

Images: Courtesy: Wikipedia

Tomographic Reconstruction

Supervisors: Ajit Rajwade, Sharat Chandran, Imants Svalbe (Monash)

- Machine-related
- Process Model-related
- Human-related

low dose

high dose

- Machine-related

- Process Model-related
- Human-related

- Machine-related
- Process Model-related
- Human-related

actual

- Machine-related
- Process-Model related
- Human-related

streaks and blur due to motion

- Machine-related
- Model Process-related
- Human-related
 Thesis focus

streaks and blur due to motion

Thesis Goal----

- Develop intelligent algorithms that will compensate for human related errors.

How?

- Can I model the unwanted motion artifacts?
- Can I use some implicit redundant information?
- Can I instruct machine to take measurements with better protocols?

Thesis Goal----

- Develop intelligent algorithms that will compensate for human related errors.

How?

- Can I model the unwanted motion artifacts?
- Can I use some implicit redundant information?
- Can I instruct machine to take measurements with better protocols?

Without compromising much on radiation exposure and speed.

Thesis Goal----

- Develop intelligent algorithms that will compensate for human related errors.

How?

- Can I model the unwanted motion artifacts?
- Can I use some implicit redundant information?
- Can I instruct machine to take measurements with better protocols?

Without compromising much on radiation exposure and speed.

Techniques used:

Compressive sensing, optimization, image and signal processing.