification is a complimentary effort. Our

pcube preprocessor is written in python, and spans around

Fig. 1: The pcube framework for data plane programming.

TABLE I: List of pcube primitives.

Type Annotation Purpose

Loop @pcube for Iterate over indexed variables
Summation @pcube sum Summation over indexed variables
Minmax @pcube minmax Determine the minimum or maxi-

mum value from an input list and
choose corresponding action

Conditional @pcube cmp Conditional test over indexed vari-
ables

Sync-multicast @pcube sync Share state with multiple switches
Sync-unicast @pcube echo Share state with a specific switch

850 lines of code. pcube is compatible with P4-14, and we

are in the process of porting it to P4-16.

Table I shows the list of pcube primitives, which can be

classified as: (i) primitives that simplify P4 code within a

single switch, (ii) primitives that simplify inter-switch state

synchronization. We discuss each of these classes below.

B. pcube primitives within a single dataplane

We now describe pcube primitives that can be used to

compress repetitive P4 code that accesses a set of similar

(indexed) state variables.

Loops. A loop primitive is useful when a set of P4 state-

ments are repeated with different index values. For example,

initializing values of switch state, construction of new headers,

initialization of arguments, construction of multiple similar

tables, and applying the same data plane action on multiple

arguments can all be simplified with loops.

Listing 1: The loop primitive.

Syntax
@pcube_for (<iterator_var>) (<start>,<end>,<step>)

// P4 code to be repeated
@pcube_endfor
pcube example
header_type meta_t {

fields {
@pcube_for (i) (1,4,1)

var_counter$i : 32;
@pcube_endfor

}
}
pcube preprocessor output
header_type meta_t {

fields {
var_counter1 : 32;
...
var_counter3 : 32; //loop unrolled by pcube

}
}

431

Listing 1 shows an example of using the pcube loop

primitive to initialize counters that maintain backend server

state in the load balancer.

Summation. The summation primitive is useful when the sum

of a list of state variables is required. Listing 2 shows code

where the switch drops a packet when the cumulative load on

the servers exceeds threshold.

Listing 2: The summation primitive.

Syntax
@pcube_sum (<start>,<end>,<step>) (<iterator_var>)
pcube example
if ((@pcube_sum(1,4)(var_counter$i)) > 10000){

apply(drop);
}
pcube preprocessor output
if ((var_counter1 + var_counter2 + var_counter3) > 10000){

apply(drop);
}

Minmax. This primitive is useful in cases when the minimum

or maximum from a set of switch state arguments has to be

determined, and a corresponding action has to be applied if

the condition is satisfied. The programmer specifies the desired

operator (< | <= | > | >=), and specifies the action for each

argument that can potentially satisfy the min-max condition.

For example, Listing 3 shows load balancer code where the

switch determines the least loaded server (i.e., the one with

the minimum var counter$i) upon arrival of a new flow, and

forwards the packet to that server.

Listing 3: The minimax primitive.

Syntax
@pcube_minmax (<relop>)

@pcube_case (<var$1>):
//code to be executed if var$1 is min or max

@pcube_endcase
... //code for ‘i’ other cases

@pcube_endminmax
pcube example
@pcube_minmax (<=)

@pcube_case var_counter1:
apply(tab_server1);

@pcube_endcase
...
@pcube_case var_counter3:

apply(tab_server3);
@pcube_endcase

@pcube_endminmax
pcube preprocessor output
if(var_counter1 <= var_counter2 and

var_counter1 <= var_counter3){
apply(tab_server1);

}
else
if(var_counter2 <= var_counter1 and

var_counter2 <= var_counter3){
apply(tab_server2);

}
else
if(var_counter3 <= var_counter1 and

var_counter3 <= var_counter2){
apply(tab_server3);

}

Multi-condition. This primitive is useful to test the same

condition across a set of switch state variables. Listing 4

shows an example of the load balancer application, where the

switch drops an incoming packet if it finds that all the servers

are overloaded (beyond 1000 connections in this example).

We compare a set of variables provided as argument with

a constant variable using the specified relational operator,

the condition is applied for all variables in the set, and

all conditions are concatenated using the and/or logical

operator.

Listing 4: The multi-condition primitive.

Syntax
@pcube_cmp(<start>,<end>,<step>)(<relop>)(<logop>)(<

loop_argument>,<constant>){
//code

}
pcube example
if (@pcube_cmp (1,4,1)(>=)(and)(var_counter$i,1000)){

apply(drop);
}
pcube preprocessor output
if (var_counter1 >= 1000 and var_counter2 >= 1000 and

var_counter3 >= 1000){
apply(drop);

}

C. pcube primitives for distributed dataplanes

Multiple switches in a distributed dataplane application

frequently need to communicate with each other, in order to

exchange state variables, or reply to requests. We envisage

two modes of communication between switches: a multicast
synchronization mode, where a switch broadcasts a sync
message to a subset of switches in order to request or provide

some state information, and a unicast mode where a switch

communicates with one other switch.

