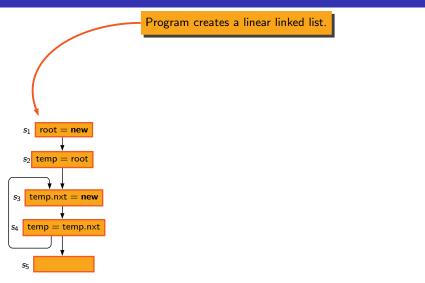
Static Analysis of Dynamically Allocated Data

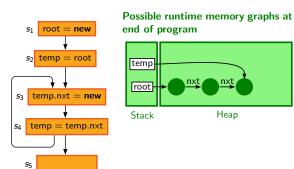
Vini Kanvar

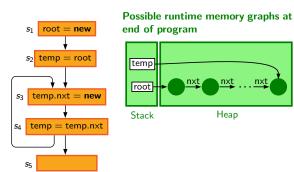
under the guidance of

Prof. Uday P. Khedker

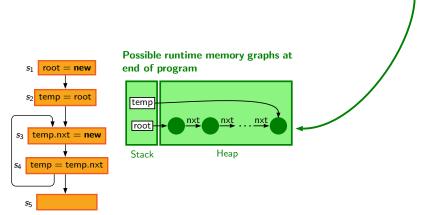
Department of Computer Science and Engineering Indian Institute of Technology, Bombay

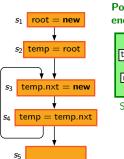

April 2016


- Some questions that my work can help answer:
 - Is there a memory leak in the program?
 - Is there a null dereference?
 - What is the shape (tree, DAG, linked list) of a heap data structure?
 - for program understanding, verification, debugging.

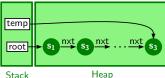

- Challenges in the analysis of pointer variables
 - Undecidable [Chakaravarthy 2003][Ramalingam 1994]
 - Features: dynamic typing, implicit casting, pointer arithmetic, etc.

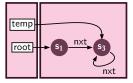
- Challenges in the analysis of pointer variables
 - Undecidable [Chakaravarthy 2003][Ramalingam 1994]
 - Features: dynamic typing, implicit casting, pointer arithmetic, etc.
- Challenges in the analysis of heap pointer variables
 - Unpredictable lifetime
 - Unbounded number of allocations
 - Unnamed locations



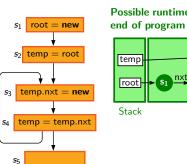

nxt

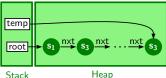
root points to unbounded number of heap locations. temp does not; it points to the end of the list.

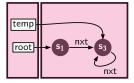



Conventional static analysis: merges all runtime memory graphs based on the allocation sites.

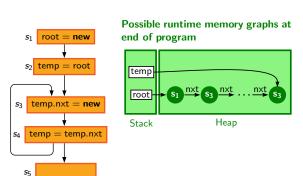
Static heap analysis Conventional

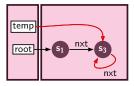

Possible runtime memory graphs at end of program

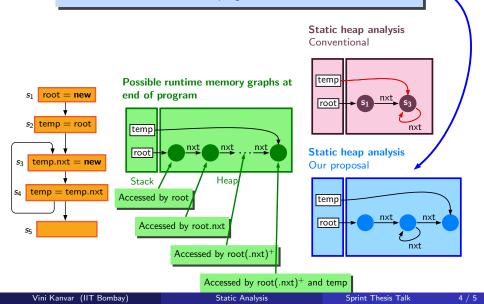



Cycle denotes unbounded number of heap locations.

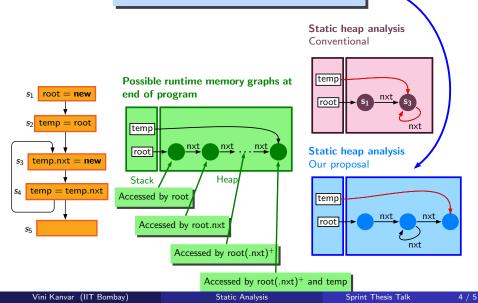
Static heap analysis Conventional

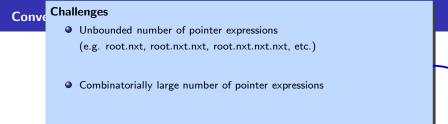

Possible runtime memory graphs at end of program

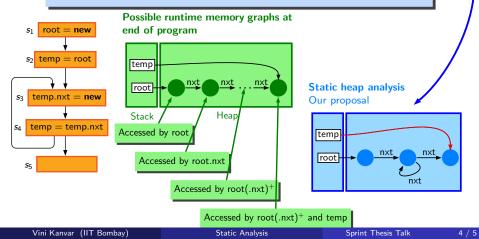



Conventional static analysis: spuriously computes that **temp** points to an unbounded number of heap locations.

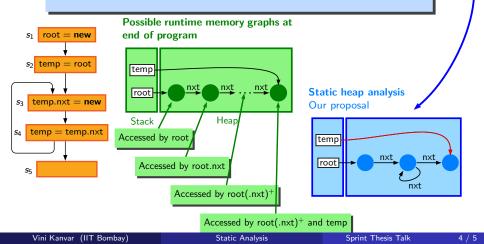
Static heap analysis Conventional

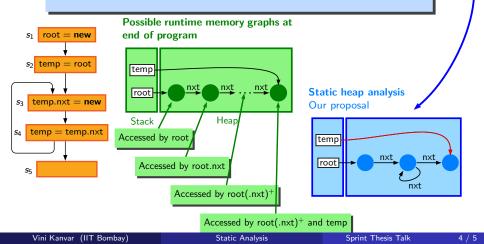




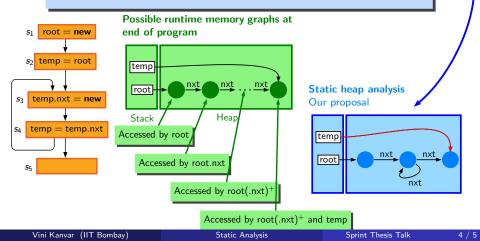

Our static analysis: we propose to merge all runtime memory graphs based on program accesses.

Our static analysis: we precisely compute that **temp** points to a single heap location only.




Conve Challenges

- Unbounded number of pointer expressions
 - (e.g. root.nxt, root.nxt.nxt, root.nxt.nxt.nxt, etc.)
 - Distinguish betweeen expressions up to a fixed length L
- Combinatorially large number of pointer expressions


Conve Challenges

- Unbounded number of pointer expressions
 - (e.g. root.nxt, root.nxt.nxt, root.nxt.nxt.nxt, etc.)
 - Distinguish betweeen expressions up to a fixed length L
- Combinatorially large number of pointer expressions
 - Memoize expressions used across program points

Conve Challenges

- Unbounded number of pointer expressions
 - (e.g. root.nxt, root.nxt.nxt, root.nxt.nxt.nxt, etc.)
 - Distinguish betweeen expressions up to a fixed length L
- Combinatorially large number of pointer expressions
 - Memoize expressions used across program points
 - Save only live pointer expressions [Khedker et al. 2012]

- We aim to improve the precision of static heap analysis (including liveness analysis).
- We are in the process of measuring the effectiveness of our method.