Efficient Algorithms for Infinite-Armed Bandit

Arghya Roy Chaudhuri under the guidance of Prof. Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

What is a Multi Armed Bandit ?

What is a Multi Armed Bandit ?

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0

What is a Multi Armed Bandit ?

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-
Round 3	1	-	-	-	-	-

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-
Round 3	1	-	-	-	-	-
Round 4	1	-	-	-	-	-

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-
Round 3	1	-	-	-	-	-
Round 4	1	-	-	-	-	-
Round 5	0	-	-	-	-	-

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-
Round 3	1	-	-	-	-	-
Round 4	1	-	-	-	-	-
Round 5	0	-	-	-	-	-
Round 6	-	-	-	1	-	-

Machines:						
Mean Reward	0.9	0.5	0.6	0.7	0.1	0.7
Round 1	1	1	0	1	0	0
Round 2	-	0	-	-	-	-
Round 3	1	-	-	-	-	-
Round 4	1	-	-	-	-	-
Round 5	0	-	-	-	-	-
Round 6	-	-	-	1	-	-

Objective: Output the arm with the highest expected reward with high probability, while incurring a **minimal** number of samples

Key Principle: Confidence Bounds

Approach:

• Track confidence bounds for each arm

Key Principle: Confidence Bounds

Approach:

- Track confidence bounds for each arm
- Return an arm whose LCB exceeds UCB of all the other arms

What if the number of arms is too large?

What if the number of arms is too large?

Problem Definition: Find an arm from an infinite set of arms whose expected reward is greater than $(1 - \rho)^{\text{th}}$ -quantile (for $0 < \rho < 1$) of distribution of rewards over arms.

Consider a biased coin with P(HEAD) = 0.1 and P(TAIL) = 0.9

Consider a biased coin with P(HEAD) = 0.1 and P(TAIL) = 0.9

Number of tosses	P(no Head)
1	0.9
10	0.348

Consider a biased coin with P(HEAD) = 0.1 and P(TAIL) = 0.9

Number of tosses	P(no Head)
1	0.9
10	0.348
20	0.122

Consider a biased coin with P(HEAD) = 0.1 and P(TAIL) = 0.9

Number of tosses	P(no Head)
1	0.9
10	0.348
20	0.122
50	0.005

Applications:

• Large/continuous action spaces with discontinuous rewards