Multicast synchronization. To automatically generate P4

code to synchronize a set of state variables using pcube, the

developer specifies the condition to trigger the synchroniza-

tion, the state variables to be synchronized/communicated to

other switches, and a custom/unused packet header field that

can be used to identify these special synchronization messages.

Listing 5: Multicast synchronization primitive.

Syntax
if (<condition>){

@pcube_sync(<custom_header_field>,<field_value>)
<sync_var$1>
...
<sync_var$n>

@pcube_endsync
}

pcube example
if (var_counter < THRESHOLD){

@pcube_sync(pkt.type,2) //pkt.type=2: sync_update packet
var_counter

@pcube_endsync
}
pcube preprocessor output
if (var_counter < THRESHOLD){

apply(sync_tab); //@pcube_sync replaced
}

For example, Listing 5 depicts example code to synchronize

the server load variables across a set of switches in our

simple load balancer example, with the synchronization being

triggered only if a switch perceives that its utilization falls

below a threshold. When the pcube preprocessor encounters

this primitive, it generates P4 code to lookup a special sync

action table that is generated by pcube (and must be included

in the P4 code by the developer). The default action in this

sync action table creates a special sync message by cloning the

received packet, and pushes multiple header fields that embed

432

the state variables that must be communicated to the other

switches. This action code also sets the header field to identify

this packet as a special sync message, using the field indicated

for this purpose by the programmer. Whenever the condition to

trigger synchronization occurs at runtime, the code generated

by pcube takes care of automatically generating synchroniza-

tion messages to multiple switches. pcube takes the network

topology identifying the multicast group of switches as input,

and generates runtime configuration for creation of multicast

identifiers, handles and their associations, which ensures that

the sync message is delivered to specific switches in the

multicast group.
Unicast synchronization. This primitive is similar to the mul-

ticast synchronization primitive, except that the state values

are shared as response only to the source node that requested

the synchronization (hence the name “echo”). Listing 6 shows

an example from our simple load balancer, where a switch

sends its state variables as response when it receives a request

message from another switch. The implementation of this

primitive in pcube is similar to that of the multicast primitive,

with the difference that a response packet is sent back only

to the source by adding a runtime command mirroring the

packets back to the source.

Listing 6: Unicast synchronization primitive

Syntax
if (<condition>){

@pcube_echo(<custom_header_field>,<field_value>)
<sync_var$1>
...
<sync_var$n>

@pcube_echosync
}
pcube example
if (pkt.type == 1){ //pkt.type=1: echo_request packet

@pcube_echo(pkt.type,2) //pkt.type=2: echo_update packet
var_counter

@pcube_endecho
}

pcube preprocessor output
if (pkt.type == 1){

apply(echo_tab); //@pcube_echo replaced
}

D. Nesting of pcube primitives
pcube allows nesting of the pcube primitives. The

pcube preprocessor is designed as a multi-pass program

and performs four passes on an input pcube program. The

pcube primitives are converted to corresponding P4 code

according to the following order, where primitives later in the

order can nest the primitives preceding it: loops, summation,

multi-condition/minmax, and sync/echo synchronization prim-

itives. The parsing order is decided to enable useful nesting

of pcube primitives. Listing 7 shows the nested pcube code

for the example code in Listing 3.

Listing 7: Nested Pcube example

@pcube_minmax (<=)
@pcube_for (i) (1,4,1)

@pcube_case var_counter$i:
apply(tab_server$i);

@pcube_endcase
@pcube_endfor

@pcube_endminmax

(Load Balancer)

Switch 3

Servers

(Load Balancer)

Switch 1

(Load Balancer)

Switch 2

Servers

Ingress traffic Ingress traffic

Ingress traffic

Servers

Fig. 2: Load balancer application: example topology.

III. USE CASES

We now evaluate pcube by implementing two sample appli-

cations in our framework: a simple distributed load balancer,

and a heavy hitter detection application. We evaluate two

aspects of our framework: the number of lines of code that

can be saved using pcube primitives, and the correctness of

our primitives.

A. Load Balancer

Our load balancer application runs at multiple dataplane

switches. It assigns new incoming flows to one of the multiple

backend servers, and the switches hosting the load balancer

application rewrite the destination IP addresses of packets to

redirect them to the selected backend. For scalability, the pool

of backend servers is distributed amongst the switches. A

switch assigns new flows to one of the servers in its “local”

pool as long as these servers are not overloaded. Our load

balancer keeps track of the current number of flows processed

as the load for each server. When a new flow request arrives,

the server with minimum flow count is allocated, and server

flow counter is updated. When all local servers of a switch are

overloaded, it proceeds to assign flows to one of the remote

servers. We maintain a table that stores the flow hash and the

server allocated for the flow, so that all the packets of the

same flow are forwarded to the same server. If the switch

receives the last flow packet, the route table entry for the

corresponding flow is deleted, and the server flow counter is

updated. Figure 2 illustrates our simple load balancer, where

three switches manage of a pool of two local servers each,

and hosts generate traffic to the servers.

