Power Considerations in Virtualized Environments

Swetha P.T. Srinivasan

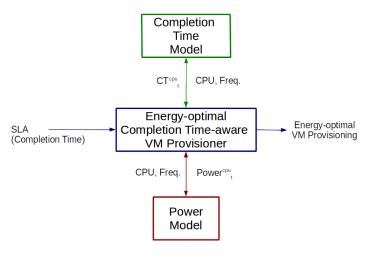
supervised by

Prof. Umesh Bellur

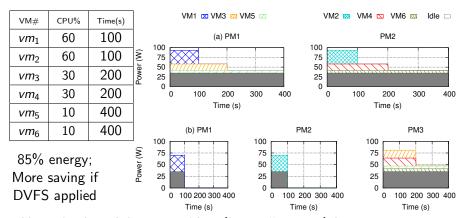
Indian Institute of Technology, Bombay

Research and Innovation Symposium for Computer scientists (RISC 2016)

April 2nd 2016


Background

- 1. Power consumption of a server $P_{total} = P_{static} + P_{dynamic}$ (Watts)
- 2. Energy consumption $E = \sum_{i=1}^{t} P(i)$ (Watt-hour)
- 3. Dynamic Voltage and Frequency Scaling (DVFS) combination of voltage and *f* set for processor


Goal: Energy Optimal VM Provisioning

- Goal:
 - Energy-optimally provisioning VMs on DVFS-enabled servers
 - Ensure completion time SLAs are met

Where Existing Heuristics Fail

- 6 VMs need to be placed
- Best Fit Decreasing / First Fit Decreasing: ordering by CPU requirement size

 Hypothesis - tightest packing (least #servers) is not energy efficient for deadline-based provisioning.