In order to learn about the load levels of remote servers

for efficient load balancing, the switches in our application

synchronize the load levels of their local pool of servers with

other switches in two cases: (i) if a switch finds that all

its local servers are overloaded, it generates a sync message

requesting the load levels from other switches, so that it can

find a lightly loaded remote server for future flows, and (ii)

if a switch finds that it is very lightly loaded, it sends a sync

message advertising its low load levels to other switches, so

that they may redirect flows to its local pool. The threshold

load levels at which these synchronization messages are sent

are configured by the P4 programmer at runtime. Note that

433

we avoid continuous synchronization of load levels of all

servers across all switches in order to limit the amount of

synchronization traffic.

We implemented this load balancer application using pcube.

We now show snippets of code from our implementation to

illustrate the usefulness of our primitives. Listing 8 shows a

snippet of code where a switch tries to find a local server

that is not overloaded to assign as a backend for a new flow,

failing which it triggers a probe synchronization message to

all servers requesting them to send the load levels of their

local servers as reply. This snippet uses the multi-conditional,

summation, and multicast synchronization primitives. Next,

Listing 9 shows a code snippet where a switch that has

received the probe described above, and replies with its own

load level, illustrating the unicast synchronization primitive.

Once a switch has learnt of the load at remote servers via

replies to its probes, Listing 10 shows how a switch drops

new flows if it finds all servers (including remote ones) to

be overloaded, or directs flows to the least loaded remote

server if any of them is found to be serving a load below

a threshold. This snippet illustrates the loop, min/max, and

multi-conditional primitives. Finally, Listing 11 shows how a

switch with an underloaded pool of servers announces its load

levels to other switches to enable them to direct traffic to it.

Listing 8: Local switch forwarding.

if(@pcube_cmp(0,NUM_SERVERS,1)(<)(or)(flow_count$i,THR1)){
apply(route_to_local_server_table);
if((@pcube_sum(0,NUM_SERVERS,1)(flow_count$i))>THR2)){

apply(probe_table);
}
} else ...
if(probe == 1){ // send sync request

@pcube_sync(pkt.type,1)
@pcube_endsync

}

Listing 9: Process sync request at switch.

if (pkt.type == 1){
@pcube_echo(pkt.type ,2)

@pcube_sum (0,NUM_SERVERS,1)(flow_count$i)
@pcube_endecho

}

Listing 10: Remote switch forwarding.

if (@pcube_cmp(0,NUM_SWITCHES,1)(>=)(and)(flow_count$i,THR3
)){

apply(drop_table);
}else {

@pcube_minmax (<=) // find least loaded switch
@pcube_for (i) (0,NUM_SWITCHES,1)

@pcube_case switch_flow_count$i:
apply(switch$i_route_table);

@pcube_endcase
@pcube_endfor
@pcube_endminmax

}

Listing 11: Send sync update from switch.

// Sync update message
if ((@pcube_sum(0,NUM_SERVERS,1)(flow_count$i))<THR2){

@pcube_sync(pkt.type,2)
@pcube_sum(0,NUM_SERVERS,1)(flow_count$i)

@pcube_endsync
}

}

 0

 500

 1000

 1500

 2000

10 20 30 40 50

L
in

e
s
 o

f
C

o
d
e

Network topology: Number of switches

pcube
P4

Fig. 3: pcube vs P4: Distributed load balancer.

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2 2.5 3

C
u
rr

e
n
t
fl
o
w

 c
o
u
n
t

Time in msec

Generated Load
Local switch

Remote switch 1
Remote switch 2

Fig. 4: Load balancer: 3 switches, switch threshold = 8 flows.

Savings in developer effort. We implement the load balancer

application described above in pcube, and compiled the re-

sulting P4 code to the bmv2 [18] target. We then emulated

a network with varying number of nodes using mininet [19],

and generated flows to our load balancer using scapy [20]. We

varied the network topology by varying the number of nodes

(servers, hosts, and switches) in the network, and generated P4

code using pcube for different network topologies. Figure 3

shows the number of lines in the load balancer application

when using pcube, and when directly writing P4 code. We

find that while the size of the P4 code base increases with

increasing nodes in the network topology, the size of the

pcube code remains constant due to the pcube primitives that

provide an efficient way to access and update indexed state

variables. We see from the graph that we achieve up to 5.4X

reduction in LoC, indicating significant reduction in developer

effort with pcube.

Correctness. We now show that our load balancer is able

to correctly balance load to multiple servers. Specifically,

we evaluate our synchronization primitives and whether the

messages are responses are generated as expected by the

autogenerated pcube code. We consider a topology with 3

switches, 2 local servers per switch and a single host gener-

ating traffic. The lower limit threshold configured is 3 flows,

434

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6

C
u
rr

e
n
t
fl
o
w

 c
o
u
n
t

In
te

rs
w

it
c
h
 p

a
c
k
e
ts

Time in msec

Flows in the network
Sync request (switch 1)
Sync update (switch 1)

Fig. 5: Interswitch messages generated by the ingress switch.

and the upper limit threshold is configured as 6. The client

generates load at the rate of one new flow every 0.128 seconds

to one of the three switches. We configure the switch to move

from its local pool of servers to start probing other switches

when the cumulative load on its servers crosses a threshold

of 8 flows. Figure 4 shows the timeline of the flow arrivals

and assignments, and Figure 5 shows the synchronization

messages generated by the ingress switch, to which the host

sends traffic. We see from the Figure 5 that once the server

load crosses the configured threshold, probe messages are

automatically generated by pcube, resulting in the switch

learning of the load at the remote servers and diverting traffic

to them.

B. Heavy hitter detection

The heavy hitter detection application [21] identifies sources

of traffic that generate huge amounts of traffic and drops

packets from such sources. Implementing this application in

the dataplane of a programmable switch is complicated by

the fact that there is not enough storage to maintain state

for all sources. Therefore, optimizations such as a counting

bloom filter are used to efficiently store counts for heavy

hitter sources without requiring O(n) space. The code for the

counting bloom filter involves computing and updating mul-

tiple hashes and updating the corresponding indices of a data

structure. Such code has significant potential to be compressed

with pcube primitives. We started with a heavy hitter detection

application [21] and rewrote it using pcube primitives. We

found that we could reduce the number of lines of code

from 676 to 191, a reduction of 3.53x, when the bloom

filter bucket size was 50, and a reduction of 1.44x, when

the bloom filter bucket size was 10. This exercise shows that

pcube is very useful in reducing the effort of developing

realistic programmable dataplane applications.

IV. CONCLUSION

This paper presented the design and implementation of

pcube, a preprocessor framework that simplifies the develop-

ment of P4 code by providing primitives for loops, summation,

multi-conditionals, min/max comparisons and abstractions to

synchronize state across multiple switches. Based on the

network topology, pcube primitives are translated to P4 code

and further compiled and deployed on multiple dataplane

switches of a distributed application. We demonstrated the use-

fulness of pcube by implementing a set of sample distributed

data plane applications, and reduce programming effort (in

term of lines of code) significantly—by a factor of 5.4x for

the load balancing application and reduction factor directly

proportional to the granularity of flow categories for heavy

hitter detection application.

As part of future work, we plan to expand the set of

primitives to include handling of dynamic changes to network

topology and network failures.

REFERENCES

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.
of the ACM SIGCOMM Conference, 2013.

[2] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “drmt: Disaggregated programmable switching,” in Proc. of
the Conference of the ACM SIGCOMM Conference, 2017.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Computer Communication Review, July 2014.

[4] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proc. of the ACM
SIGCOMM Conference, 2016.

[5] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proc. of SOSP, 2017.

[6] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “Kv-direct: High-performance in-memory key-value store
with programmable nic,” in Proc. of SOSP, 2017.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in Proc. of
the SoSR, 2016.

[8] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in Proc.
of the ACM SIGCOMM Conference, 2017.

[9] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proc. of the ACM SIGCOMM
Conference, 2017.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proc. of the ACM SIGCOMM SoSR,
2015.

[11] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in Proc. of the SoSR, 2017.

[12] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
of the SoSR, 2017.

[13] “P4c github page,” https://github.com/p4lang/p4c, 2017.
[14] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,

and A. Akella, “P5: Policy-driven optimization of p4 pipeline,” in Proc.
of the SoSR, 2017.

[15] Z. Ma, J. Bi, C. Zhang, Y. Zhou, and A. B. Dogar, “Cachep4: A behavior-
level caching mechanism for p4,” in Proceedings of the SIGCOMM
Posters and Demos, ser. SIGCOMM Posters and Demos, 2017.

[16] Y. Zhou and J. Bi, “Clickp4: Towards modular programming of p4,” in
Proc. of the SIGCOMM Posters and Demos, 2017.

[17] “pcube project,” https://github.com/networkedsystemsIITB/pcube, 2018.
[18] “Behavioral-model,” https://github.com/p4lang/behavioral-model, 2017.
[19] “Mininet,” http://mininet.org/, 2017.
[20] “Scapy github page,” https://github.com/secdev/scapy, 2017.
[21] “SIGCOMM P4 tutorials,” https://github.com/p4lang/tutorials, 2017.

435

